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The truncated Levy process (TLP) modifies the heavy-tailed Levy distribution by 

transitioning to a fast-decaying probability distribution, solving the second-moment 

divergence problem. We present an extension of the fractional diffusion equation that 

simulates a process with a truncated Levy power-law behavior with an exponent of 5-

α. This results in a closed-form discriminant function, where the displacement 

probability density function transitions to a Gaussian in essence while preserving the 

power-law tail. Truncated Levy processes are promising for financial modelling, as 

they provide finite moments and capture short-term divergence and long-term 

Gaussian convergence. We validate the truncated Levy process model using simulated 

data. This paper is part of a doctoral thesis, where we relied on simulation in the 

applied aspect, exploring option hedging in a Levy-dominated context, comparing 

optimal strategies with delta hedging, and revealing key differences. In addition, we 

derive a generalized option pricing formula for assets under the truncated Levy process 

model. 
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1. Introduction  

          Diffusion is a fundamental physical 

process that describes the movement of 

particles from regions of higher concentration 

to regions of lower concentration, driven by 

random thermal motion. Classical diffusion, as 

articulated by Fick's laws, assumes that the 

mean squared displacement (MSD) of particles 

grows linearly with time, a behavior typically 

observed in homogeneous and isotropic media. 

However, numerous experimental and 

theoretical studies have revealed that many 

systems exhibit non-linear diffusion behavior, 

which diverges from classical predictions. This 

phenomenon is termed anomalous diffusion. 

Anomalous diffusion is characterized by a 

power-law relationship between the MSD and 

time: 

⟨  ( )⟩                                            ( ) 
where       (Metzler & Klafter, 

2000). The parameter   serves as a crucial 

descriptor of the diffusion process, categorizing 

it into three distinct regimes: normal diffusion 

(   ), subdiffusion (     )  and 

superdiffusion (   ). 

The significance of anomalous diffusion 

extends beyond theoretical interest; it has 

profound implications across various scientific 

disciplines. In biological systems, for instance, 

the movement of proteins and other 

biomolecules often exhibits subdiffusive 

characteristics due to crowding effects and the 

complex internal structures of cells (Weiss et 

al., 2004). In materials science, anomalous 

diffusion plays a vital role in understanding 

transport phenomena in porous materials, 

batteries, and catalysts, where diffusion 
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pathways are often obstructed or altered by the 

medium's heterogeneity (Deng et al., 2018). 

The mechanisms driving anomalous diffusion 

are diverse and can include factors such as 

heterogeneous environments, trapping effects, 

and long-range correlations. For example, in 

crowded cellular environments, the presence of 

organelles and macromolecules can 

significantly hinder the movement of diffusing 

particles, leading to subdiffusive behavior 

(Ghosh et al., 2020). Conversely, in systems 

exhibiting superdiffusion, particles may exhibit 

correlated movements that result in faster-than-

expected spreading (Ben-Avraham & Havlin, 

2000). 

Mathematical modeling of anomalous diffusion 

has evolved significantly, with approaches such 

as fractional calculus, Levy flights, and 

continuous time random walks (CTRW) 

providing frameworks to capture the 

complexities of these processes. These models 

not only enhance our understanding of the 

underlying physics but also facilitate the 

prediction of diffusion behaviors in various 

applications. Recently, attempts have been 

made to use anomalous diffusion in finance 

and economics. This paper uses the fractional 

diffusion equation for the first time to calculate 

a European call option with an application. 

Given the multifaceted nature of anomalous 

diffusion and its relevance across disciplines, 

this review aims to provide a comprehensive 

synthesis of the current literature. By exploring 

the definitions, mechanisms, mathematical 

models, experimental observations, and 

practical applications of anomalous diffusion, 

we aim to highlight its importance and the 

ongoing challenges in the field. 

2. Methodology  

Truncated levy flight are stochastic 

processes which display a crossover from a 

heavy-tailed levy behavior to a faster decaying 

probability distribution function (pdf). In this 

section, we introduce a fractional diffusion 

equation, whose solution defines a process in 

which a levy flight of exponent   is truncated 

by a power-law of exponent    . A closed 

form for the characteristic function of the 

process is derived. In financial applications are 

discussed (Ghosh et al., 2020). The equation 

we propose for truncated levy flights with the 

power-law cutoff has following form (Ben-

Avraham & Havlin, 2000). 

(      
    

 | |   )
   (   )

  
   

   (   )

                      ( ) 

 Where   is the diffusion coefficient governing 

the long-time asymptotic behavior, and the 

scale factor       ⁄  is a coefficient 

governing the intermediate time levy- like one. 

The fractional diffusion equation is particularly 

useful in modeling processes that exhibit 

anomalous diffusion, such as those described 

by levy process. In the context of financial 

modeling, the probability density function 

 (   ) for a power-law- truncated levy 

process. 

The equation is given as  

 (   )   
  

       (   )    (   ) ⁄

 | |   
    ( ) 

Where 

   is a normalization constant that depends on 

the parameter   is parameter that typically lies 

in the range (0,2) and indicates the degree of 

anomalous diffusion.   is the gamma function, 

which generalizes the factorial function.   is a 

constant related to the process, and 

| |   indicates the power-law behavior of the 

process 

To analyze the distribution further, we can 

compute its moments. The first moment (mean) 

given the symmetry of the PDF around zero for 

   , the first moment will be zero   ( )    

(Scher & Lax, 1973 ), the second moment 

  ( ) is given by  

    ∫   
 

  

  (   )   

   ∫   
 

 

 
  

       (   )    (   ) ⁄

 | |   
    

   
  

       (   )    (   ) ⁄

 
 ∫   

 

 

 
 

| |   
     

    
  

       (   )    (   ) ⁄

 
 ∫     

 

 

     

The integral ∫      

 
     converges for     

and diverges otherwise. If it converges, we can 
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evaluate it using the gamma function. 

∫      

 
       (   )  for    . Thus, the 

second moment becomes  

     
  

       (   )    (   ) ⁄

 
 (   ) 

The variance is the second central moment, 

defined as:   ( )      (     )  . Since we 

stated that the mean    is zero for      , the 

variance simplifies to:   ( )      

These moments provide insights into the 

behavior of the fractional diffusion equation 

driven by a power-law truncated levy process.  

 

The fractional diffusion equation can 

effectively model the distribution of asset 

returns with jumps by incorporating the 

characteristics of both fractional calculus and 

levy processes, the fractional diffusion 

equation is an extension of the classical 

diffusion equation. It accounts for anomalous 

diffusion, which is characterized by non-

Gaussian behavior and heavy tails in the 

distribution of returns. This is particularly 

relevant in finance, where asset returns often 

exhibit. 

 Leverage effects: Negative returns may 

lead to increased volatility  

 Fat tails: Extreme events ( jumps ) are 

more common than predicted by normal 

distributions.  

we need estimate the diffusion coefficient C 

from the given fractional diffusion equation, 

we can derive relationships on the 

characteristic of the probability density 

function P(x,t) and its implication for diffusion 

processes. 

Starting with the equation (3) this form 

suggests that as | | increases, the density 

function  (   ) behaves like: 

 (   )  
 

| |   
 

This indicates that the distribution has a heavy 

tail, which is characteristic of anomalous 

diffusion processes, to relate this diffusion, we 

can calculate the moments of the distribution. 

The second moment is particularly important 

for estimating the diffusion coefficient. 

For a diffusion process, the second moment 

grows linearly with time(Mandelbrot, B. B., & 

Van Ness, J. W. (1968)) : 

                                                         ( ) 

equation two expressions give: 

      
  

       (   )    (   ) ⁄

   (    )
  

We obtain 

  

  
  

      (   )    (   ) ⁄

   (    )
 

 

Now, we will determine the value of   
 , to 

find    we need to satisfy the normalization 

condition ∫  (   )
 

  
     

Assuming     and     for simplicity, we 

have. 

∫  (   )
 

  

  

 
  

       (   )    (   ) ⁄

 
 ∫

 

| |   

 

  

      

the integral ∫
 

| |   

 

  
     can be evaluated as 

follows: 

1- For       (        )  the 

integral diverges 

2- For       (        )  the 

integral diverges logarithmically 

3- For        (        ) the 

integral converges. 

for convergence, we have: 

∫ | | (   )
 

  

    ∫   (   )
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This integral converges if     
  (        ) and the result is   

∫   (   )
 

 

    
 

   
 

Thus  

∫ | | (   )
 

  

   
 

   
   

Now, substituting back into the normalization 

condition  

  
    (   )    (   ) ⁄

 

 

   
   

  
   

  (   )

   (   )    (
  
 )

  

 

Taking the square root  

    √
  (   )

   (   )    (
  
 )

                     ( ) 

This formula is valid for     to ensure the 

integral converges. 

3. Results and discussion  

The result (44.35749) represents the 

estimated price of a call option based on the 

power-law truncated Levy process simulation. 

Here we will interpret this value : 

This value indicates that, under the specified 

parameters (initial asset price, strike price, time 

to maturity, number of simulations, and the 

characteristics of the Levy process), the 

average price you would pay for the call option 

is approximately (44.36). In a financial context, 

a call option gives the holder the right (but not 

the obligation) to buy an underlying asset at a 

predetermined strike price (in this case, 

     ) before or at expiration (in this case, 

    year. The calculated option price reflects 

the market's expectation of the potential profit 

from holding this option. A higher option price 

suggests a greater probability that the asset 

price will exceed the strike price at maturity, 

thus making the option valuable. This result 

can also be used to assess risk. If the option 

price is significantly lower than expected future 

asset prices, it may indicate a potentially 

undervalued opportunity or a market 

expectation of less volatility. Investors can 

compare this option price to other options with 

different parameters or to historical data to 

gauge whether it is a good investment. In 

summary, (44.35749) is the estimated fair 

market price for the call option under the 

modeled conditions, providing insight into the 

potential profitability and risk associated with 

this financial instrument. 

Figure 1. : distribution of Final Asset Prices by using 

the R program 
  

4. Conclusions  

This brief paper deals with a fundamental 

analysis of the abnormal diffusion process by 

modeling the fractional diffusion equation of 

the truncated Levy process and its use in 

financial applications, which is one of the first 

attempts in this field. Using simulation and the 

R programming language to calculate the 

European call option as a model, the results 

showed that the use of the fractional diffusion 

equation in financial modeling allows for a 

more accurate representation of market 
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behavior, especially in capturing the 

complexities of asset price movements affected 

by rare but important events. This approach can 

be particularly useful in developing robust 

trading strategies and risk management 

frameworks. We view the proposed stochastic 

technique as a promising model for the 

complex phenomenon of abnormal diffusion. 

Future research will focus on studying 

diffusion processes systematically in finance. 
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