Comparison of two methods for the detection of Pseudomonas aeruginosa biofilm formation isolated from different clinical samples

Nuha Abdulrazaq Hameed AL-Mojamaee¹, Hiyam Adil J. ALtaii²
1. Ph.D. Student, Department of biology, College of Science, University of Mosul, Iraq

2. Prof. Dr. Department of biology, College of Science, University of Mosul, Iraq

Abstract: *Pseudomonas aeruginosa* is implicated in a number of infections in humans, mostly related to medical services. Therapy is made much more difficult in hospitals related to antibiotic resistance. Biofilm-related issues with *P. aeruginosa* infections are one of the main treatment challenges. The complex composition of the *P. aeruginosa* biofilm adds to the pathogenic potential of this microbe, increasing its ability to evade the immune system, causing persistent infections that are challenging to treat and leading to treatment failure. In this study, we will evaluate the ability of *P. aeruginosa* to produce biofilm by two methods: Congo Red Agar (CRA) and Microtiter plate (MTP) Assay method.

Keywords: Biofilm, Congo Red Agar (CRA) and Microtiter plate (MTP) Assay method, *P. aeruginosa*

Pseudomonas aeruginosa المعزولة الخشية الحيوية لبكتيريا المعزولة من عينات سريرية مختلفة

نهى عبد الرزاق حميد عبد المجمعي أنه أ.د. هيام عادل ابر اهيم الطائي عبد الرزاق حميد عبد الموصل/ كلية العلوم/ قسم علوم الحياة الملخص الملخص

تتسبب بكتيريا Pseudomonas aeruginosa بالعديد من حالات العدوى لدى الانسان، ومعضمها متعلق بالجوانب الطبية. علاج هذه البكتيريا يزداد صعوبة في المستشفيات بسبب انتشار المقاومة المضادات الحيوية. وتعد المشكلات المتعلقة بالبيوفيلم (Biofilm) مع عدوى P. aeruginosa واحدة من تحديات العلاج الرئيسية. يضيف التركيب المعقد للأغشية الحيوية لـ P. aeruginosa إلى القدرة المسببة للأمراض لهذا الميكروب، مما يزيد من قدرته على التهرب من الجهاز المناعي، مما يسبب التهابات مستمرة يصعب علاجها وتؤدي إلى فشل العلاج. في هذه الدراسة، سوف نقوم بتقييم قدرة P. aeruginosa على إنتاج الأغشية الحيوية (CRA) وطريقة صفيحة المايكوتايتر (CRA).

الكلمات المفتاحية: الأغشية الحيوية، أجار الكونغو الأحمر (CRA) وطريقة فحص لوحة العيار الدقيق (P. aeruginosa (MTP)

Introduction

Pseudomonas aeruginosa is widely recognized as one of the most prevalent Gram-negative bacterial infections. P. aeruginosa has been identified by the World Health Organization (WHO) as one of the top three priority infections in need of urgent treatment research (Tacconelli et al., 2018; Killough et al., 2022; H Mohamed et al., 2023). P. aeruginosa is a significant contributor to both mortality as well as morbidity in immune-compromised patients, especially those with cystic fibrosis or CF, serious burns, or tumours. P. aeruginosa poses a significant threat as a nosocomial infection in these patients, mainly due to its ability to produce various virulence factors, including Biofilm (Oren & Garrity, 2021; Killough et al., 2022). One of the most important P. aeruginosa's virulence factors are Biofilm, which is formed of surface-adjusted aggregates of bacteria integrated with self-made extracellular polymeric substances (EPS), which allows the pathogens to attach to diverse surfaces, protecting them from shear forces, dehydration, and the host's immune response, which includes natural killer cells, phagocytes, complement, and reactive oxygen species ROS damage Also the Biofilm which decreases the probability that the bacteria will escape the immune cells as well as antibiotics within the Biofilm and serves as a useful defense against the host immune system and antibacterial compounds, resulting in continuous colonization leading to treatment failure (Bonomo & Szabo, 2006; Szabó et al., 2008; Behzadi et al., 2021).

Numerous techniques, including tissue culture plate (TCP), tube method (TM), Congo Red Agar method (CRA), modified CRA method (MCRA), bioluminescent test, piezoelectric sensors, and fluorescent microscopic inspection, have been described and used to identify the formation of biofilms. Nevertheless, not every one of these techniques can be applied in standard clinical labs, and research comparing various techniques to identify biofilm development (Panda *et al.*, 2016). The main objective of this study was to compare two methods (MTP and CRA), which can be used in a routine clinical laboratory to detect biofilm formation by *P. aeruginosa*.

Material and method

3.2.3 Study approval

The patients volunteered to participate and received written informed assent. The study received approval from the Nineveh-public health department in Mosul. All samples were obtained and analyzed in accordance with the Ethical Committee regulations.

3.2.4 Bacterial isolation and identification

3.2.4.1 Collection of samples

A total of (122) specimens were obtained from (wound swab, burn swab, sputum, and urine) of patients were hospitalized at: Al-Jamboree Teaching hospital, Al-Salam Teaching Hospital, Burns Specialist Hospital and Public Health Laboratory in Mosul as presented in table (1). Specimens' collection was started from March 2021 to mid-May 2021. All specimens were taken from both sex and different ages, and via disposable sterile cotton swabs (or disposable urine cups) and immediately transferred to the Laboratory for cultivating and identification.

Table (1): The source, number, and places of clinical specimen collection used in the study.

Source of clinical specimens	Number of clinical specimens	place
UTI	48	Al-Jamhoree Teaching hospital,
Burns	26	Al-Salam Teaching Hospital,
Wounds	37	Burns Specialist Hospital and
Sputum	11	Public Health Laboratory
Total	122	

3.2.4.2 Isolation of Pseudomonas aeruginosa

The specimens were cultured on Cetrimide, Nutrient, MacConkey, and blood agar media, then incubated for (24) hours at (37C°). The identification of the isolated bacteria was conducted based on their colony morphological characteristics, size, shape, color, odor, and pigment production, then subjected to a different biochemical test for identification to the species level as represented by Bergey Manual for Systematic Bacteriology (Bergey *et al.*, 2001).

3.2.4.3 Identification of *Pseudomonas aeruginosa*

All isolated were identified depending on the morphological, microscopic, biochemical test, API 20E and Vitek 2 system.

3.2.5 Identification and characterization of biofilm-forming bacteria

3.2.5.1 Congo Red Agar (CRA) method

The CRA method was used to detect the bacteria's ability to form biofilms. The medium for this test was prepared using sucrose 50g/L, and Congo red (0.8 g/L) stain was added to Brain Heart Infusion agar. The bacteria were cultured on

the CRA medium and incubated at 37 °C for (24) hours. A positive result reveals either a high production of slime with a rough black color or a moderate production of slime with mild black colonies on CRA, while the biofilm non-producing (negative) isolates produced dark pink or red colonies (Freeman *et al.*, 2010).

3.2.5.2 Microtiter plate (MTP) Assay method

MTP assay is a quantitative method for detection the production of biofilm by a microplate reader (Teodósio *et al.*, 2013). Biofilm formation assay was conducted as follows:

- 1) The bacterial isolates were suspended to match the McFarland No.0.50 turbidity standard and then inoculated into Trypticase soy broth containing 1% glucose. Then incubated at 37°C for 18-24 hours.
- 2) After incubation, the bacterial culture was diluted by mixing (50µl) of bacterial broth with (950µl) of tryptic soy broth (TSB) supplemented with 1% glucose, The first three wells were filled only with TSB with 1% glucose as a negative control, and then each 3 wells replicate were loaded by 200µl bacterial suspension for each isolate of sterile 96-well polystyrene microplates.
- 3) The plate was carefully covered and incubated at (37 °C) for (24) hours.
- 4) After the incubation period, the plates were opened, and the liquid growth was drawn out from every well. Subsequently, the bacteria that did not adhere were eliminated using a series of three washes with 200-250 µl of PBS with pH= 7.2 using a suitable micro pipette and the MTP were drained in an inversed status until dried.
- 5) 200 µl of methanol was used to fix adhesive cells for 10 to 15 minutes.
- 6) To stain the biofilms, a volume of 200 µl of a 0.1% solution of purple crystal was added to each well and allowed to incubate for 15 minutes. Following staining process, the extra dye was eliminated by 2-3 washes washing with 200 µl PBS, and then the plate left to dry.
- 7) Subsequently, a volume of 200µl of 95% ethanol was introduced into each well and allowed to incubate for about (10) minutes. The test was performed in triplicate. The quantification of stain extracted by ethanol in every well was performed immediately using spectrophotometric (OD 630) using a microplate reader (Stepanovic *et al.*, 2007) The quantification of produced biofilm was determined as outlined in Table (2).

Table (2): Quantification of biofilm production (Stepanović et al., 2007).

OD value	Biofilm production
ODs ≤ ODc	Non
$ODc < ODs \le 2* ODc$	Weak
$2* ODc < ODs \le 4*ODc$	moderate
ODs > 4*ODc	Strong

^{*}Cut off value (ODC) = Mean OD of negative Control +3 (Standard Deviation of control). * (ODs) = Optical density of sample.

3.2.12 Statistical analysis

The results of the study were statistically analyzed using the calculation program (SPSS.25V). By adopting the one-way analysis of variance (ANOVA) to determining significant differences between several groups, based on the identification of significant variation in the data. In this research, statistical tests were employed to analyze data, including the chi-square (X2) test is utilized to conduct a comparison of percentages. Duncan to compare means. The numerical data were represented using (Mean \pm SD). In addition T-test was used to compare between two numeric variables and F-test (ANOVA) was used to compare between more than two numeric variables. * A p-value \leq 0.05 was deemed significant (Daniel & Cross, 2018; Saleh, 2021).

4. Results

4.1 The isolation of *Pseudomonas aeruginosa*

In the current study, a total of (122) specimen were obtained from patients were hospitalized at Al-Mosul hospitals (Al-Jamboree Teaching hospital, Al-Salam Teaching Hospital, Burns Specialist Hospital) from the period from March 2021 to mid-May 2021 and from both ages and both sex. These specimens were collected from (wound swab, burn swab, sputum, and urine) using cotton swabs containing a carrier medium (transport media swabs) to ensure the viability of isolates during transferring them to laboratory.

Depending on cultural, microscopic, and biochemical identification, 49 (40.16%) of *P. aeruginosa* isolates were obtained, including 23/49 (46.93%) from urine, 12/49 (24.48%) from burns, 10/49 (20.4%) wounds, and 4/49 (8.16%) from Sputum samples. According to the results of this study, the highest percentage of isolation was found in urine samples (46.93%), followed by burn, wound, and sputum samples (24.48%, 20.4%, and 8.16%, respectively) as shown in Figure (1).

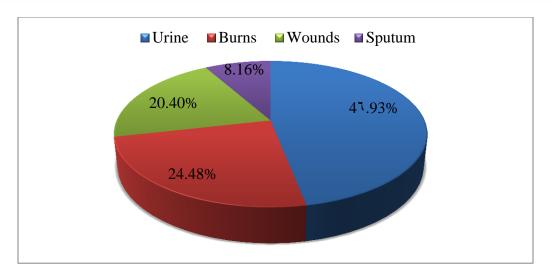


Figure (1): Prevalence *Pseudomonas aeruginosa* isolates in clinical specimens.

4.2 Identification of *Pseudomonas aeruginosa* isolates

The cultural characteristics of all the (49) isolates of *Pseudomonas* aeruginosa isolate on different media such as Nutrient agar (NA), Cetrimide agar, Macconkey agar and blood agar were illustrated in table (3) Cetrimide agar is a selective medium used for the isolating and identifying *P. aeruginosa* and can also be used to inhibit other *Pseudomonas species* (Carroll *et al.*, 2016; Tille, 2014).

Table (3): Cultural Chara	acteristics of <i>P</i> .	aeruginosa.
---------------------------	---------------------------	-------------

Culture media	Growth characteristics							
Blood agar	White to gray color colonies, sticky textures bacteria							
	and showed type of beta hemolysis figure (5).							
Cetrimide agar	Smooth with flat edges and a high center, mucoid							
	appearance, and fruity odor and the fluorescent green							
	pigment Figure (3).							
MacConkey agar	Small pale elevated colonies, non-lactose fermenting							
	Figure (4).							
Nutrient agar	Abundant, opaque, shiny, smooth, convex colonies							
	Figure (2).							

Figure (2): *P. aeruginosa* colonie on nutrient agar

Figure (3): *P. aeruginosa* colonie on Cetrimide agar.

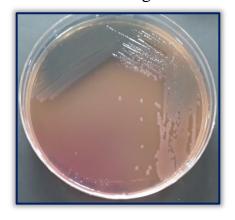


Figure (4): *P. aeruginosa* colonies on MacConkey agar

Figure (5): *P. aeruginosa* colonies on Blood agar.

Bacterial isolates were further identified and characterized by Gram staining. Microscopic examination of *P. aeruginosa* showed gram – negative straight rods - shaped cells, non-spore forming as shown in figure (6) (Brooks *et al.*, 2013).

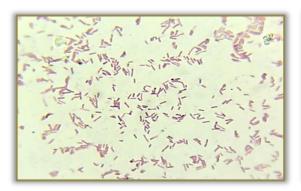


Figure (6): Gram negative *P. aeruginosa* examined by light microscope with 100x magnification power.

For further identification, the biochemical tests used to diagnose bacterial isolates including the catalase test and oxidase test. From the observation of the results of the biochemical tests of *P. aeruginosa* isolates, all isolates gave positive results to the catalase test by forming bubbles, and gave positive reaction to oxidase test indicated when the color changes to dark purple, as shown in table (4).

Table (4): Morphological, Physiological, and Biochemical tests for identification *P. aeruginosa*

Test	Gram stain	Blood hemolysis	Catalase test	Oxidase test
Result	-ve bacilli	+ (Beta)	+	+

4.3 Confirmation of identification of *P. aeruginosa* isolates

Biochemical tests results for identification of *P. aeruginosa* was confirmed by API 20E system. All the (49) isolates of *Pseudomonas aeruginosa* gave a high diagnosis results by using API20E diagnostic kit as shown in figure (7), but for the final diagnosis, the identification of (49) *P. aeruginosa* isolates was confirmed with the more sensitive and accurate VITEK2 System using the GN ID. In this study, diagnosis of Vitek2 Compact gave a probability ratio for the genus and species of *P. aeruginosa* bacteria between 97-99% for all the 49 isolates as shown in figure (8).

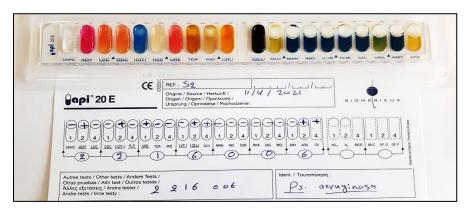


Figure (7): API 20E results for identification of *Pseudomonas aeruginosa*.

bioMérieux Customer:							Dr.Radhwan Al-Jammas LAB. Microbiology Chart Report						Printed January 6, 2022 12:20:09 AN GMT-06:00				
Loca	nt Name: 1: tion: D: 78	5, .						l.									t ID: 78 ysician mber:
Selec	nism Quant ted Organ ce: swab		Pseud	omonas ac	rugin	osa										Coll	lected:
Con	ments:																
Iden	tification I	nfori	nation			A	Analysis Tin	ıe:		5.80 hour	s		Statu	ıs:		Final	
Sele	cted Organ	ism					99% Probability Pseudomo Bionumber: 000345310				nas aeruginosa 03500252						
ID A	nalysis M	essage	es														
Bio	chemical D	etails								The last of the la							
2	APPA	-	3	ADO	-	4	PyrA	-	5	IARL	-	7	dCEL	-	9	BGAL	-
10	H2S	-	11	BNAG	-	12	AGLTp	-	13	dGLU	+	14	GGT	+	15	OFF	-
17	BGLU	-	18	dMAL	-	19	dMAN	+	20	dMNE	+	21	BXYL	-	22	BAlap	+
23	ProA	+	26	LIP	+	27	PLE	-	29	TyrA	+	31	URE	-	32	dSOR	-
	SAC	-	34	dTAG	-	35	dTRE	-	36	CIT	+	37	MNT	+	39	5KG	-
33	ILATk	+	41	AGLU	-	42	SUCT	+	43	NAGA	-	44	AGAL	-	45	PHOS	-
33 40		-	47	ODC	-	48	LDC	-	53	lHISa	-	56	CMT	+	57	BGUR	-
_	GlyA							+	62	ELLM		64	lLATa	+			

Figure (8): Confirmed test report for the diagnosis of *P. aeruginosa* by VITEK2 system.

4.4 Detection of P. aeruginosa biofilm formation

The adhesion of *P. aeruginosa* to the host cells through the production of extracellular polysaccharides promotes biofilm formation and helps hide the bacteria from the host's defenses. Biofilm development increases antibiotic resistance and limits therapy effectiveness during infection (Bhandari *et al.*, 2022). From this point, two methods were applied to examine the potential of the *P. aeruginosa* isolates to produce biofilms:

4.4.1 Congo Red Agar (CRA) method Biofilm production

Congo red agar medium was used to demonstrate the isolates of P. aeruginosas capacity to produce biofilm. The isolate were cultured on CRA plates, prepared as mention in material and method. After the incubation for 24 hour at (37 °C), the biofilm formation by the bacterial isolate results was interpreted as in table (5).

Table (5): Biofilm formation results.

Strong biofilm formation	Black color rough colonies
Intermediate biofilm formation	Light black color colonies
No biofilm formation	Red or Pink smooth colonies

CRA test results showed that 31out of 49 (63.27%) isolates were biofilm producer, whereas 18\49 (36.73%) unproductive isolates as shown in figure (10).

The appearance of colonies for 11/49 (22.45%) isolates were in black color on the Congo red agar (Figure 9) as an indication of their strong biofilm formation, two (14.29%) of them from the urine samples, 6 (66.7%) from burn samples, 1 (20%) from wound samples, and 2 (66.7%) of sputum samples. In terms of intermediate-producer of biofilm which were 20/49 isolates (40.82%), 12 out of 20 (85.71%) isolates from the urine samples, 3 (33.30 %) from burn samples, 4 (80%) from wound and 1 (33.30%) of sputum sample, as described in Table (7) summarizes the ability of the *P. aeruginosa* to produce biofilms based on the sample sources.

Figure (9): Congo red agar method: (A & C) Strong biofilm production; (B) Non biofilm production.

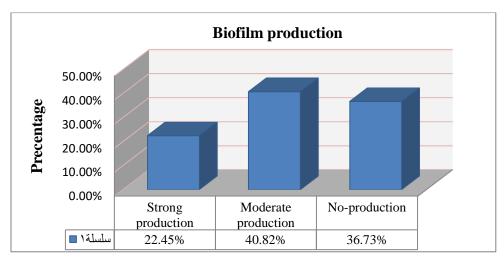


Figure (10): Percentages of biofilm formation for *P. aeruginosa* isolates by CRA method.

4.4.2 Microtiter plate Assay (MTP) method

The capacity of (49) *P. aeruginosa* isolates to produce biofilm was determined in this study using standard microtiter plates and reading in an automated ELISA reader, using a 630 nm wavelength, the absorbance of stained biofilms was measured. The optical density cut off (ODc) value was determined as mention in material and methods, and the biofilm production for each isolate was calculated by comparing the O.D of the isolates with O.D of Cut off value as listed in table (6).

Table (6): interpretation of MTP biofilm production.

$ODs \le 0.05$	No-biofilm production
$0.05 < ODs \le 0.1$	Weak
$0.1 < ODs \le 0.2$	Moderate
ODs > 0.2	Strong

Figures (11) and (12) present the quantitative biofilm determination using the microtiter plate assay (MTP). It was found that 44 (89.8%) of the total (49) isolates were biofilm-forming, of which 28.57% were strong biofilm producers, 48.98%, and 12.24% were moderate and weak biofilm producing isolates respectively. And only 5 isolates, i.e., (10.2%) were non-biofilm producers.

In regard to the distribution of *P. aeruginosa* isolates' capacity for production of biofilm and their sources of isolation using the Microtiter Plate (MTP) method, it was found Strong biofilm formation was recorded in sputum isolates (75%) then burn (50%), wound (22.22%), and urine (13.04%). The weak biofilm was recorded in urine and burn in percentage (21.74%) and (8.33%) respectively as illustrated in table (4.6).

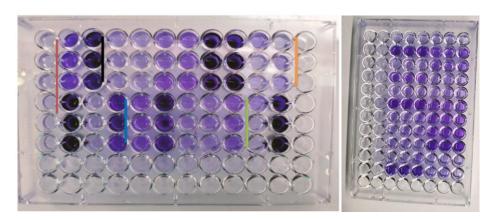


Figure (11): Microtiter plate (MTP) method results, Triplicate control are represented by the red line. A strong biofilm formed represented by the black line, a moderate biofilm formed represented by the blue line, a weak biofilm formed represented by the green line, and no biofilm formed represented by the orange line.

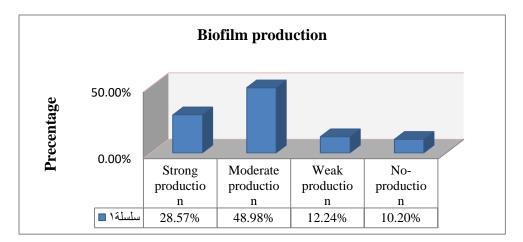


Figure (12): Percentages of biofilm formation for *P. aeruginosa* isolates by MTP method.

Table (7): The distribution of P. aeruginosa isolates' ability to produce biofilm and their isolation sources.

					Biofili	n producti	on test						
စ္က	₩		CF	RA.		МТР							
Isolation source	Isolate number	Biofilm production	Strong Biofilm production	Moderate Biofilm production	No- Biofilm production	Biofilm production	Strong Biofilm production	Moderate Biofilm production	Weak Biofilm production	No- Biofilm production			
Urine	23	(14) 60.87%	(2) 14.29%	(12) 85.71%	(9) 82.61%	(19) 82.61%	(3) 13.04%	(11) 47.83%	(5) 21.74%	(4) 17.39%			
Bum	12	(9) 75%	(6) 66.7%	(3) 33.3%	(3) 25%	(12) 100%	(6) 50%	(5) 41.67%	(1) 8.33%	0			
Mound	10	(5) 50%	(1) 20%	(4) 80%	(5) 50%	(9) 90%	(2) 22.22%	(7) 77.78%	0	(1) 11.11%			
Sputum	4	(3) 75%	(2) 66.7%	(1) 33.3%	(1) 25%	(4) 100%	(3) 75%	(1) 25%	0	0			
Total	49	(31) 63.27%	(11) 22.45%	(20) 40.82%	(18) 36.73%	(44) 89.8%	(14) 28.98%	(24) 48.98%	(6) 12.24%	(5) 10.2%			

The results obtained in CRA method was compared with those results of MTP method as shown in table (8). And from the result MTP methods was considered as more specific and sensitive in detection the biofilm formation than CRA method.

Table (8): Comparison of results from CRA and MTP method on *P. aeruginosa* isolated from different clinical samples.

Biofilm production test	Positive (Biofilm production)	Negative (No-biofilm production)	Total
CRA	31 (63.27%)	18 (36.73%)	
MTP	44 (89.8%)	5 (10.2%)	49 isolate

3.6 Discussion

In the present study, 49 (40.16%) of *P. aeruginosa* isolates were obtained, and the isolates were predominant in urine and burns, followed by wounds and Sputum samples. *P. aeruginosa* infection was greater in women aged 20-30 (36.74%) and 10-20 (24.50%). A study by Alsaady (2022) also shows a high prevalence of *P. aeruginosa* in urine samples (76.6%) from patients suspected of

UTIs, followed by (7.5%) wound samples and (5.4%) burns. At the same time, Hasoon (2021) reported that *P. aeruginosa* prevalence from different sources was high rate in burn samples (56.25 %), followed by wound (18.75 %), urine (5 %) and sputum (13.75). Silva *et al.* (2017) pointed out that the accurate identification of P. aeruginosa can be achieved by using the VITEK2 compact system. The VITEK 2 system is a fully automated tool that is easy to handle and provides a precise and rapid identification of clinically significant bacteria (Torres-Sangiao *et al.*, 2022).

CRA test results for biofilm production showed that 31 out of 49 (63.27%) isolates were biofilm producers, whereas 18\49 (36.73%) unproductive isolates. A Nader *et al.* (2017) study showed that 32/37 (86.49%) isolates with total black or light black color colonies were biofilm formation. The remaining isolates (5/36=13.51%) were red or pink, indicating non-biofilm formed. Mahdi R. J. (2020) found that 36 of 41 isolates (87.80%) were biofilm producers. Whereas 5\41 (12.19%) unproductive isolates. Also, the results mentioned by Al-kazrage (2021) on the qualitative biofilm formation number and the percentage of black color colonies were 18 (45%), moderate biofilm 16 (40%) and weak/no production 6 (15%) distributed among burning, wounds, sputum and otitis source.

Bacterial biofilm can be examined via a range of phenotypic techniques. The (CRA) test, devised by Freeman *et al.* in 1989, involves bacterial sub-culturing on brain heart infusion agar (BHIA) treated with Congo red stain and sucrose. Research findings have indicated that the accuracy of this approach is quite low. However, it has the advantages of cost-effectiveness and simplicity in execution. The assessment criteria primarily rely on visually examining the color displayed by the colonies growing on agar medium (Liberto *et al.*, 2009; Hassan *et al.*, 2011).

Additionally, The CRA technique is rapid, reproducible, and advantageous in that the colonies stay alive on the medium for subsequent analysis. The procedure is simple to perform, and the outcomes are often dependent on the developed color of the colonies that are formed, ranging from red for strains that do not produce biofilm to black for strains that do produce biofilm. The disadvantage of this approach is that it only provides qualitative information, which means it only assesses whether bacteria can form biofilms (Arciola *et al.*, 2002).

From the total of 49 clinical isolates, the MTP method detected 28.57% as strong, 48.98% as moderate, 12.24% as weak and 10.20% as non-biofilm producers. The present study's findings matched the results mentioned by the study of Al-kazrage (2021), who showed that the quantitative biofilm formation by

selected isolated using Microtiter plate assay (MTP) was 36 (90%) biofilm formations. Burns isolates formed the highest percentage of biofilm formation among the isolates, with (60%. Another study by ALrawi (2021) found that out of (100) *P. aeruginosa* isolates, (93%) were biofilm-producers, with 21 (21%) being Powerful biofilm-producers, 25 (25%) with moderate-biofilm producers, 47 (47%) were weaker-biofilm producers, and 7 (7%) were non-biofilm producers.

The MTP method is a Quantitative estimation of biofilm formation strength. The MTP method was considered superior to CRA (Hassan *et al.*, 2011). In microtiter plates, biofilm development is the most often utilized technique. Madilyn Fletcher created the MTP method in the beginning to examine bacterial attachment, and it was later shown to be compatible with the study of sessile development (Azeredo *et al.*, 2017).

The formation of biofilm by bacteria significantly contributes to their virulence and is essential in chronic and recurring infections. Biofilm formation renders bacteria more resistant to various environmental conditions, including changes in pH, exposure to antibiotics, oxygen radicals, disinfectants, and phagocytosis (Aparna & Yadav, 2008). The production of bacterial biofilms is closely related to the development of antibiotic resistance, facilitating the spread of genes for antibiotic resistance and increasing the rate of mutation within the bacterial cells (Niveditha *et al.*, 2012). The present study showed different ability to form biofilms using CRA and MTP methods. The results show that most *P. aeruginosa* isolates can produce biofilm, and MTP was more specific and sensitive than CRA in biofilm detection.

Conclusion

The current study concluded that compared to the TM and CRA methods, the TCP approach is a more quantitative and reliable technique to identify microorganisms that form biofilms and it may be used as a general screening technique to identify bacteria that produce biofilm in lab settings.

Acknowledgement

Gratitude to the supervisor and the Dean of the Department of Biology, College of Science/University of Mosul, Iraq, for providing the facilities to conduct the research. We also thank the Al-Mosul City/Iraq hospital for providing the *P. aeruginosa* isolates.

References

- 1. Al-kazrage, Hussein A. D. (2021). Inhibition of Virulence Factors in *Pseudomonas aeruginosa* Isolated from Clinical Samples Using Galardin Loaded AgPEG Nanocomposite. Unpublished Doctorate thesis, College of Biotechnology, Al-Nahrain University, Iraq.
- 2. ALrawi, Duraid K. I. (2021). Assessment of Multidrug-Resistant of Clinical *Pseudomonas aeruginosa* isolates and its relationship with biofilm forming genes Unpublished master thesis, College of Science, University of Anbar, Iraq.
- 3. Alsaady, Akram F. (2022). Dissemination and Molecular Characterization of Extensively Drug-Resistant (XDR) *Pseudomonas aeruginosa* in Najaf Province. Unpublished master thesis, Faculty of Medicine, University of Kufa, Iraq.
- 4. Aparna, M. S. and Yadav, S., (2008). Biofilms: microbes and disease. Brazilian Journal of Infectious Diseases, 12(6), 526-530.
- 5. Arciola, C. R., Campoccia, D., Gamberini, S., Cervellati, M., Donati, E., & Montanaro, L. (2002). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in *Staphylococcus epidermidis* clinical isolates genotyped for ica locus. *Biomaterials*, 23(21), 4233-4239.
- 6. Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., ... & Sternberg, C. (2017). Critical review on biofilm methods. *Critical reviews in microbiology*, *43*(3), 313-351.
- 7. Bergey, D. H., Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (2001). Bergey's manual of systematic bacteriology.
- 8. Bhandari, S., Adhikari, S., Karki, D., Chand, A. B., Sapkota, S., Dhungel, B., ... & Rijal, K. R. (2022). Antibiotic resistance, biofilm formation and detection of mexA/mexB efflux-pump genes among clinical isolates of *Pseudomonas aeruginosa* in a Tertiary Care Hospital, Nepal. *Frontiers in Tropical Diseases*, 2, 810863.
- 9. Bonomo, R. A., & Szabo, D. (2006). Mechanisms of multidrug resistance in *Acinetobacter species* and *Pseudomonas aeruginosa. Clinical infectious diseases*, 43(Supplement_2), S49-S56.
- 10.Behzadi, P., Baráth, Z., & Gajdács, M. (2021). It's not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant *Pseudomonas aeruginosa*. *Antibiotics*, 10(1), 42.
- 11.Bose, S.; Khodke, M.; Basak, S. and Mallick, S.K. (2009). Detection of biofilm producing staphylococci. Journal of clinical and diagnostic research, 3:1915-1920.
- 12.Brooks, G.F; Carroll, K.C; Butel, J.S.; Mores, S.A. & Mietzner, T.A. (2013). Jawetiz, Melnick & Adelberg's Medical Microbiology. 26tH edition. Mc Graw-Hill. U.S.A. Pp:245-248.

- 13.Carroll, K. C., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., McKerrow J. H., Sakanar, J. A.(2016). Jawetz, Melnick and Adelbergs Medical Microbiology 27th ed. McGraw-Hill Education. USA.
- 14.Daniel, W. W., & Cross, C. L. (2018). Biostatistics: a foundation for analysis in the health sciences. Wiley.
- 15. Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. *Journal of clinical pathology*, 42(8), 872-874.
- 16.Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis 2011;15:305-11.
- 17. Hasoon, Zena, T. A. (2021). Molecular Study of Flouroquinolon Genes among Multidrug Resistant *Pseudomonas aeruginosa* Isolates in Babylon Province. Unpublished master thesis, College of Science, University of Babylon. Iraq.
- 18.H Mohamed, A., AE Altaii, H., & Z Ibrahim, T. (2023). First record of the bacterium Pseudomonas putida on pepper in Iraq. *Caspian Journal of Environmental Sciences*, 21(2), 473-480.
- 19. Killough, M., Rodgers, A. M., & Ingram, R. J. (2022). *Pseudomonas aeruginosa*: Recent advances in vaccine development. *Vaccines*, *10*(7), 1100.
- 20.Liberto, M. C., Matera, G., Quirino, A., Lamberti, A. G., Capicotto, R., Puccio, R., & Foca, A. (2009). Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. *Microbiological research*, 164(5), 522-528.
- 21.Mahdi, Raghad J. (2020). Detection of some virulence factor of *Pseudomonas aeruginosa* isolated from Burn' patients and their surrounding environment and the biological activity of some extracts on it. Unpublished master thesis, college of Science, Basrah University. Iraq.
- 22. Nader, M. I., Kareem, A. A., Rasheed, M. N., & Issa, M. A. (2017). Biofilm formation and detection of pslÁ gene in multidrug resistant *Pseudomonas aeruginosa* isolated from Thi-Qar, Iraqi journal of biotechnology, 16(4).
- 23. Niveditha, S., Pramodhini, S., Umadevi, S., Kumar, S., & Stephen, S. (2012). The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). *Journal of clinical and diagnostic research: JCDR*, 6(9), 1478-1482.
- 24.Oren, A., & Garrity, G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. *International journal of systematic and evolutionary microbiology*, 71(10), 005056.

- 25. Panda, P. S., Chaudhary, U., & Dube, S. K. (2016). Comparison of four different methods for detection of biofilm formation by uropathogens. *Indian Journal of Pathology and Microbiology*, *59*(2), 177.
- 26.Saleh, Ruqaiya M. (2021). Detection of exoA and oprD genes expression in clinical isolates of *Pseudomonas aeruginosa*. unpublished master thesis, College of Medicine, University of Diyala, Iraq.
- 27. Silva, C. G. D., Tobouti, N. R., Zoccoli, C. M., & Silveira, A. C. O. (2017). Evaluation of VITEK 2 Compact and VITEK MS in the identification of coagulase-negative staphylococci isolated from blood cultures. *Jornal Brasileiro de Patologia e Medicina Laboratorial*, 53, 293-297.
- 28. Szabó, D., Szentandrássy, J., Juhász, Z., Katona, K., Nagy, K., & Rókusz, L. (2008). Imported PER-1 producing *Pseudomonas aeruginosa*, PER-1 producing Acinetobacter baumanii and VIM-2-producing *Pseudomonas aeruginosa* strains in Hungary. *Annals of Clinical Microbiology and Antimicrobials*, 7(1), 1-5.
- 29. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., ... & Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet infectious diseases, 18(3), 318-327.
- 30. Teodósio, J. S., Simões, M., Melo, L. F. and Mergulhão, F. J. 2013. "Platforms for in vitro biofilm studies," in Biofilms in Bioengineering, M. Simões and F. Mergulhão, Eds., 45-62, Nova Science, New York. NY, USA.
- 31. Tille, P. M. (2014). Bailey & scott's diagnostic microbiology 13 t h ed. Mosby, Inc., an affiliate of Elsevier Inc. China.
- 32. Torres-Sangiao, E., Lamas Rodriguez, B., Cea Pájaro, M., Carracedo Montero, R., Parajó Pazos, N., & García-Riestra, C. (2022). Direct Urine Resistance Detection Using VITEK 2. *Antibiotics*, 11(5), 663.