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Abstract 

We study the problem of allocating a set of indivisible items among agents with 

additive valuations, with the goal of maximizing the geometric mean of the 

agents’ valuations, i.e., the Nash social welfare. This problem is known to be NP-

hard, and our main result is the first efficient constant-factor approximation 

algorithm for this objective. We first observe that the integrality gap of the natural 

fractional relaxation is exponential, so we propose a different fractional allocation 

which implies a tighter upper bound and, after appropriate rounding, yields a 

good integral allocation. An interesting contribution of this work is the fractional 

allocation that we use. The relaxation of our problem can be solved efficiently 

using the Eisenberg-Gale program, whose optimal solution can be interpreted as 

a market equilibrium with the dual variables playing the role of item prices. Using 

this market-based interpretation, we define an alternative equilibrium allocation 

where the amount of spending that can go into any given item is bounded, thus 

keeping the highly priced items underallocated, and forcing the agents to spend 

on lower priced items. The resulting equilibrium prices reveal more information 

regarding how to assign items so as to obtain a good integral allocation. 
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 تقريب ناش للرعاية الاجتماعية مع عناصر غير قابلة للتجزئة

 زهراء سمير ابراهيم

 الجامعة المستنصرية / رئاسة الجامعة

 : الملخص

التقييمات المضافة ، وذلك دراسة مشكلة توزيع مجموعة من البنود غير القابلة للتجزئة بين الوكلاء ذوي    

بهدف تعظيم المتوسط الهندسي لتقييمات الوكلاء ، أي ناش للرعاية الاجتماعية من المعروف أن هذه 

، والنتيجة الرئيسية التي توصلنا إليها هي أول خوارزمية فعالة لتقريب العامل NP-hard المشكلة هي

الاسترخاء الجزئي الطبيعي هي أسية ، لذلك نقترح  الثابت لهذا الهدف. نلاحظ أولاً أن فجوة التكامل في

تخصيصًا كسرياً مختلفاً مما يعني ضمناً حداً أعلى أكثر إحكامًا، وبعد التقريب المناسب، يؤدي إلى تخصيص 

تكاملي جيد. إحدى المساهمات المثيرة للاهتمام في هذا العمل هي التخصيص الجزئي الذي نستخدمه. يمكن 

غيل، والذي يمكن تفسير الحل الأمثل له على أنه توازن -بكفاءة باستخدام برنامج آيزنبرغحل بقية مشكلتنا 

السوق حيث تلعب المتغيرات المزدوجة دور أسعار العناصر. باستخدام هذا التفسير القائم على السوق، 

ند معين، وبالتالي إبقاء نحدد توزيعاً متوازناً بديلًا حيث يتم تحديد مبلغ الإنفاق الذي يمكن أن يذهب إلى أي ب

العناصر ذات الأسعار المرتفعة غير مخصصة، وإجبار الوكلاء على الإنفاق على العناصر ذات الأسعار 

الأقل . تكشف أسعار التوازن الناتجة عن مزيد من المعلومات حول كيفية تخصيص العناصر للحصول 

 على توزيع متكامل جيد

 غير مجزئة -عناصر  -مع   -ناش  -:تقريب  الكلمات المفتاحية
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Introduction. 

 We study the problem of allocating a collection of m indivisible items among a 

set of n agents (n ≤ m), aiming to maximize the Nash social welfare (NSW). Since 

the items are indivisible, an allocation x assigns each item to a single agent. We 

assume that the agents have additive valuations, i.e., each agent i has a non-

negative value vij for each item j, and her value for an allocation x that assigns to 

her some bundle of items Bi , is vi(x) = P j∈Bi vij . The NSW objective is to 

compute an allocation maximizing the geometric mean of the agents’ values, i.e., 

 

The motivation for this problem is closely related to the well-studied Santa Claus 

problem [11, 8, 6, 26, 10, 17, 7, 5], where the objective is to compute an allocation 

that maximizes the minimum value across all agents, i.e., maxx mini vi(x). The 

story behind the Santa Claus problem is that Santa is carrying presents (the items) 

which will be given to children (the agents) and his goal is to allocate the presents 

in a way which ensures that the least happy child is as happy as possible. As we 

discuss later on, the geometric mean objective, just like the max-min objective, 

aims to reach a balanced distribution of value, so both these problems belong to 

the long literature on fair division. Social Choice Theory. Allocating resources 

among a set of agents in a fair manner is one of the fundamental goals in 

economics and, in particular, social choice theory. Before embarking on 

computing fair allocations, one first needs to ask what is the right objective for 

fairness. This question alone has been the subject of long debates 

APPROXIMATING THE NASH SOCIAL WELFARE WITH 

INDIVISIBLE ITEMS 

 in both social science and game theory, leading to a very rich literature. At the 

time of writing this paper, there are at least five academic books [46, 13, 43, 33, 

9] written on the topic of fair division, providing an overview of various proposed 

solutions for fairness. Over the last decade, the computer science and operations 

research communities have contributed to this literature, mostly focusing on the 

tractability of computing allocations that maximize specific fairness objectives. 

The result of this work has been a deeper understanding of the extent to which 

some of these objectives can be optimized or approximated in polynomial time 

which, in turn, serves as a signal regarding the appropriateness and applicability 

of these objectives. Nash Social Welfare. The objective we seek to maximize in 

this work, the Nash social welfare (also known as Bernoulli-Nash social welfare), 

dates back to the fifties [34, 29], when it was proposed by Nash as a solution for 

bargaining problems, using an axiomatic approach. This objective, like other 
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standard welfare objectives, is captured by the following family of functions 

known as generalized means, or power means: 

 

In particular, the NSW corresponds to M0(x), i.e., the limit of Mp(x) as p goes to 

zero. Other important examples of welfare functions captured by Mp(x) include 

the max-min objective that the Santa Claus problem studies, known as egalitarian 

social welfare, as well as the utilitarian social welfare, which maximizes the 

average value across the agents. The former corresponds to the limit of Mp(x) as 

p goes to −∞, while the latter corresponds to M1(x). Two of the most notable 

properties that the NSW objective satisfies follow. (Additional appealing 

properties are discussed by Moulin [33] and Caragiannis et al. [16].) • The 

optimal allocation with respect to the NSW objective is scale-free, i.e., it is 

independent of the scale of each agent’s valuations. • The NSW objective 

provides a natural compromise between fairness and efficiency. The fact that the 

NSW objective is scale-free means that choosing the desired allocation does not 

require interpersonal comparability of the individual’s preferences. The agents 

only need to report relative valuations, i.e., how much more they like an item 

compared to another. In other words, maximizing the NSW using the vij values 

is equivalent to using αivij as values instead, where αi > 0 is some constant for 

each agent i. This property is particularly useful in settings where the agents are 

not paying for the items they are allocated, in which case the scale in which their 

valuations are expressed may not have any real meaning1 . Note that neither the 

egalitarian nor the utilitarian social welfare objectives are scale-free. As a result, 

the former could end up allocating most of the items to an agent who has a low 

value for all the items, while the latter could end up allocating all the items to just 

one agent. Regarding the second property, the two alternative welfare objectives 

mentioned above, i.e., the egalitarian and the utilitarian objectives, correspond to 

extreme fairness and efficiency considerations respectively. The former objective 

maximizes the happiness of the least satisfied agent, irrespective of how much 

inefficiency this might be causing and, on the other extreme, the utilitarian social 

welfare approach maximizes efficiency while disregarding how unsatisfied some 

agents might become . 

 

Approximation Algorithm 

1. Integrality Gap. The accepted way to create an approximation algorithm is to 

take a fractional mapping and "round" it the right way to produce an integer. This 

is because the Eisenberg-Gale program can be used to compute the fractional 
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relaxation of the IP program. It is hoped that the fractional allocation would 

provide some light on what a suitable integral allocation might include. 

Fractional relaxation of IP provides proposals for item distributions and upper 

bound constraints on the geometric mean of the optimal integer solution 'x∗'. 

Instead, proving this upper bound is the normative way to prove the approximate 

bound of the rounding procedure. Unfortunately, it is possible to show that the 

integer gap in IP, or the difference between the geometric mean of the fractional 

solution and the geometric mean of x∗, is not constant. 

The integrality gap of IP is Ω(2m). 

Consider the situation of m objects and n identical agents. In the first m − 1 entries, 

each agent has a value of 1, and in the last entry it has a value of 2m. Partial 

allocation allows you to distribute each item evenly. The agents are distributed, 

giving each a clump of values equal to (2m + m 1)/n, resulting in a geometric 

mean equal to (2m + m 1)/n 2m/n. However, the high price object only has one. 

Each integral-related agent assigned, so that the geometric mean is at most 

2m/n[(m−1)/(n−1)](n−1)/n≤2m/nm. These instances have minimal IP consistency 

gaps
2m

2
m

n⁄ mn
=

2
n−1
n

m

mn
 

As a result, the integration gap grows exponentially with m for any constant value 

n ≥ 2. 

Lemma 3.1 means that the traditional methods for demonstrating a constant-

factor approximation guarantee cannot be used to the fractional solution of IP. 

Additionally, there are times when this partial solution offers very little guidance 

as to how the goods need to be distributed. For example, agents 2 and 3 in the 

example in Figure 1b have completely different preferences, but are the same 

with respect to partial allocation. So, whenever agent 1 gets item 1, the partial 

solution gives no information that these two other agents can use to decide what 

they should receive. (Alireza Farhadi, 2021). 

 

2. Spending-Restricted Equilibrium.  

Encouraged by the fact that IP's fractional solution failed to provide enough detail 

for rounding, they provide a new interesting constraint on the fractional solution 

to fill the completeness gap. Notably, he relaxes the requirement that things must 

be fully allocated, and instead limits the total money spent on each item to $1, 

the maximum amount he can allocate to one agent. The principal (xij) and dual 

(pj) P-variables of the Eisenberg-Gale program for each element j. The answer 

must satisfy the condition ∑i∈N xijpj ≤ 1, that satisfies both of these 

requirements. 
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“Definition . The definition of a spending-constrained (SR) equilibrium is partial 

allocation (x_.) ̅ and price vector p, where each agent spends its entire budget on 

MBB items at price (P_.) ̅, and each total spending is min” is equal to {1, (P_j) ̅}. 

Example 3. They go back to the issue instance they looked at in Example 2.1 to 
provide further context for this spending-restricted market equilibrium. 

 Agents Items Agents Items 

    
(a) A spending-restricted equilibrium (x,p).(b) Valuations that are scaled for p. 

1 A spending-restricted equilibrium ((x_.) ̅(00p_.) ̅) for the instance of Example 

2. 

Three agents spend all of their money on the highly desired Item 1 at its price of 

$3 in the unconstrained equilibrium of this situation. This would not be 

acceptable in the spending-restricted equilibrium; so the price of this item should 

be raised to the extent that only Agent 1 will be able to spend her money on it 

because she doesn’t have other options. Figure 2a depicts the expenditure graph 

for this SR equilibrium. It is evident in this figure, that the preferences of Agents 

2 and 3 are described with more information than they are shown in the 

unconstrained market equilibrium spending graph. 

Normalizing the Valuations. The magnitude of every agent's appraisals doesn’t 

have any effect on the conclusion since, as they noted previously, the NSW aim 

is scalefree. They now assume that every agent's values are normalized in the 

following order to simplify the assertions and proofs of this section and take use 

of this fact. 

Definition 3.4. “Given an SR price (p_.) ̅, the MBB element j of each agent i is p 

and vij of all other items. 

Given an SR price (p_.) ̅ and some agents i of valuations vi that don’t ensure this 

property, the agents are given all vij Obtain a scaled estimate vi against p by 

counting.}, i.e., H. The reciprocal of the maximum bang-per-buck ratio. Each 

element j which is her MBB of i in p satisfies vij′/,(P_j)̅=1/αi, vij=αivij′=,(P_j)̅. 

While, for all other elements vij'/,(P_j)̅<; 1/αi, ie vij<αi. ,(P_j) ̅. will be. 

3. Upper Bound. The following theorem offers a new upper limit for the 

geometric mean of the ideal integral solution x∗ based on the prices p using the 

scaled values.  
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Let H(𝑃.̅)  or L(𝑃.̅) be the collection of items j with 𝑃𝑗̅ > 1  or 𝑃𝑗̅ ≤ 1 respectively. 

Due to the fact that each item's total cost in H(𝑃.̅) is 1 and the agents' total budget 

is n, it should be noted that |H(𝑃.̅)| ≤ n. 

Theorem 3.5. The best geometric mean is upper bounded in the following way, 

given SR prices 𝑃.̅ and agent valuations v scaled for 𝑃.̅ 

(∏ 𝑣𝑖𝑖∈𝑁 (𝑥∗))
1
𝑛⁄ ≤ (∏ 𝑝𝑗̅𝑗∈𝐻(𝑝̅) )    (3.1) 

Proof. Given an SR price (p_.) ̅, the MBB element j of each agent i is p and vij 

of all other items. 

If we keep the SR price p at the current level, increasing the value of the agent 

will only increase the left side of the inequality (3.1), not the right side. So, vij ≤ 

(P_j ) ̅ (v is scaled with respect to (P_.) ̅) for every agent i and every element j, so 

vij = (P_j ) for every i and j For ̅, it is sufficient to show that (3.1) holds. . 

Throughout the rest of the proof, let vij = (P_j ) ̅ for all i and j. In fact, they relax 

the completeness criterion for the optimal assignment of items j ∈ L((P_.) ̅) later 

in the proof. In other words, make x' an optimal assignment if each element j is 

divisible by (P_j ) ̅ ≤ 1. Since this is a relaxation of the original problem, it 

suffices to prove that there are ∑i∈N vi(x′) ≥∑i∈N vi(x∗) such that the inequality 

(3.1) is true for x′. is. 

First, assume that Q H(𝑃.̅) is empty, means that each item j has price pj ≤ 1. 

Then, it suffices to prove that ∑i∈N vi(x
′) ≤ 1. But, since vij = 𝑃𝑗̅ for all i and j, 

they know that ∑i∈N vi(x′) =QPj∈PM 𝑃𝑗̅. Also, since 𝑃𝑗̅ ≤ 1, the spending on every 

item isP equal to its price, and so ∑j∈M 𝑃𝑗̅ = n. Then, 𝛱n
1 

i∈N vi(x
′) = 1.  

Given an SR price (p_.) ̅, the MBB element j of each agent i is p and vij of all 

other items. 

Assume that H n((P_.) ̅) is not empty at this point. Each of the items Q in H((P_.) ̅) 

is assigned to at most 1 agent, since x ' of these things is an integer. That is, at 

maximum |H((P_.) ̅) |the agent receives one of the items in x'. Let NL ⊆ N be the 

set of remaining agents that assign only those items in L((P_.) ̅) where x' has at 

least n−|H((P_.) ̅)|. The cost of each item in the SR equilibrium is exactly 1, and 

the price of L((P_.) ̅) is added to the remaining budget or n−|H((P_.) ̅)|. Because 

vij = (P_j) ̅ for all I and j, the result is the maximum value that can be distributed 

to the agents in NL. (Mohammad Ghodsi M. T., 2021): 

∑ 𝑣𝑖
𝑖∈𝑁𝐿

(𝑥′) ≤ ∑ 𝑝𝑗̅
𝑖∈𝑁𝐿

= 𝑛 − |𝐻(𝑝̅)| 

Q 
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So, at least there are n − |H(𝑃.̅)| agents in NL, and the total value of them in x′ is at 

maximum n − |H(𝑃.̅)|, so min” ∑i∈NL{vi(x
′)} ≤ 1. 

They now demonstrate that any agent that x′ allots a portion of some item j ∈ 

L(𝑃.̅) has value in x′ of no more than 1. This suggests that each agent in NL has a 

value of no more than one. Assume, in order to create a paradox, that there is an 

agent α with v(x′) > 1 who obtains value vS > 0 from a portion of an object with 

j ∈ L(𝑃.̅). As they shown previously, some agent exists in x′ with v(x′) 1. They 

assume that each agent is the same, therefore agent β has also a value of vS for 

the portion of item j that is assigned to. As a result, they would get an allocation 

x that is incongruent with the optimality of x′ if they were to remove a portion of 

item j of some positive value v < vα(x
′)−vβ(x

′)  from α and allocate it to β instead: 

∏ 𝑣𝑖(𝑥
∗∗)𝑖∈𝑁

∏ 𝑣𝑖(𝑥
′)𝑖∈𝑁
=
[𝑣𝛼(𝑥

′) − 𝑣][𝑣𝛽(𝑥
′) + 𝑣]

𝑣𝛼(𝑥
′)𝑣𝛽(𝑥

′)
= 1 +

[𝑣𝛼(𝑥
′)−𝑣𝛽(𝑥

′) − 𝑣]𝑣

𝑣𝛼(𝑥
′)𝑣𝛽(𝑥

′)
> 1 

It is similarly simple to demonstrate that every agent gets a maximum of one item 

from H(𝑃.̅) in x′ using a nearly identical set of inputs. If not, reassigning one of 

these goods to the agent with the lowest value would result in a higher NSW once 

again. There are precisely |H(p)| agents, and each of them is given a single item 

with the value 𝑃𝑗̅ in the form of the function j ∈ H(𝑃.̅). Since these agents' value 

in x′ is larger than 1 (since 𝑃𝑗̅ > 1)), they are not given any percentage of items j 

∈ L(𝑃.̅). 

As a result, "They showed that the product of the agent values of NL in x is at 

most 1 and that the product of the agents associated with the elements of j ∈ 

H((P_.) ̅) is equal. This implies Πi∈N vi(x′) ≤Π j∈H(p) (P_j ) ̅ and completes the 

proof (Kurokawa, 2017).  

 

4. Spending-Restricted Rounding Algorithm (SRR).  

SRR is an approximation approach that first computes the SR allocation (x_.) ̅ 

and the price (p_.) ̅, then divides every item into Appropriately assign to one. Its 

neighborhood in the output graph Q((x_.) ̅). In this way, we want the majority of 

agents to at least get 1/2 of the value given by the partial solution, and all other 

agents to get a good chunk of that value to approximate a constant coefficient. 

(Ian A. Kash, 2014)”. 

They assume that the cost graph of partial allocation (x_.) ̅ is the forest given in 

Section 2. Also, since each object has at least one agent (partially) associated 

with it, each tree in this forest has a vertex relative to an agent. After computing 

this forest in step 1, the SRR method selects one of the vertices of each tree 

corresponding to an agent as the root of the tree. As a result, all vertices at depth 

1 correspond to things the root agent spends money on, vertices at depth 2 

correspond to things the agent at depth 1 spends money on, and so on. They refer 

to the agent corresponding to the parent vertex of any vertex in the root tree 
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corresponding to the element as the vertex's parent, and its descendants, if any, 

as the vertex's children. (Martin Hoefer, 2021). 

The first integral assignments are made in the first two stages of the SRR 

algorithm. As with all items corresponding to leaves of the root tree of the output 

graph, items with a price (P_j) of at most 1/2 are also assigned to the parent agent. 

The first form of rounding is trivial because the parent agent is the only agent that 

outputs a leaf entry in the output graph. Multiple subagents of this object in x 

may spend money on it The second is less obvious, because each child agent will 

only spend half of its budget on the item given to it at this stage, as it is price 

capped at 1/2. The rest of the money will be spent on products that match the 

children in the tree (Jiafan He, 2019). Specifically, in the output subdiagram 

created by agents and remaining unassigned elements, each of these subagents 

becomes the root of a new tree after step 4. 

Each remaining expensive item is passed to another nearby agent in the final 

stage of the algorithm. In other words, it computes the element-agent match 

constrained by the edges of the output graph. Considering the element 

assignments that occurred in steps 3 and 4, this method computes the best 

possible matching (Daniel Halpern, 2020). In a suitable weighted bipartite 

network this is achieved using a simple maximal weighted matching technique. 

A set of vertices on one side of this bisection graph correspond to a set of agents, 

and another set of vertices on the other side correspond to the remaining objects. 

Agent i and item j have an edge that exists only if a matching edge exists in the 

output graph. Let vi(x') be the value of the term previously assigned to agent i in 

steps 3 and 4 (“if any”) to set the edge weights. Then set the edge weight between 

agent i and element j in the bipartite graph to wij = log(vij + vi(x')). This is equal 

to the logarithm of the final value of i when an item is assigned to j. Lastly, add 

another item vertex that is only associated with agent i and set the weight to 

log(vi(x')). By using the maximum weighted matching procedure on this 

weighted bipartite graph, we can determine which matching of the remaining 

elements leads to the final value of the agent that maximizes the sum of the 

logarithms. This is the same as maximizing social welfare. Nash. 

Algorithm 1: SRR. 

1 Computing a spending-restricted equilibrium (𝑥.̅, 𝑝.̅). 
2 Choosing a root-agent for every tree in the spending graph Q(𝑥.̅). 
3 Assigning any leaf-item in the trees to its parent-agent.  

4 Assigning any item j with 𝑃𝑗̅≤ 1/2 to its parent-agent. 

5 Computing the optimal matching of the remained items to adjacent agents. 

 

Theorem 3.”. The integral allocation x˜ computed by the Spending-Restricted 

Rounding algorithm satisfies always:  
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(∏𝑣𝑖
𝑖∈𝑁

(𝑥∗))
1
𝑛⁄ ≤ 2.889(∏𝑣𝑖

𝑖∈𝑁

(𝑥̃))
1
𝑛⁄  

Since CE computes the best match of the remaining terms in the final step of the 

SRR method, it provides the approximation guarantees necessary to prove 

Theorem 3.6, showing that matches between terms usually occur. is enough. We 

start by constructing like matching by creating a subgraph of the original output 

graph Q((x_.) ̅) . "Beginning with Q((x_.) ̅), build the pruned output graph 

P((x_.) ̅) by removing everything assigned in steps 3 and 4. Step 3 Since all the 

leaf elements have been assigned in , each remaining element has at least 1 child 

agent, and finally, they either have every element j as multiple subagents, or the 

one that spends the most money on element j. It intersects the edge connected to 

subagent i with the largest (x_.) ̅ij value among all but one subagent.  

The rest of this part uses only the trimmed edges of the graph to prove that there 

exists a matching that satisfies the required inequality. To demonstrate this, they 

first demonstrate Lemma 3.7 and 3.8.  

Lemma 3.7”. For any matching-tree T with k agents 

∑ min⁡{1,

𝑗∈𝑀𝑇

𝑃𝑗̅} ≥ 𝑘 − 1 2⁄  

Proof. The first thing they notice is that there is only one object j /∈ MT in x that 

an agent i ∈ T can spend money on. To demonstrate this, considering the fact that 

the absence of j in MT is either because j was assigned to a parent agent in step 

4 or because edge (i,j) was removed by the pruning process. please give me. Both 

the original output graph Q( (x). In both scenarios, the agent that "loses" j is its 

child agent, indicating that i rises to the position of the matching root. Hence, 

such an element If j exists, a subagent of T must act as the root, and there can be 

only one such element. 

Since the total cost of T's agents is k, it is sufficient to show that T's root spends 

less than half of its budget on only one item (j /∈ MT). If j is lost in step 4, its 

cost, or the amount of money I spent on it, is both at most 1/2. However, if edge 

(i,j) is pruned away, the highest output child of j is not i (Maria Kyropoulou, 

2020). This proves the lemma because it states that i spends only 1/2 on j and 

specifies that each item of x spends at most 1. 

“Lemma 3.8. For any matching-tree T with k agents, there exists an agent i ∈ T 

who, during Steps 3 and 4 received one or more items that she values at least 
1/(2k) (David Kurokawa, 2018). 

Proof. Since the maximum amount spent on an item is 1, the maximum amount 

spent on all k-1 in T is k-1. However, Lemma 3.7 states that the total amount 

spent on things in MT is at least k1/2, implying that the amount spent on items in 

MT\T is at least 1/2. increase. The total value that T's agents got from these things 
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is also at least 1/2. This is because every one of these objects is assigned to an 

agent which is her MBB. Therefore, at least one of these agents received a score 

of at least 1/(2k). 

They can now demonstrate their primary conclusion using Lemma 3.8. 

Proof. [of Theorem 3.6] Each matching tree T in P ((x_.) ̅) has exactly 2 

neighbors and has exactly 1 more agent than Dinge. As a result, for any matching 

tree T, edge-restricted matching in P(x) must leave one agent unmatched. 

Considering Lemma 3.8, a simple way to perform matching is to choose a 

particular agent and exclude it from matching if its value is already at least 1/(2k). 

As a result, her value is her vij = (P_j) ̅ > ½, and each additional agent I is assigned 

to her one of her MBB entries j. If NT ⊆ N is the set of k agents in tree T, then 

this matching is (Suksompong, 2021): 

∏𝑣𝑖(𝑥) ≥ (
1

2
𝑖∈𝑁𝑇

)𝑘−1
1

2𝑘
=

1

2𝑘𝑘
 

In order to perform at least as well, their algorithm's last phase selects the greatest 

feasible matching with regard to the geometric mean. Consequently, their 

algorithm ensures 

(∏𝑣𝑖
𝑖∈𝑁

(𝑥̃))
1
𝑛⁄ ≥ (∏

1

2𝑘(𝑇)𝑘(𝑇)
𝑇

)
1
𝑛⁄ =

1

2
(∏

1

𝑘(𝑇)
𝑇

)
1
𝑛⁄  

Such that k(T) is the quantity of agents in every tree T, and the equality uses the 

fact that 

2k(T) = 2n, since P k(T) = n. If the quantity of matching-trees is t, thus the inequality 

of geometric and arithmetic means shows that.∏ 𝑘(𝑇)1 𝑡⁄
𝑇 ≤

∑ 𝑘(𝑇)𝑇

𝑡
=

𝑛

𝑡
 

So, their algorithm guarantees 

(∏ 𝑣𝑖𝑖∈𝑁 (𝑥̃))
1
𝑛⁄ ≥

1

2(𝑛/𝑡)𝑡/𝑛
≥

1

2𝑒
1
𝑒⁄
  (3.2) 

Theorem 3.5's upper limit is equal to 1 if H(𝑃.̅)  is empty, and Inequality (3.2) 

suggests that their approximation factor is at maximum 2e1/e ≈ 2.889 in this 

situation. The matching gives every item in H(𝑃.̅)  to a unique agent for whom 

this item is MBB if it is not empty. The analysis presented implies merely that 

these agents get values greater than 1/2, but they really receive values greater 

than 𝑃𝑗̅/2, or pj > 1. These agents get the following when 𝑃𝑗̅/2 is substituted for 

1/2 and the same parameters are used (Richard J. Lipton E. M., 2004): 

(∏ 𝑣𝑖𝑖∈𝑁 (𝑥̃))
1
𝑛⁄ ≥

1

2𝑒
1
𝑒⁄
(∏ 𝑝𝑗̅𝑗∈𝐻(𝑝̅) )

1
𝑛⁄    
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In addition to employing EF and its relaxations as a fairness metric throughout 

the length of this thesis, we want to employ Nash welfare and Pareto-optimality 

as efficiency metrics in our study. This is due to the fact that we consider these 

two measurements to be the most accurate depictions of the ideal state. The 

literature on equitable division has a variety of various definitions of fairness, 

some of which were briefly discussed in this chapter. 

      This chapter reports the results for each of the methods mentioned in the 

previous chapter. First, we discuss and analyze the results of the first method that 

is proposed by Bhaskar Ray Chaudhur, where he investigated if EFX allocations 

occur when agents have broad values. Then we review the results of the second 

method proposed by RICHARD COLE where he investigated how to maximize 

the Nash social welfare by solving the APX-hard combinatorial optimization 

issue of distributing a group of indivisible goods among agents under additive 

values. 

Results of Method  

To take full advantage of Nash's welfare, RICHARD COLE examines the APX-

hard combinatorial optimization problem of distributing an indivisible collection 

of commodities among agents with additive values. His most important 

achievement is the development of the first polynomial-time method that 

guarantees approximation of the geometric mean of agent values by constant 

coefficients. In particular, he shows that his method can only achieve 

approximation coefficients up to 2 e1/e 2.889. 

He first states that the Eisenberg-Gale convex program can be used to optimally 

solve the natural fractional relaxation of the problem, despite the fact that the 

object is not convex, but the size of the problem As, this relaxation completeness 

gap widens. This takes advantage of the fact that the Eisenberg-Gale program's 

solution can be viewed as a market equilibrium where agents pay to acquire a 

portion of the goods to avoid consistency gaps. (Suksompong., 2021).  

Richard Cole suggests a brand-new kind of market equilibrium as a result of this 

interpretation of the fractional solution from the perspective of the market. He 

imposes a limitation that limits the total amount of money the agents may spend 

on any one thing in particular. Some agents may be influenced by the "spending-

restricted" equilibrium to forego purchasing products that are in great demand in 

favor of cheaper alternatives. Because of this, the fractional allocation of this 

equilibrium reveals important information about how the less desirable items 

should be distributed, and our rounding approach makes use of this information 

to determine a suitable integral distribution. This fractional allocation provides 

for the proof of the constant factor guarantee since it not only implies an upper 

limit for the ideal integral solution that closely approximates it but also acts as a 

guide toward an integral solution.  
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It's noteworthy to note that the expenditure presented restriction combines the 

dual and primal variables of the Eisenberg-Gale program. As a consequence, 

concepts from combinatorial methods for solving the Eisenberg-Gale problem 

were used to calculate this answer. Both a straightforward strongly polynomial 

time technique and a more complex weakly polynomial time algorithm were 

provided. 

REFRENCES 

1. Budish, E. (2011). The combinatorial assignment problem: Approximate 

competitive equilibrium from equal incomes. Journal of Political 

Economy, 119(6), 1061-1103. 

2. Cole, R., & Gkatzelis, V. (2018). Approximating the Nash social welfare 

with indivisible items. SIAM Journal on Computing, 47(3), 1211-1236. 

3. Kurokawa, D., Procaccia, A. D., & Wang, J. (2018). Fair enough: 

Guaranteeing approximate maximin shares. Journal of the ACM 

(JACM), 65(2), 1-27. 

4. Amanatidis, G., Markakis, E., & Ntokos, A. (2020). Multiple birds with one 

stone: Beating 1/2 for EFX and GMMS via envy cycle 

elimination. Theoretical Computer Science, 841, 94-109. 

5. Amanatidis, G., Markakis, E., & Ntokos, A. (2020). Multiple birds with one 

stone: Beating 1/2 for EFX and GMMS via envy cycle 

elimination. Theoretical Computer Science, 841, 94-109. 

6. Amanatidis, G., Birmpas, G., Christodoulou, G., & Markakis, E. (2017, 

June). Truthful allocation mechanisms without payments: Characterization 

and implications on fairness. In Proceedings of the 2017 ACM Conference 

on Economics and Computation (pp. 545-562). 

7. Kash, I., Procaccia, A. D., & Shah, N. (2014). No agent left behind: 

Dynamic fair division of multiple resources. Journal of Artificial 

Intelligence Research, 51, 579-603. 

8. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & 

Wang, J. (2019). The unreasonable fairness of maximum Nash 

welfare. ACM Transactions on Economics and Computation (TEAC), 7(3), 

1-32. 

9. oannis Caragiannis, N. G. (2019). Envy-freeness up to any item with high 

nash welfare: The virtue of donating items. 20th ACM Conference on 

Economics and Computation (EC), (pp. 527–545). 

10. He, J., Procaccia, A. D., Psomas, C. A., & Zeng, D. (2019). Achieving a 

fairer future by changing the past. IJCAI'19. 



 

1051 
 

11. Amanatidis, G., Markakis, E., & Ntokos, A. (2020). Multiple birds with one 

stone: Beating 1/2 for EFX and GMMS via envy cycle 

elimination. Theoretical Computer Science, 841, 94-109. 

12. Gourvès, L., Lesca, J., & Wilczynski, A. (2017, August). Object allocation 

via swaps along a social network. In 26th International Joint Conference 

on Artificial Intelligence (IJCAI’17) (pp. 213-219). 

13. Kyropoulou, M., Suksompong, W., & Voudouris, A. A. (2020). Almost 

envy-freeness in group resource allocation. Theoretical Computer 

Science, 841, 110-123. 

14. Hoefer, M., Schmalhofer, M., & Varricchio, G. (2021). Approximating 

Nash Social Welfare in 2-Valued Instances. arXiv e-prints, arXiv-2107. 

15. Bentert, M., Chen, J., Froese, V., & Woeginger, G. J. (2019). Good things 

come to those who swap objects on paths. arXiv preprint 

arXiv:1905.04219. 

16. Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004, May). On 

approximately fair allocations of indivisible goods. In Proceedings of the 

5th ACM Conference on Electronic Commerce (pp. 125-131). 

17. Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004, May). On 

approximately fair allocations of indivisible goods. In Proceedings of the 

5th ACM Conference on Electronic Commerce (pp. 125-131). 

18. Sengupta, R. (2021). Fair allocation of operations and makespan 

minimization for multiple robotic agents (Doctoral dissertation). 

19. Manurangsi, P., & Suksompong, W. (2022). Almost envy-freeness for 

groups: Improved bounds via discrepancy theory. Theoretical Computer 

Science. 

20. Segal-Halevi, E., & Suksompong, W. (2019). Democratic fair allocation of 

indivisible goods. Artificial Intelligence, 277, 103167. 

21. Suksompong, W. (2021). Constraints in fair division. ACM SIGecom 

Exchanges, 19(2), 46-61. 

22. Garg, J., & Taki, S. (2021). An improved approximation algorithm for 

maximin shares. Artificial Intelligence, 300, 103547. 

23. Garg, J., & Taki, S. (2021). An improved approximation algorithm for 

maximin shares. Artificial Intelligence, 300, 103547. 

24. Feige, U., Sapir, A., & Tauber, L. (2021, December). A tight negative 

example for MMS fair allocations. In International Conference on Web and 

Internet Economics (pp. 355-372). Springer, Cham. 



 

1052 
 

25. Aleksandrov, M., & Walsh, T. (2020, April). Online fair division: A survey. 

In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, 

No. 09, pp. 13557-13562). 

26. Procaccia, A. D., & Wang, J. (2014, June). Fair enough: Guaranteeing 

approximate maximin shares. In Proceedings of the fifteenth ACM 

conference on Economics and computation (pp. 675-692). 

27. Chevaleyre, Y., Endriss, U., & Maudet, N. (2017). Distributed fair 

allocation of indivisible goods. Artificial Intelligence, 242, 1-22. 

 

 


