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We study the problem of allocating a set of indivisible items among agents with
additive valuations, with the goal of maximizing the geometric mean of the
agents’ valuations, i.e., the Nash social welfare. This problem is known to be NP-
hard, and our main result is the first efficient constant-factor approximation
algorithm for this objective. We first observe that the integrality gap of the natural
fractional relaxation is exponential, so we propose a different fractional allocation
which implies a tighter upper bound and, after appropriate rounding, yields a
good integral allocation. An interesting contribution of this work is the fractional
allocation that we use. The relaxation of our problem can be solved efficiently
using the Eisenberg-Gale program, whose optimal solution can be interpreted as
a market equilibrium with the dual variables playing the role of item prices. Using
this market-based interpretation, we define an alternative equilibrium allocation
where the amount of spending that can go into any given item is bounded, thus
keeping the highly priced items underallocated, and forcing the agents to spend
on lower priced items. The resulting equilibrium prices reveal more information
regarding how to assign items so as to obtain a good integral allocation.
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Introduction.

We study the problem of allocating a collection of m indivisible items among a
set of n agents (n < m), aiming to maximize the Nash social welfare (NSW). Since
the items are indivisible, an allocation x assigns each item to a single agent. We
assume that the agents have additive valuations, i.e., each agent i has a non-
negative value vij for each item j, and her value for an allocation x that assigns to
her some bundle of items Bi , is vi(x) = P j€BI vij . The NSW objective is to
compute an allocation maximizing the geometric mean of the agents’ values, i.c.,

1/n
max (H v (1,)) ;

i

The motivation for this problem is closely related to the well-studied Santa Claus
problem[11, 8, 6, 26, 10, 17, 7, 5], where the objective is to compute an allocation
that maximizes the minimum value across all agents, i.e., maxx mini vi(x). The
story behind the Santa Claus problem is that Santa is carrying presents (the items)
which will be given to children (the agents) and his goal is to allocate the presents
In a way which ensures that the least happy child is as happy as possible. As we
discuss later on, the geometric mean objective, just like the max-min objective,
aims to reach a balanced distribution of value, so both these problems belong to
the long literature on fair division. Social Choice Theory. Allocating resources
among a set of agents in a fair manner is one of the fundamental goals in
economics and, in particular, social choice theory. Before embarking on
computing fair allocations, one first needs to ask what is the right objective for
fairness. This question alone has been the subject of long debates

APPROXIMATING THE NASH SOCIAL WELFARE WITH
INDIVISIBLE ITEMS

in both social science and game theory, leading to a very rich literature. At the
time of writing this paper, there are at least five academic books [46, 13, 43, 33,
9] written on the topic of fair division, providing an overview of various proposed
solutions for fairness. Over the last decade, the computer science and operations
research communities have contributed to this literature, mostly focusing on the
tractability of computing allocations that maximize specific fairness objectives.
The result of this work has been a deeper understanding of the extent to which
some of these objectives can be optimized or approximated in polynomial time
which, in turn, serves as a signal regarding the appropriateness and applicability
of these objectives. Nash Social Welfare. The objective we seek to maximize in
this work, the Nash social welfare (also known as Bernoulli-Nash social welfare),
dates back to the fifties [34, 29], when it was proposed by Nash as a solution for
bargaining problems, using an axiomatic approach. This objective, like other
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standard welfare objectives, is captured by the following family of functions
known as generalized means, or power means:

1/p
1
My(z) = (;Z[u(r)]l’) ;

In particular, the NSW corresponds to M0O(X), i.e., the limit of Mp(x) as p goes to
zero. Other important examples of welfare functions captured by Mp(x) include
the max-min objective that the Santa Claus problem studies, known as egalitarian
social welfare, as well as the utilitarian social welfare, which maximizes the
average value across the agents. The former corresponds to the limit of Mp(x) as
p goes to —oo, while the latter corresponds to M1(x). Two of the most notable
properties that the NSW objective satisfies follow. (Additional appealing
properties are discussed by Moulin [33] and Caragiannis et al. [16].) * The
optimal allocation with respect to the NSW objective is scale-free, i.e., it is
independent of the scale of each agent’s valuations. * The NSW objective
provides a natural compromise between fairness and efficiency. The fact that the
NSW objective is scale-free means that choosing the desired allocation does not
require interpersonal comparability of the individual’s preferences. The agents
only need to report relative valuations, i.e., how much more they like an item
compared to another. In other words, maximizing the NSW using the vij values
is equivalent to using aivij as values instead, where ai > 0 is some constant for
each agent i. This property is particularly useful in settings where the agents are
not paying for the items they are allocated, in which case the scale in which their
valuations are expressed may not have any real meaningl . Note that neither the
egalitarian nor the utilitarian social welfare objectives are scale-free. As a result,
the former could end up allocating most of the items to an agent who has a low
value for all the items, while the latter could end up allocating all the items to just
one agent. Regarding the second property, the two alternative welfare objectives
mentioned above, i.e., the egalitarian and the utilitarian objectives, correspond to
extreme fairness and efficiency considerations respectively. The former objective
maximizes the happiness of the least satisfied agent, irrespective of how much
inefficiency this might be causing and, on the other extreme, the utilitarian social
welfare approach maximizes efficiency while disregarding how unsatisfied some
agents might become .

Approximation Algorithm

1. Integrality Gap. The accepted way to create an approximation algorithm is to
take a fractional mapping and "round" it the right way to produce an integer. This
Is because the Eisenberg-Gale program can be used to compute the fractional
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relaxation of the IP program. It is hoped that the fractional allocation would
provide some light on what a suitable integral allocation might include.

Fractional relaxation of IP provides proposals for item distributions and upper
bound constraints on the geometric mean of the optimal integer solution 'xx'.
Instead, proving this upper bound is the normative way to prove the approximate
bound of the rounding procedure. Unfortunately, it is possible to show that the
integer gap in IP, or the difference between the geometric mean of the fractional
solution and the geometric mean of xx, is not constant.

The integrality gap of IP is Q(2™M).

Consider the situation of m objects and n identical agents. In the first m — 1 entries,
each agent has a value of 1, and in the last entry it has a value of 2m. Partial
allocation allows you to distribute each item evenly. The agents are distributed,
giving each a clump of values equal to (2m + m 1)/n, resulting in a geometric
mean equal to (2m + m 1)/n 2m/n. However, the high price object only has one.
Each integral-related agent assigned, so that the geometric mean is at most

2m/n[(m—1)/(n—1)](n—1)/n<2m/nm. These instances have minimal IP consistency
n-1
2m 2’ n

S —_—
ST T—

m

mn

As aresult, the integration gap grows exponentially with m for any constant value
n>2.

Lemma 3.1 means that the traditional methods for demonstrating a constant-
factor approximation guarantee cannot be used to the fractional solution of IP.
Additionally, there are times when this partial solution offers very little guidance
as to how the goods need to be distributed. For example, agents 2 and 3 in the
example in Figure 1b have completely different preferences, but are the same
with respect to partial allocation. So, whenever agent 1 gets item 1, the partial
solution gives no information that these two other agents can use to decide what
they should receive. (Alireza Farhadi, 2021).

2. Spending-Restricted Equilibrium.

Encouraged by the fact that IP's fractional solution failed to provide enough detail
for rounding, they provide a new interesting constraint on the fractional solution
to fill the completeness gap. Notably, he relaxes the requirement that things must
be fully allocated, and instead limits the total money spent on each item to $1,
the maximum amount he can allocate to one agent. The principal (xij) and dual
(pj) P-variables of the Eisenberg-Gale program for each element j. The answer
must satisfy the condition Yi€N xijpj < 1, that satisfies both of these
requirements.

1042



Js¥ s 2023 11A00n)) Skl et 1 dotulbonni o i ibmsckd o] il | ,’CS\

December 2023 No. 11A Iraqi «!@':.rnz! of Humanitarian, S@cizl.znd Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

Definition . The definition of a spending-constrained (SR) equilibrium is partial
allocation (x_.) and price vector p, where each agent spends its entire budget on
MBB items at price (P_.) , and each total spending is min” is equal to {1, (P_j) }.
Example 3. They go back to the issue instance they looked at in Example 2.1 to
provide further context for this spending-restricted market equilibrium.

Agents Items Agents Items
_—@ s10 0O s10
1 ,000— 10,0000 10— $1/@
_——0Q 43 $4/3
s20mG— 104,0000— 5
$2/3 $2/3
$2
(15,0,1, 11 —_ iif/@ 100,2,2,2 @—_ $1j
$1/>® $2/3 s $1/33>® $2/3
3 ,2,1,10——_ 52/ 24,222 @—_ 52/
0 s 0 an

(a) A spending-restricted equilibrium (x,p).(b) Valuations that are scaled for p.

1 A spending-restricted equilibrium ((x_.) (0t _.)) for the instance of Example
2.

Three agents spend all of their money on the highly desired Item 1 at its price of
$3 in the unconstrained equilibrium of this situation. This would not be
acceptable in the spending-restricted equilibrium; so the price of this item should
be raised to the extent that only Agent 1 will be able to spend her money on it
because she doesn’t have other options. Figure 2a depicts the expenditure graph
for this SR equilibrium. It is evident in this figure, that the preferences of Agents
2 and 3 are described with more information than they are shown in the
unconstrained market equilibrium spending graph.

Normalizing the Valuations. The magnitude of every agent's appraisals doesn’t
have any effect on the conclusion since, as they noted previously, the NSW aim
Is scalefree. They now assume that every agent's values are normalized in the
following order to simplify the assertions and proofs of this section and take use
of this fact.

Definition 3.4. Given an SR price (p_.) , the MBB element j of each agent i is p
and vij of all other items.

Given an SR price (p_.) and some agents i of valuations vi that don’t ensure this
property, the agents are given all vij Obtain a scaled estimate vi against p by
counting.}, i.e., H. The reciprocal of the maximum bang-per-buck ratio. Each
element j which is her MBB of i in p satisfies vij'/,(P_j)=1/ai, Vvij=aivij’=,(P_j).
While, for all other elements vij'/,(P_j)<; 1/ai, ie vij<ai. ,(P_j) . will be.

3. Upper Bound. The following theorem offers a new upper limit for the
geometric mean of the ideal integral solution x* based on the prices g using the
scaled values.
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Let H(P) or L(P) be the collection of items j with P B>1 or P <1 respectively.

Due to the fact that each item's total cost in H(P) is 1 and the agents total budget
is n, it should be noted that |H(P)| < n.

Theorem 3.5. The best geometric mean is upper bounded in the following way,
given SR prices P and agent valuations v scaled for P

(ien v N/ < [Ljenp ;) (3:1)

Proof. Given an SR price (p_.), the MBB element j of each agent i is p and vij
of all other items.

If we keep the SR price p at the current level, increasing the value of the agent
will only increase the left side of the inequality (3.1), not the right side. So, vij <
(P_j) (visscaled with respect to (P_.)) for every agent i and every element j, so
vij = (P_j ) for every i and j For, it is sufficient to show that (3.1) holds. .
Throughout the rest of the proof, let vij = (P_j) for all i and j. In fact, they relax
the completeness criterion for the optimal assignment of items j € L((P_.)) later
in the proof. In other words, make x' an optimal assignment if each element j is
divisible by (P_j ) < 1. Since this is a relaxation of the original problem, it
suffices to prove that there are Y 1EN vi(x") >> 1€EN vi(xx) such that the inequality
(3.1) is true for x'. is.
Q _

First, assume that Q H(P) is empty, means that each item j has price p;< 1.

Then, it suffices to prove that Yien vi(x) < 1. But, since vjj= P for all i and j,
they know that Yiey Vi(X) =CPjePM P;. Also, since }3 <1, the spendlng on every
item isP equal to its price, and s0 Y jem P, = n. Then, Mytienvi(x) = 1.

Given an SR price (p_.), the MBB element j of each agent i is p and vij of all
other items.

Assume that H n((P_.) ) is not empty at this point. Each of the items Q in H((P_.))
Is assigned to at most 1 agent, since x ' of these things is an integer. That is, at
maximum |[H((P_.)) |the agent receives one of the items in X". Let NL < N be the
set of remaining agents that assign only those items in L((P_.) ) where x' has at
least n—|H((P_.) )|. The cost of each item in the SR equilibrium is exactly 1, and
the price of L((P_.)) is added to the remaining budget or n—|H((P_.) )|. Because
vij = (P_j) forall I and j, the result is the maximum value that can be distributed
to the agents in NL. (Mohammad Ghodsi M. T., 2021):

Ywar ) B=n-HE)

L[EN], IEN],
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So, at least there are n — |H(P)| agents in N, and the total value of them in x'is at
maximum n — [H(P)|, so min Y ien{Vi(x)} < 1.

They now demonstrate that any agent that X" allots a portion of some item | €
L(P) has value in X’ of no more than 1. This suggests that each agent in N, has a
value of no more than one. Assume, in order to create a paradox, that there is an
agent a with v(x’) > 1 who obtains value vs > 0 from a portion of an object with
j € L(P). As they shown previously, some agent exists in x’ with v(x’) 1. They
assume that each agent is the same, therefore agent £ has also a value of vs for
the portion of item j that is assigned to. As a result, they would get an allocation
x that is incongruent with the optimality of x' if they were to remove a portion of
item j of some positive value v < v,(x)—-v(x) from « and allocate it to 8 instead:
[lienvi(x™)  [va(x") —v][vg(x") + v] [ve (x")—vg(x") — v]v
= =1+ > 1
[lien vi(x") Ve (x")vp (x') Ve (x")vp(x')

It is similarly simple to demonstrate that every agent gets a maximum of one item
from H(P) in x using a nearly identical set of inputs. If not, reassigning one of
these goods to the agent with the lowest value would result in a higher NSW once
again. There are precisely |[H(p)| agents, and each of them is given a single item
with the value 1_3 in the form of the function j € H(P). Since these agents' value
in x’ is larger than 1 (since P_; > 1)), they are not given any percentage of items j
€ L(P).

As a result, "They showed that the product of the agent values of NL in X is at
most 1 and that the product of the agents associated with the elements of j €
H((P_.)) is equal. This implies ITieN vi(x") <IT jeH(p) (P_j ) and completes the
proof (Kurokawa, 2017).

4. Spending-Restricted Rounding Algorithm (SRR).

SRR is an approximation approach that first computes the SR allocation (x_.)
and the price (p_.), then divides every item into Appropriately assign to one. Its
neighborhood in the output graph Q((x_.) ). In this way, we want the majority of
agents to at least get 1/2 of the value given by the partial solution, and all other
agents to get a good chunk of that value to approximate a constant coefficient.
(lan A. Kash, 2014) .

They assume that the cost graph of partial allocation (x_.) is the forest given in
Section 2. Also, since each object has at least one agent (partially) associated
with it, each tree in this forest has a vertex relative to an agent. After computing
this forest in step 1, the SRR method selects one of the vertices of each tree
corresponding to an agent as the root of the tree. As a result, all vertices at depth
1 correspond to things the root agent spends money on, vertices at depth 2
correspond to things the agent at depth 1 spends money on, and so on. They refer
to the agent corresponding to the parent vertex of any vertex in the root tree
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corresponding to the element as the vertex's parent, and its descendants, if any,

as the vertex's children. (Martin Hoefer, 2021).

The first integral assignments are made in the first two stages of the SRR
algorithm. As with all items corresponding to leaves of the root tree of the output
graph, items with a price (P_j) of at most 1/2 are also assigned to the parent agent.
The first form of rounding is trivial because the parent agent is the only agent that
outputs a leaf entry in the output graph. Multiple subagents of this object in x
may spend money on it The second is less obvious, because each child agent will
only spend half of its budget on the item given to it at this stage, as it is price
capped at 1/2. The rest of the money will be spent on products that match the
children in the tree (Jiafan He, 2019). Specifically, in the output subdiagram
created by agents and remaining unassigned elements, each of these subagents
becomes the root of a new tree after step 4.

Each remaining expensive item is passed to another nearby agent in the final
stage of the algorithm. In other words, it computes the element-agent match
constrained by the edges of the output graph. Considering the element
assignments that occurred in steps 3 and 4, this method computes the best
possible matching (Daniel Halpern, 2020). In a suitable weighted bipartite
network this is achieved using a simple maximal weighted matching technique.
A set of vertices on one side of this bisection graph correspond to a set of agents,
and another set of vertices on the other side correspond to the remaining objects.
Agent i and item j have an edge that exists only if a matching edge exists in the
output graph. Let vi(x') be the value of the term previously assigned to agent i in
steps 3 and 4 (“if any”) to set the edge weights. Then set the edge weight between
agent i and element j in the bipartite graph to wij = log(vij + vi(x')). This is equal
to the logarithm of the final value of i when an item is assigned to j. Lastly, add
another item vertex that is only associated with agent i and set the weight to
log(vi(x')). By using the maximum weighted matching procedure on this
weighted bipartite graph, we can determine which matching of the remaining
elements leads to the final value of the agent that maximizes the sum of the
logarithms. This is the same as maximizing social welfare. Nash.

Algorithm 1: SRR
1 Computing a spending-restricted equilibrium (x, p).
2 Choosing a root-agent for every tree in the spending graph Q(x).
s Assigning any leaf-item in the trees to its parent-agent.

+  Assigning any item j with P< 1/2 to its parent-agent.
s Computing the optimal matching of the remained items to adjacent agents.

Theorem 3. . The integral allocation X~ computed by the Spending-Restricted
Rounding algorithm satisfies always:
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(1_[ v (x*)/n < 2.889(1_[ v; (%)) /n

iEN IEN

Since CE computes the best match of the remaining terms in the final step of the
SRR method, it provides the approximation guarantees necessary to prove
Theorem 3.6, showing that matches between terms usually occur. is enough. We
start by constructing like matching by creating a subgraph of the original output
graph Q((x_.)) . "Beginning with Q((x_.)), build the pruned output graph
P((x_.)) by removing everything assigned in steps 3 and 4. Step 3 Since all the
leaf elements have been assigned in , each remaining element has at least 1 child
agent, and finally, they either have every element j as multiple subagents, or the
one that spends the most money on element j. It intersects the edge connected to
subagent i with the largest (x_.) ij value among all but one subagent.

The rest of this part uses only the trimmed edges of the graph to prove that there
exists a matching that satisfies the required inequality. To demonstrate this, they
first demonstrate Lemma 3.7 and 3.8.

Lemma 3.7 . For any matching-tree T with k agents

z min{1,P} >k —1/2

JEMT
Proof. The first thing they notice is that there is only one object j /€ MT in X that
an agent i € T can spend money on. To demonstrate this, considering the fact that
the absence of j in MT is either because j was assigned to a parent agent in step
4 or because edge (i,j) was removed by the pruning process. please give me. Both
the original output graph Q( (x). In both scenarios, the agent that "loses" j is its
child agent, indicating that i rises to the position of the matching root. Hence,
such an element If j exists, a subagent of T must act as the root, and there can be
only one such element.

Since the total cost of T's agents is K, it is sufficient to show that T's root spends
less than half of its budget on only one item (j /€ MT). If j is lost in step 4, its
cost, or the amount of money | spent on it, is both at most 1/2. However, if edge
(i,J) is pruned away, the highest output child of j is not i (Maria Kyropoulou,
2020). This proves the lemma because it states that i spends only 1/2 on j and
specifies that each item of x spends at most 1.

Lemma 3.8. For any matching-tree T with k agents, there exists an agenti € T
who, during Steps 3 and 4 received one or more items that she values at least
1/(2k) (David Kurokawa, 2018).

Proof. Since the maximum amount spent on an item is 1, the maximum amount
spent on all k-1 in T is k-1. However, Lemma 3.7 states that the total amount
spent on things in MT is at least k1/2, implying that the amount spent on items in
MT\T is at least 1/2. increase. The total value that T's agents got from these things
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Is also at least 1/2. This is because every one of these objects is assigned to an
agent which is her MBB. Therefore, at least one of these agents received a score
of at least 1/(2k).

They can now demonstrate their primary conclusion using Lemma 3.8.

Proof. [of Theorem 3.6] Each matching tree T in P ((x_.)) has exactly 2
neighbors and has exactly 1 more agent than Dinge. As a result, for any matching
tree T, edge-restricted matching in P(X) must leave one agent unmatched.
Considering Lemma 3.8, a simple way to perform matching is to choose a
particular agent and exclude it from matching if its value is already at least 1/(2K).
As aresult, her value is her vij = (P_j) >, and each additional agent | is assigned
to her one of her MBB entries j. If NT € N is the set of k agents in tree T, then
this matching is (Suksompong, 2021):

1,.,1 1
ﬂ”i<x>2<? 2% 2Fk

IENT
In order to perform at least as well, their algorithm'’s last phase selects the greatest

feasible matching with regard to the geometric mean. Consequently, their
algorithm ensures

<l_[ v ) = (ﬂ zk(T)k(T) 2 (1_[ k(T)

iEN

Such that k(T) is the quantity of agents in every tree T, and the equality uses the
fact that

2KM =2 since P k(T) = n. If the quantity of matching-trees is t, thus the inequality

of geometric and arithmetic means shows that.[T k(T) Y/t < w = %

So, their algorithm guarantees
1

(Miew vi GN'/n = 50— = = (32)

Theorem 3.5's upper limit is equal to 1 if H(P) is empty, and Inequality (3.2)
suggests that their approximation factor is at maximum 2e® = 2.889 in this
situation. The matching gives every item in H(P) to a unique agent for whom
this item is MBB if it is not empty. The analysis presented implies merely that
these agents get values greater than 1/2, but they really receive values greater
than B/2, or p;> 1. These agents get the following when P/2 is substituted for
1/2 and the same parameters are used (Richard J. Lipton E. M., 2004):

(Mien vi () /7 = — [jenp ) 7

1048



Js¥ s 2023 11A00n)) Skl et 1 dotulbonni o i ibmsckd o] il | /S\

#
4
December 2023 No. 11A Iraqgi Journal of Humanitarian, Social and Scientific Research i &
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

In addition to employing EF and its relaxations as a fairness metric throughout
the length of this thesis, we want to employ Nash welfare and Pareto-optimality
as efficiency metrics in our study. This is due to the fact that we consider these
two measurements to be the most accurate depictions of the ideal state. The
literature on equitable division has a variety of various definitions of fairness,
some of which were briefly discussed in this chapter.

This chapter reports the results for each of the methods mentioned in the
previous chapter. First, we discuss and analyze the results of the first method that
Is proposed by Bhaskar Ray Chaudhur, where he investigated if EFX allocations
occur when agents have broad values. Then we review the results of the second
method proposed by RICHARD COLE where he investigated how to maximize
the Nash social welfare by solving the APX-hard combinatorial optimization
issue of distributing a group of indivisible goods among agents under additive
values.

Results of Method

To take full advantage of Nash's welfare, RICHARD COLE examines the APX-
hard combinatorial optimization problem of distributing an indivisible collection
of commodities among agents with additive values. His most important
achievement is the development of the first polynomial-time method that
guarantees approximation of the geometric mean of agent values by constant
coefficients. In particular, he shows that his method can only achieve
approximation coefficients up to 2 el/e 2.889.

He first states that the Eisenberg-Gale convex program can be used to optimally
solve the natural fractional relaxation of the problem, despite the fact that the
object is not convex, but the size of the problem As, this relaxation completeness
gap widens. This takes advantage of the fact that the Eisenberg-Gale program's
solution can be viewed as a market equilibrium where agents pay to acquire a
portion of the goods to avoid consistency gaps. (Suksompong., 2021).

Richard Cole suggests a brand-new kind of market equilibrium as a result of this
interpretation of the fractional solution from the perspective of the market. He
imposes a limitation that limits the total amount of money the agents may spend
on any one thing in particular. Some agents may be influenced by the "spending-
restricted™ equilibrium to forego purchasing products that are in great demand in
favor of cheaper alternatives. Because of this, the fractional allocation of this
equilibrium reveals important information about how the less desirable items
should be distributed, and our rounding approach makes use of this information
to determine a suitable integral distribution. This fractional allocation provides
for the proof of the constant factor guarantee since it not only implies an upper
limit for the ideal integral solution that closely approximates it but also acts as a
guide toward an integral solution.

1049



- - d - - .y . - - - - ,):;ﬂ-"_,%b
ds¥1 oS 2023 110011 debelidl duns o 419 il igmel] dmdpidf adall 7 N
December 2023 No. 11A Iraqi Journal of Humanitarian, Social and Scientific Research i kb
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

It's noteworthy to note that the expenditure presented restriction combines the
dual and primal variables of the Eisenberg-Gale program. As a consequence,
concepts from combinatorial methods for solving the Eisenberg-Gale problem
were used to calculate this answer. Both a straightforward strongly polynomial
time technique and a more complex weakly polynomial time algorithm were
provided.
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