لجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية

Iraqi Journal of Humanitarian, Social and Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

A Review on using recycled aggregate in the concrete mixture

Prof. Dr. Hussam Ali Mohammed hus@atu.edu.iq.com Ameer Mohammed Ali

ameer.mohammed.tcm72@student.atu.edu.iq

AL-Furat Al-Awsat Technical University – AL-Mussaib Technical Collage – Building & Construction Department

Abstract:

The incorporation of repurposed aggregate (RA) inside concrete production has emerged as sustainable solution, addressing environmental concerns while improving material efficiency. This review examines the extensive use of RA in concrete mixtures, exploring its impact on mechanical properties, durability, and environmental implications. Key factors influencing the performance of concrete with RA, including the quality of recycled materials, mix design considerations, and processing techniques, are analyzed. The study evaluates the mechanical strength, durability, and long-term performance of concrete incorporating RA, addressing challenges such as potential strength reduction, increased porosity, and alkali-silica reaction. Environmental benefits, such as reduced energy consumption and landfill waste, are also discussed. Moreover, advancements in research, innovative methodologies, and best practices are highlighted to optimize the utilization of RA in concrete mixtures, promoting sustainable construction practices without compromising structural integrity. For academics, this thorough analysis is an invaluable resource, engineers, and stakeholders attempting to integrate recycled aggregate effectively in concrete for sustainable infrastructure development.

Keyword:Recycled Aggregate, Concrete Mixtures, Material Efficiency, Durability, Environmental Benefits.

مراجعة على استخدام الركام المعاد تدويره في الخلطة الخرسانية أ.د.حسام علي محجد أمير محجد علي أمير محجد علي أمير محجد علي جامعة الفرات الأوسط التقنية — كلية المسيب التقنية — قسم البناء والتشييد ameer.mohammed.tcm72@student.atu.edu.iq

خلاصة:

لقد ظهر دمج الركام المعاد استخدامه داخل إنتاج الخرسانة كحل مستدام، يعالج المخاوف البيئية مع تحسين كفاءة المواد. تتناول هذه المراجعة الاستخدام المكثف لـ (RA) في الخلطات الخرسانية، واستكشاف تأثيرها على الخواص الميكانيكية والمتانة والآثار البيئية. يتم تحليل العوامل الرئيسية التي تؤثر على أداء الخرسانة مع (RA)، بما في ذلك جودة المواد المعاد تدويرها، واعتبارات تصميم المزيج، وتقنيات المعالجة. تقوم الدراسة بتقييم القوة الميكانيكية والمتانة والأداء طويل المدى للخرسانة التي تحتوي على (RA)، ومعالجة التحديات مثل تقليل القوة المحتملة وزيادة المسامية وتفاعل القلويات والسيليكا. وتناقش أيضًا الفوائد البيئية، مثل تقليل استهلاك الطاقة ونفايات مدافن النفايات. علاوة على ذلك، يتم تسليط الضوء على التطورات في الأبحاث والمنهجيات المبتكرة وأفضل الممارسات لتحسين استخدام تسليط الضوء على التطورات في الأبحاث والمنهجيات المبتكرة وأفضل الممارسات لتحسين استخدام

العدد 11A No. 11A

الجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية Iraqi Journal of Humanitarian, Social and Scientific Research

Print ISSN 2710-0952 - Electronic ISSN 2790-1254

(RA) في الخلطات الخرسانية، وتعزيز ممارسات البناء المستدامة دون المساس بالسلامة الهيكلية. بالنسبة للأكاديميين، يعد هذا التحليل الشامل موردًا لا يقدر بثمن، وللمهندسين وأصحاب المصلحة الذين يحاولون دمج الركام المعاد تدويره بشكل فعال في الخرسانة من أجل تطوير البنية التحتية المستدامة.

Introduction:

The most often utilized construction material in use today in Building is concrete. Its projected that the United States alone produced (70) billion tons of cement in 2009 [1]. In today's environmentally conscious society, everything pertaining to construction is subject to examination. Nowadays, people are more aware of and knowledgeable about the harm that humanity causes to future generations.

Nowadays, being green is all the rage, and businesses big and small are trying to lessen their carbon footprint. The current builders are under continual pressure to produce more "earth-friendly" structures, and they are always searching for new methods for include recyclable materials into their designs. There is increasing interest in the possible application from recycled elements in concrete. There is increasing interest in the possible application of recycled elements in concrete. Even though using Concrete with recycled elements is not a novel idea, normal substitutional values and the incorporation out of recycled elements into one cohesive batch of concrete. have historically been on the small side.

Large amounts of energy are needed in the manufacturing of Portland cement (PC). Carbon dioxide (CO2) is produced in large quantities during the production of PC. Cement manufacture. 29 Tg of CO2 (one tera gram is equal to one million metric tons) were produced in 2009, despite recent improvements in the process bringing the quantity of CO2 generated to less than 3% of industrial CO2 emissions in the US [2, 3]. One of the main greenhouse gases thought to be responsible for global warming is carbon dioxide.

The PC manufacturing factories' high-temperature kilns are the primary source of CO2 emissions. PC is the primary source of greenhouse gasses among all of the current raw ingredients required to make concrete.

It is customary and has been for many years to use recycled materials in place of cement. It has been shown that adding some recycled components to concrete can improve its strength, durability, and workability. For thousands of years, cement has been substituted by supplemental cementitious materials (SCM) in the creation of concrete. These days, Cement replacements such as fly ash, silica fume, and ground granulated blast furnace slag (GGBFS) are commonly used. GGBFS, commonly known called slag cement, is a byproduct of the iron industry. A pozzolanic cementitious substance that is hydraulic is slag cement. The phrase "pozzolani"icate content. Concrete gains its strong attributes from

العدد 11A No. 11A

الجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية العراقية للبحوث الإنسانية والإجتماعية والعلمية العراقية للبحوث الإنسانية والعلمية والعلمية العراقية للبحوث الإنسانية والعلمية والعلمية المراقية العراقية الع

Journal of Humanitarian, Social and Scientific Reseat
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

the reaction of pozzolans with cement hydration process byproducts. Usually, pozzolans won't generate strength on their own when

Combined with water, necessitates the use of cement in the mixture. Because of this, the conventional wisdom in the concrete business is that at least a substantial amount of cement is required to generate

Fortitude. The cementitious characteristics of slag cement are similar to cement, which will hydrate and create when combined with water. Strength by itself.

Literature review:

H.S. Vidyadhara B.E., M. Tech **, Kishore Ravande B.E., M.E. ** N.K. Bairagi BCE, ME, Ph.D., MIE *, 1990 [4] The foundation of every development is the protection of the natural resources and the preservation of the environment. One such endeavor is the use of recycled aggregate in concrete (RAC), This provides answers for several building engineering problems.. Nowadays, the idea of applying RAC is becoming more and more common, and research in this area is moving forward. Of the various traditional mix design techniques accessible, the authors of this research have determined which is best for RAC. It is determined which parameter has an impact, and a suggested empirical relationship to modify the parameter. With the the mix design parameters, in turn acquired, (RAC) doesn't need to try any test mixes in order to get the desired target strength. But still, The recommended adjusted process calls for 10% extra cement, which is thought to be both realistic and appropriate given the lower grade of recycled material.

N.K. Bairag P. Kishore Ravande b. and V.K. Pareek c. 1993 [5] the idea making concrete from recycled material is gradually but unquestionably gaining traction. In order to make this technology practical, research is ongoing. One such attempt is shown here with the outcomes of the current inquiry. This study's primary objective is to produce concrete of a quality that is acceptable while utilizing as much recycled aggregate as possible in place a natural aggregate. Introduced in this work, "Replacement ratio" describes the percentage of recycled coarse aggregate that is included in the total amount of coarse particles in a mixture of concrete. For the current analysis, concrete mixture scenarios with substitution ratios of 1.00, 0.25, 0.50, 0.75, and 0. have been taken into consideration. Analyze its behaviour in the softened and fresh phases. The aforementioned research was carried out for trimix scenarios, with corresponding 3:1, 50%, and 43% water to cement ratios. Relational empiricism has been put forth to calculate the concrete's elasticity and rupture moduli for any replacement ratio. A maximum replacement ratio value is recommended, taking into consideration the overall behavior of concrete and this investigation's main goal.

العدد 11A العدد No. 11A Ira

الجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية العراقية للبحوث الإنسانية والإجتماعية والعلمية Iragi Journal of Humanitarian, Social and Scientific Research

Print ISSN 2710-0952 - Electronic ISSN 2790-1254

Shui, Z.H., Lam, H. Fok, S.C. Kou, and C.S. Poon* (2004) [6] The effects both natural and recycled aggregate moisture states on characteristics of both just harvested and solidified concretes were studied. Different ratios of recycled and natural aggregates were used to produce concrete mixes. The aggregates were dried in three different ways before being used: air dried (AD), oven dried (OD), and saturated surface dried (SSD). The percentage of free water to cement was maintained. Consistent across all mixtures. A number of concrete compositions' slump loss was measured at their fresh stage, and the compressive strength was ascertained following Days28 and 3, 7 of cure. The quiz findings demonstrated such as the concrete mixtures' first slump figures were based on the starting free water amounts, the and combinations' values of slump loss were connected to the aggregates' moisture contents. Utilizing aggregate that is 100% AD or OD recycled resulted in a considerable loss of lump. The impact of the aggregates' moisture states on the It was evident how strong the concretes made using aggregates of SSD and OD states at young ages (three and seven days) were. The ready-made concrete At 3, 7, and 28-day periods, The AD aggregates demonstrated the highest results for average strength. However, 28 days later, the observable advantages using various aggregate types were comparable. The findings indicated that an AD aggregate with no more than 50% for the production Recycled aggregate is appropriate for recycled aggregate concrete with normal strength.

Akash Rao A, Kumar N. Jha b, Sudhir Misra A,*,2007 [7] A significant amount of the world's solid waste production is made up of waste from construction and demolition (C&D), the majority of that gets dumped in landfills. Concrete engineers' research has unequivocally indicated that waste can be properly treated and reused as aggregate in freshly mixed concrete, especially for lower-level uses. As this study examines many facets of the issue, first with a concise overview of the global context concerning the generation and recycling of construction and demolition debris. Aggregates (RA) are made from construction and demolition debris, as well as government programs to recycle construction and demolition debris. In addition to a synopsis of the engineering properties, the study also provides an overview of the impact of using recycled aggregate. About the characteristics of recently-poured, set concrete. In the paper's last portion, some of the major barriers to the wider application of RA in recycled aggregate concrete (RAC), including ignorance, lack of support from the government, and lack of regulations or standards for recycling the fresh aggregates used in these concrete.

C.-S. Poon and S.-C. Kou, 2008 [8] the results of a lengthy investigation the mechanical characteristics recyclable materials are used to make concrete three distinct sources are presented in this research. The concrete mixtures were made having 355 kg/m3 of cement content and a water-to-cement (w/c) ratio of 0.55. Utilizing recycled aggregate, 0, 20, 50, and complete substitutions for natural

العدد 11A Iraqi Journal of Hu

Iraqi Journal of Humanitarian, Social and Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

aggregate. Following five years of curing, it was discovered that the compressive strength and The concrete's modulus of elasticity decreased as the quantity of recycled aggregate in it grew. Combined material. However, beginning at the one-year curing age, the concrete's splitting tensile strengths were greater than those both natural and entirely recycled aggregate were used to make the concrete. An increase after extensive research on the mechanical properties of concrete manufactured from recycled materials from three different sources are presented in this research. The concrete mixtures were made has a cement content of 355 kg/m3 and a water-to-cement (w/c) ratio of 0.55. Utilizing recycled aggregate, 0, 20, 50, and complete substitutions for natural aggregate. Following five years of curing, it was discovered that the compressive strength and The concrete's modulus of elasticity decreased as the quantity of recycled aggregate in it grew. Combined material. However, beginning at the one-year curing age, the concrete's splitting tensile strengths were greater than those of the concrete composed entirely of recycled and natural aggregate. An increase in elasticity and strength

Sami W. Tabsh *, Akmal S. Abdelfatah, 2009 [9] In the Gulf region of the Middle East, many buildings are either past the time of their intended use or were not built in accordance with the plans. Large amounts of concrete debris are produced when such structures are demolished or require maintenance. Recycling leftover concrete will result in a decrease in valuable landfill space as well as natural resource savings. Examining the effectiveness of coarse aggregate made from recycled concrete is the goal of this study used to make concrete. The factors taken into account in the research mention the intended concrete strength as well as the source of the recycled concrete. The robustness and stability In comparison to natural aggregate, The results of tests conducted on recycled coarse aggregate showed a higher percentage loss but stayed inside the permissible bounds. Concrete's splitting tensile and compressive strengths produced the mix proportions using coarse aggregate that has been repurposed are importantGenerally speaking, the strength of recycled Concrete can weigh 10–15% less than conventional concrete made with natural course aggregate.

Malešev Mirjana. Radonjanin Vlastimir and Marinković Snežana, 2010 [10] The article presents a comparison concerning the properties of both fresh and cured concrete with respect to the experimental data varying natural to recycled coarse aggregate replacement ratios. Crushing the leftover concrete from precast concrete columns and laboratory test cubes produced recycled aggregate. Two types of concrete that substitute 50% and 100% of the coarse recycled aggregate with natural fine and recycled coarse aggregate, respectively, and one composed entirely of natural aggregate (NAC) served as the control mixtures in each of the three categories of concrete compositions examined. Ninety-nine specimens were created to examine the fundamental characteristics of concrete that has hardened. The paper also includes load tests on beams made of the concrete

العدد 11A العدد No. 11A Iraqi Journal o

Iraqi Journal of Humanitarian, Social and Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

types that are being studied that are reinforced with concrete. Recycled aggregate, regardless of replacement ratio in this experimental study, concrete (RAC) performed satisfactorily and did not substantially deviate from the way the control concrete operated. To achieve as this, though, you'll need to employ fine-grained recycled concrete and follow the special instructions for making this novel type of concrete.

Stephan A. Durham b, Patrick L. Maier a, 1, 2012 [11] It's becoming more crucial than ever for building products to contain recycled materials. Recycled materials help save landfill waste and lessen the depletion of virgin raw ingredients in concrete compositions. Finding out how various recycled material amounts influenced the properties of both fresh and hardened concrete was the aim of this investigation. The repurposed resources utilized in this investigation included granulated blast furnace slag (GGBFS) and recycled concrete aggregate. (RCA) and broken glass from garbage. In place of the cement, slag cement, or GGBFS, was utilized. The. Waste glass and RCA were used in place of the coarse and fine aggregates, respectively. The planned concrete mixtures included recycled materials in amounts ranging from 25% to 100%. Contents. Furthermore, a typical concrete mixture was created for comparison, including cement and virgin aggregates. Objectives. The characteristics of fresh and cured concrete, including unit weight, slump, and air content, permeability, alkalisilica, strength rate and compressive strength growth, and freeze-thaw durability responsiveness (ASR) capacity. With 6.5% air content and 4200 psi (29.0 MPa) of compressive strength, the concrete made entirely of recycled resources exhibited extremely low permeability. Concrete combinations with 50% or more 75 percent of recycled materials yielded strengths of approximately 43.8 MPa at 6350 PSI and 48 MPa at 7000 PSI. Correspondingly. Investigations were conducted into the positive and drawbacks of including recycled materials into concrete mixes, such as the potential for waste glass to have alkali-silica reactivity (ASR). It was found that the dirt cement, when used at 50% replacement levels, alleviated these concerns. When compared to a virgin material, the utilization of recycled resources improved strength and durability by up to 50%. Typical concrete created with raw components.

Ali Emhemd Saed Al Malty ^a, Snežana Marinković, Mirjana Malešev, and Vlastimir Radonjanin,2013 [12] The study reports on an experimental study of concrete that had a high concentration of various mineral supplements, a low cement percentage, and recycled concrete aggregate. These concretes are considered "green" or "eco" concretes because they assist preserve natural resources, address the issue of building and industrial waste management, and have less of an adverse effect on the environmentThe coarse recycled aggregate and fine river aggregate were utilized in the manufacturing of green recycled concrete aggregates (GRAC), and a range of pozzolanic, highly reactive, and inert mineral admixtures, including metakaolin, fly ash, milled limestone, and

العدد 11A No. 11A

الجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية العراقية للبحوث الإنسانية والإجتماعية والعلمية Iragi Journal of Humanitarian, Social and Scientific Research

Print ISSN 2710-0952 - Electronic ISSN 2790-1254

silica fume. substituted 50% of the cement by weight. Ten distinct concrete combinations' fundamental qualities were examined, contrasted, and categorized according to their potential uses. Test findings indicated that the ideal Some structural uses for this type of "green" concrete are made possible by the mixing of various mineral admixtures, which might lessen the primary drawback of concrete that has received a lot of mineral supplements: the first 28 days of rather low strength.

Enzo Martinelli a, Eduardus A.B. Koenders b,c, Marco Pepe a, and Romildo D. Toledo Filho b, 1, 2014 [13] The increasing need for sustainability in today's industrial operations means that future environmental research initiatives should aim to minimize the carbon footprint while also improving raw material efficiency. Rio de Janeiro's Federal University (UFRJ, Brazil) has started the current research project to show that "ecological concrete" is a feasible material for our structural use, marked by a substantial substitution of recycled aggregations for natural ones, which are generated while processing CDW, or building and demolition debris. Specifically, this work investigates and examines various processing techniques and how they affect the pertinent mechanical and physical characteristics of the finished concrete mixes and aggregates. Particle size distribution, bulk density, and mortar content were thereby related corresponding ability for The regenerated aggregates' water absorption was observed in order to closely examine the impact of these handling techniques. Afterward, A string batches of concrete was created to assess the impact that different preparing techniques about Recycled Aggregates perform primarily mechanically when they are firm and fresh. Outcomes shown in this work demonstrate the viability of "autogenous cleaning," which eliminates surface contaminants. It lessens the variability of the particles, It usually characterizes the form of a recycled aggregate, Grid. It shows off how the careful cleaning process greatly closes the performance gap between The strength of both conventional concrete and recycled aggregate concrete (RAC) after they have set and how workable they are when the concrete mixtures are still fresh.

Jan Deja d, Somayeh Lotfi a, Radosław Mróz d, Eckhard Wagner c, Manuel Eggimann b, 2015 [14] Major societal force working in order to lessen the bulk transportation of building supplies in urban contexts is one of the industry's core environmental challenges. Given this, there is a pressing need to deploy additional Construction and Demolition Waste (or CDW) in-situ recycling techniques. The innovative concrete recycling method developed by the European C2CA project may be carried out in situ and mechanically. The system consists of intelligent demolition, meticulous autogenous mill grinding of the broken concrete, and a novel dry classifying technique called ADR to remove the particles. In Groningen, the Netherlands, two office skyscrapers contain 20,000 tons of End of Life (EOL) concrete were used in demonstration

العدد 114 No. 11A

Iraqi Journal of Humanitarian, Social and Scientific Research Print ISSN 2710-0952 - Electronic ISSN 2790-1254

projects to test the viability of this recycling method. The second C2CA demonstration project, which recycled EOL concrete on an industrial site, is the focus of this study. Following recycling, an investigation was conducted into the qualities of the Recycled Aggregate (RA) that is produced, and the findings are reported. A comparative The mechanical and durability properties of recycled aggregate concrete (RAC) and natural aggregate concrete (NAC) were compared in research (RAC). Understanding the importance of cement type, w/c ratio, and RA replacement on the qualities of RAC was the goal. In this sense, two series of reference concrete with strength classes of C25/30 and C45/55 were created using natural sand and natural coarse particles, which were crushed and rounded. Parts of the organic aggregate were substituted to construct the RAC series, which produced a series of concrete with RA contents of 0%, 20%, 50%, and 100%. The design of The properties of RAC are significantly influenced by the type of cement used and the concrete mix. according to the results. However, even at high replacement percentages, the performance of RAC is only a little impacted by the replacement of RA. This outcome suggests that, with appropriate mix design modifications and cement selection, It is possible to employ RA in structural concrete.

M.B. Leite, V.M. Santana, 2018 [15] This research focuses on two topics: the development of recycled concrete utilizing mixed construction and demolition debris as fine recycled aggregate (FRA) and the investigation of an experimental mix design approach. When designing an experimental blend, The Graff flow table was used to ascertain the workability of concrete that has been recycled rather than the slump test. When designing the concrete, two FRA proportions (20 and 40 percent) as well as two flow capacity ranges (355-205 mm and 405-205 mm). An implementation of this approach demonstrates the impact of cement concentration, aggregate/cement ratio, water/cement ratio, and mix design nomograms and the compressive strength ratio were obtained for the solid, long-standing connections. A validation study was conducted using these nomograms. Assessed the modulus, compressive strength and splitting tensile strength of Flexibility for 0.45 w/c ratio concretes plus 0.65. The results showed the FRA. Physical attributes including shape, surface roughness, and enhanced water absorption Using the suggested combination, irregularity as well as decreased Particular density may be mitigated. Approach to design that addresses each of these factors on an experimental basis. Further, the 2. modulus of recycled concrete, compressive strength and splitting tensile strength At the highest flowability level under investigation (405 mm), elasticity findings fall because with the lowest cement to aggregate ratios and the rise for combinations with the greatest 40% of FRA as a result of the greatest cement concentration.

Dr. Omar Shamal Farhan, 2019 [16] Due to its advantages for the environment, recycled waste construction materials are increasingly being used in place of aggregates in construction projects. This work describes an analytical

والإجتماعية والعلمية العدد 11A No. 11A Iraqi Journal of Humanit

Iraqi Journal of Humanitarian, Social and Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

and experimental endeavor to investigate the way aggregate-based columns loaded axially behave made again. The latter were gathered and utilized in place of natural aggregates. From the leftovers of earlier concrete projects. Various combinations of concrete created between 0% and 50% of the whole amount of coarse aggregate, and different proportions from recycled aggregates were used. Carried out to reach 28 MPa. The impact of steel fibres is an additional variable under investigation Volumes related to the composition of the concrete varied from 0 to 2%. The outcome of the experiment revealed that the strength of concrete is impacted by the amount of recycled aggregates it contains. As the recycling combined did not have a significant impact on concrete because it made up less than 30% of the total aggregates. The column models' strength and capacity to support loads were enhanced. Further, the existence of steel fibers increased the concrete columns' ability to support the weight. Contains more than 30% recycled aggregates. Analysis of finite elements The experiments were repeated (using ANSYS 16.1) software, and they were successful in strong correlations with the test outcomes.

Biao Liu a, Guoliang Bai a b, Chao Zhu a, and Chao Liu a, 2020 [17] the old mortar that was once attached to recycled aggregate (RA) is the reason for the differences in characteristics between RA and natural aggregate (NA). The review demonstrated quantifiable correlations between the material level performance of RA and the content of old attached mortar. The effect of the replacement ratio of RA on the concrete's mechanical properties was summed up at the component level. Lastly, some studies have concentrated on methods for enhancing aggregate qualities. The findings demonstrate that there are other ways to encourage the use of recycled aggregates besides removing outdated mortar to enhance their performance. Nevertheless, by assessing a few low-cost and straightforward techniques like regulating the proportion of water to cement, and modifying To meet concrete quality requirements, recycled concrete can perform better when the amount of moisture in the aggregate and the mixing technique are changed. The paper included illustrations for three areas of the reinforcement process, application range, and prediction of RA performance. Since it was believed that the results might support the accurate application for RAs with different quality in engineering, the application range for RAs was expanded.

Erik Schlangen a, Marija Nedeljkovi'c a, b, Jeanette Visser b, Branko Savija a, Siska Valcke b, 2021 [18] The most advanced fine-recycled concrete aggregate (fRCA) technology available is covered in this study, with particular attention paid to the materials' engineering qualities, durability, and physical and chemical characteristics. Without conducting additional research, it is impossible to determine, based on the methodical assessment of the literature that has been published, the recommendations and resources to help implement the fRCA in fresh concrete extensively while preserving the cement composition

الجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية العراقية للبحوث الإنسانية والإجتماعية والعلمية لاعتمار المسانية والعلمية العراقية للبحوث الإسانية والعلمية العراقية العراقية المسانية والعلمية العراقية العراقية المسانية والعلمية العراقية العراقية المسانية والعلمية العراقية العر

Print ISSN 2710-0952 - Electronic ISSN 2790-1254

that is either the same or, ideally, less. Specifically, information regarding important physicochemical characteristics and how they relate to the quality of the concrete mix and how well it works is still lacking. That study lays the groundwork for a deeper comprehension of the fRCA quality gained from parent concrete especially created in a lab, utilizing carefully regulated the field or recycled aggregates' crushing and sifting configurations. By comparing the features of fine-grained natural aggregates (fGA) with those of fRCA, the main limits The high moisture content and water absorption condition, and aggregation of fRCA are recognized as its features. Pieces and mortar that were adhered. Because of this, maintaining the quality of fRCA is difficult, even though they may possess a more consistent chemistry. Sophisticated characterization methods and instruments for concrete technology are required to take into mind the fRCA's limiting qualities when designing concrete mixes.

Conclusion:

Incorporating recycled aggregate (RA) into concrete mixtures stands as a promising avenue toward sustainable construction practices. While offering environmental benefits by reducing landfill waste and minimizing resource consumption, the utilization of RA presents challenges and opportunities. Studies have revealed that RA can impact the mechanical properties and concrete's durability. While potential reductions in strength and increased porosity are observed, innovative mix designs and processing techniques can mitigate these concerns. Addressing challenges like the alkali-silica reaction requires careful consideration. However, the long-term performance and environmental advantages of incorporating RA in concrete underscore its viability. Embracing best practices, optimizing mix designs, and refining processing methodologies are crucial steps in harnessing the full potential of recycled aggregate, ensuring a balance between sustainability and structural integrity in construction.

References:

- 1. United States Geological Survey, 2011. [Cited: 9.09.11.].
- 2. Portland cement Association, 2011. [Cited: 9.09.11.].
- **3.** United States Environmental Protection Agency, 2011. [Cited: 9.09.11.].
- 4. N.K. Bairagi BCE, ME, Ph.D, MIE, H.S. Vidyadhara B.E, M. Tech, Kishore Ravande B.E, M.E, 1990 (Mix design procedure for recycled aggregate concrete)
- 5. N.K. Bairag P, Kishore Ravande b and V.K. Pareek c, 1993 (Behaviour of concrete with different proportions of natural and recycled aggregates)

لجلة العراقية للبحوث الإنسانية والإجتماعية والعلمية

Iraqi Journal of Humanitarian, Social and Scientific Research
Print ISSN 2710-0952 - Electronic ISSN 2790-1254

- 6. C.S. Poon, Z.H. Shui ,L. Lam, H. Fok ,S.C. Kou,2004 (Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete)
- 7. Akash Rao a,Kumar N. Jha b,Sudhir Misra a,2007 (Use of selected waste materials in concrete mixes)
- 8. S. C. Kou and C. S. Poon, 2008 (Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources)
- 9. Sami W. Tabsh, Akmal S. Abdelfatah, 2009 (Influence of recycled concrete aggregates on strength properties of concrete)
- 10. Mirjana Malešev, Vlastimir Radonjanin and Snežana Marinković, 2010 (Recycled Concrete as Aggregate for Structural Concrete Production)
- 11.Patrick L. Maier a, Stephan A. Durham b, ↑, 2012 (Beneficial use of recycled materials in concrete mixtures)
- 12. Vlastimir Radonjanin ^a, Mirjana Malešev ^a, Snežana Marinković ^b, Ali Emhemd Saed Al Malty ^a, 2013 (Green recycled aggregate concrete)
- 13.Marco Pepe a, Romildo D. Toledo Filho b, Eduardus A.B. Koenders b, c, Enzo Martinelli a, ↑, 2014 (Alternative processing procedures for recycled aggregates in structural concrete)
- **14.**Somayeh Lotfi ^a,
 Manuel Eggimann ^b, Eckhard Wagner ^c, Radosław Mróz ^d, Jan Deja ^d, 2015
 (Performance of recycled aggregate concrete based on a new concrete recycling technology)
- 15.M.B. Leite, V.M. Santana, 2018 (EVALUATION OF AN EXPERIMENTAL MIX PROPORTION STUDY AND PRODUCTION OF CONCRETE USING FINE RECYCLED AGGREGATE)
- 16.Dr. Omar Shamal Farhan, 2019 (Effect of Use Recycled Coarse Aggregate on the Behavior of Axially Loaded Reinforced Concrete Columns)
- 17.Guoliang Bai ^{a b}, Chao Zhu ^a, Chao Liu ^a, Biao Liu ^a, 2020 (An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties)
- 18. Marija Nedeljkovi'c a , b, Jeanette Visser b, Branko Savija * a, Siska Valcke b, Erik Schlangen a, 2021 (Use of fine recycled concrete aggregates in concrete: A critical review)