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Abstract

In this article, a new modification of the Adomian decomposition method (ADM)
called Adomian decomposition J-transform method (AD]JTM) is presented for
finding analytical and approximate solutions of nonlinear parabolic partial
differential equations. The ADJTM is an aggregation of Adomian decomposition
method and J-transform. Comparison of obtained result with exact solutions,
modified variational iteration algorithm-II (MVIA-II), Laplace Adomian
decomposition method (LADM), B-spline technique, Adomian decomposition
method (ADM), modified variational iteration technique (MVIA) and homotopy
perturbation transform method (HPTM) show that the ADJTM is an accurate,
efficient, and reliable method. All the iterative process in this work implemented via
Wolfram Mathematica 13.

Keywords: Adomian decomposition method, J-transform, Nonlinear parabolic
partial differential equations.

L) e ABICA) Luiad) Alialil) el alaall Jad Guagal i dGyhl s Janed

S puld huas ¥ Qs pali 2l

dLadal)

AadY o st casdl Wi Ayl oo Cpasdl Gl dhlal daa Jaaed sl &3 aall 22 b
P o> dind Opesl GlSE il o) Akdllpe LK) Adal Llalinll e sleall duill Jolall
Jolall g lgle Jgeanll o A il d5jlie . a digads (ADM)cpassl el dih o uSi
Y ik g B-spline Aakiall gaeatll danyhay (MVIA=IT) Alaeall syxial) 5 4 st g dasacadl)
(ADM) (papal el dasyhag (HPTM) (osisasel) blana) Jagas dinshay (LADM) (a5l clsis
i 25 A8 ghge g Allady A2 Aiyla & Sapanl) Aaplall o cuelal (VITM) Alaedl) spiial) S iyl
-Wolfram Mathematica 13 e deall 138 & 4))Sil) Glbleall poes

" Email: shn_n2002@yahoo.com

2406


mailto:shn_n2002@yahoo.com

Huseen and Karim Iraqi Journal of Science, 2025, Vol. 66, No. 6, pp: 2406-2420

1. Introduction

Adomian’s decomposition method [1, 2] homotopy perturbation method [3, 4] homotopy
analysis method [5, 6], variational iteration method [7, 8] and g-homotopy analysis method [9,
10] and other methods have all been used to solve linear or nonlinear, ordinary or partial
differential equations. In this work we proposed a new modification of Adomian decomposition
method namely Adomian decomposition J-transform method (ADJTM) which is a
combination of Adomian decomposition method and J-transform [11] for solving a nonlinear
parabolic PDEs of the general form [12].

2 _ 29 r

Where a and f are non-zero real constants and r is a positive integer. Eq. (1) leads to three
well known models. It becomes Allen-Cahn (AC) equationwhenr = 3,a = landf = —1,
which has different applications in plasma physics, biology and quantum mechanics [13]. If
is replaced by —f and r = 3, then Eq. (1) end up being Newell-Whitehead (NW) equation.
While the equation turn out to be Fishers equation whenr = 2and f = —a. The Allen-Cahn
model is the essential model for various physical phenomena and helps as a model for the
investigation of separation of phase in isotropic, binary and isothermal mixtures. Analytical
and approximate solutions of this model can be found using various approaches like the Haar
wavelet or transform technique [12], finite difference technique [14] and finite element scheme
[15].

The NW equation which describes the dynamical behaviour near the bifurcation point for
the Rayleigh—Benard convection of binary fluid mixtures [16]. Different approaches have been
employed to solve (NW) equation like Adomian decomposition methods [17, 18], Variational
iteration method [19], homotopy perturbation method [20] and Laplace Adomian
Decomposition Method [21].

Fisher's equation is defined as the nonlinear reaction diffusion equation that describes the
relationship between the diffusion and nonlinear multiplication of a species [22]. Numerical
,analytical and approximate techniques were utilized and implemented to solve this equation
like, Galerkin and finite elements scheme [23], homotopy perturbation approach [24], Laplace
q-Homotopy analysis method [25], modified variational iteration scheme [26] and Adomian
decomposition method [27] .

This article is organized as following: Section 2 presents the definition and properties of the
J-transform. Section 3 presents the basic idea of the ADJTM. Section 4 is devoted to the
convergence analysis. The numerical examples with numerical comparison presented in
section 5. The numerical results and discussion are presented in section 6. Finally, conclusion
is presented in Section 7.

2. J —Transform
This section introduces fundamental concepts about the ] — transform that are utilized in this
paper.
Definition 2.1: [11] The J-transform denoted by the symbol ] (.) is defined by:
—st
Jlv(®)] = Vis,u]l = u f ew v(t) dt ,s > 0,u > 0.
0

Jv(@®)] = Olll_r){)lou foae_TSt v(t) dt,s > 0,u > 0. (2)
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Remark 2.2: [11] The J-transform possesses the following properties

v.]

[1] = 5

[t] =%

("] = nti
et =15
[sinat] = stZzuZ .
[cos at] = sZiZzuZ .

Theorem 2.3: [11] Let Vs, u] is the JJ - transform of the ¢(t) then
i.J [M] = iV[x, s,u] —ug(x,0).

i [

ot

3 2¢(xt 2 ,
;i(:)] Sz Vix,s,u] — s ¢(x, 0) —ud (x0).

an ¢(xt) ST sn —(i+

SR = oV x s, u] - S SO 0).

where V(x, s, u) is the ] - transform for ¢(x,t).
3. The fundamental concepts of ADJTM
Let us consider the general nonlinear parabolic Eq. (1) with initial conditions

¢(x,0) = ¢(x)
utilizing the J- transform on both sides of Eq. (1), we have
a a2
IS = 3221+ Jlag] +J[Be"] -
Using Eq. (3.a) we obtain

“J(p(x, ) — ugp(x,0) = J][ ]+ Jlag] +][BS"].

Hence,

JpCx, 0] = p(x,0) +2 (J[ 2] + a Jig] + BIH™D.

If we perform the inverse of the J- transform on Eq. (7), we get

$0 D) =600 +17 [FO[ 22 + alle] + BIleTD),
where
G(x,t) =] [ o (x, 0.

The ADJTM admits the decomposition into an infinite series of components

P(x,t) = Xm=o Pm (x, ).

The nonlinear term N(¢p) = ¢ (x, t) be equated to an infinite series polynomial

N(®) = Xin=04m,

where A,, are Adomian polynomials, which can be determined by
=0,1,2, ...

m — ml arm [ (Z Ai(bi('x’ t))]/1=0 ,m
Substituting Eq. (10) and Eq. (11) in Eq. (8) gives
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(3.2)
(3.b)

(3.0)

“4)

)

(6)

(7

®)

©)
(10)
(11

(12)

20 (0 0) = 606 t) + 17 [0 [ 25 5500 dm (6, 0] + @ J[S8m0 fin] +

BIIZi-0AmD) |
The recursive relationship is found to be

$o (x,8) = G(x,1)

i1 (6 0) = I [F 0| 25 fm] + @ Il + BIARD)]
The ADJTM series solution is
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Dk (x,t) = YK _o o (x, 1). (15)
As k — oo we can get an accurate approximation to Eq. (1).
4. Convergence analysis

This section introduces the sufficient conditions to ensure the existence of a unique solution
and discusses the convergence of this solution. We will study the convergence analysis as
same manner in [28].
Theorem 4.1: (Uniqueness Theorem) Eq. (14) has a unique solution whenever 0 <y <1
where, y = (L, + Ly)t.
Proof. Let X = (C[/], ||. |)be the Banach space of all continuous functions on I = [0, T] with
the norm ||¢|| = max|¢| , we define a mapping F: X — X where

tel

b (6,0 = 65, 0) + 17 [HIL Rl (5, 0] + NI, O] |

Where R(d)(x, t)) = (% + a) (¢ (x, t)) and N(¢ (x, t)) = B¢"(x,t). Now, assume N and
R are Lipschitzian with |R(¢) — R($)| < Ly|¢p — | and [N(¢p) — N(p)| < L,|¢p — | forall
¢, ¢ € C[I] where L, and L, are Lipschitz constants.

1 [4I0RIG (0] + Nig G, 0|
37t (23] RIBCx, 01 + NG, 0]
1[I RIg G, 0] - RIGCx, 01|

= max - R

< [Biviee o - Nige o]
RARBEHEIen]|

< max y R

4+ L, 17 200G ©) — $x )|

< max(Ly + L)) 23] e, ) — BCx, 1)

< (Ly + L)) [2)]l9Ge £) = (e )]

= (L1 + L)t]|p(x, 1) — d(x, 0.

Under the condition 0 < y < 1, the mapping is contraction. Thus, by Banach fixed point
theorem for contraction, there exists a unique solution to Eq. (1).

O
Theorem 4.2: (Convergence Theorem) The solution of Eq. (1) using AD]JTM is convergent.
Proof. Let 8, = Y1, ¢;(x, t), be the n'™ partial sum; let §,, and &,, be arbitrary partial sums
with n > m. We are going to prove that {5, } is a Cauchy sequence in the Banach space
X.Using a new formulation of Adomian polynomials we gain

||Fq,’> — F(;B” = max

tel

N(gn) = ?=0Ai .
Now,
16, — 6mll = n;lé':lIX 167 — 6| = r5'L1‘,::_’1I)(|Z:?=m+1 ¢i(x, t)l

= max |17 (£JIR s de-)]) + 17 (B Emrs A1)
= max 17 (2JIR(EER 601 + 17 (FIIEEA AT
max |71 (23[R (Bn1) = RGpn-)1) + 7 (2JIN(8p-) = N(8p-1)])|

max(Ly + Ly) |17 (20[16p-1 = 6a1)|
= (Ly + L)t 1801 = Sl

IA

2409



Huseen and Karim Iraqi Journal of Science, 2025, Vol. 66, No. 6, pp: 2406-2420

Letn = m + 1; then

16m+1 = Ol S VII8m — Sl S V28 et — Szl < - S ¥™18; — Sl
Where y = (L + L)t also, from the triangle inequality we have

”611 - 6‘m” < ”6m+1 - 5m” + “6m+2 - 6m+1” + ot ”671 - 6n—1”
@™+ Vm“ + oy D8 = Soll

<y™ () ligull

Since0<y<1,s01l—y"™M< 1 then
m
18, = 8l < (=) maxie|
However, |¢;| < oo therefore, as m — oo then ||§, — §,,|| = 0, hence {5, }is a Cauchy
sequence in X thus, the series }.;2, ¢; (x, t) converges and the proof is complete. O
Theorem 4.3: (Error estimate) The maximum absolute truncation error of Eq. (15) to Eq. (1)
is estimated to be:

EDEPRACD

14
< —
i <oy mglel
Proof. From Eq. (15) and Theorem 4.2 we have
ym
— < —
”5n 6m” = 1_)/1?(?IX|¢1|-

as n — oo then §,, = ¢(x,t) so we have
m

14
x,t) — 6,,|| £ ——max .
Ipx,6) = Bl < 7 maxih|
Finally, the maximum absolute truncation error in the interval lis

maxlqb(x t) — Yo di(x, )] < —maXIq,’>1| O

-Y tel
5. Numerical examples

In this section, the approximate solutions of five various kinds of nonlinear parabolic partial
differential equations have been presented. Two of them are for AC model, two for NW model
and one for the Fisher model.

Example 5.1: Consider the Eq. (1) withr = 3, = 1and f = —1, which gives the Allen-
Cahn equation of the form [29].

] 9%
a(f ax2 +é - ¢, (16)
subject to the following initial-boundary conditions
¢(x,0) = —0.5 + 0.5tanh(0.3536 x). (17)
¢(0,t) = —0.5 + 0.5tanh(0.75¢t). (18)
¢(1,t) = —0.5 + 0.5tanh(0.3536 — 0.75¢t). (19)
The exact solution of this problem is [29]
¢(x,t) = —0.5 + 0.5 tanh (0.3536x — 0.75t). (20)
Applying J- transform on Eq. (16) subject to the condition (17), we obtain
aZ
Hmum—wum—ﬂi]um—MWL @1
Jo(x, )] = [ 0.5 + 0.5 tanh(0.3536 )] + = 1][ 2+ — 3. (22)
Apply the inverse J- transform on Eq. (22), we gain
®(x,t) = —0.5 + 0.5 tanh(0.3536 x) + [axz +¢—¢ ]l (23)

From the AD]JTM, rewrite Eq. (23) as follows
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oo — 92 o)
S50 dm(x,t) = =05 + 0.5 tanh(0.3536 x) +J* | H[ﬁzmzo b (x,£) +

Tin-0 Gm () — Tinso Am]]. (24)

Where, A,, are Adomian polynomials. Using Eq. (12) A,,, can be deduced as follows

Ao = @5, A1 =3¢105, Az = 3depT + 395d2), -

Using Eq. (14) we have

¢o = —0.5 + 0.5Tanh[0.3536x]

¢, = t(—0.375 + (0.125 — 0.12503296000000003Sech[0.3536x]?)Tanh[0.3536x]
+ 0.375Tanh[0.3536x]% — 0.125Tanh[0.3536x]3)

¢, = 0.01564560434544642t*(—2.996049175540014
—16.977611994726747Tanh[0.3536x]
+ 17.976295053240083Tanh[0.3536x]% + -+

¢35 = 0.006502170962456641t3(10.21293509251416
— 25.031703658122943Tanh[0.3536x]
— 28.23576172636267Tanh[0.3536x]
+ 69.48800935494928Tanh[0.3536x]3 — -

Hence, By Eq. (15) we have the 3™ order approximate solution of ADJTM:

®® = —0.5 — 0.375¢ — 0.046875t + 0.06640625¢>
+ t3Sech[0.3536x]°(—0.0234498616295424
+ 0.006502170962456641Tanh[0.3536x]) + (0.5 + 0.125¢
—0.265625t% — 0.16276041666666669t3)Tanh[0.3536x] + -

(@) (b)
Figure 1: (a) The exact solution (b) ®®) of ADJTM for Example 5.1.

Table 1: Comparison of exact solution, ®® of ADJTM, MVIA-II and TBS of Example 5.1.

x t ADJTM &® Exact solution TBS [29] MVIA-II [30]
0.1 0.001 -0.48270190 ~0.48270191 ~0.48294667 ~0.48268570
0.2 0.002 -0.46544517 ~0.46544517 ~0.46584916 ~0.46541289
0.3 0.003 -0.44827076 ~0.44827076 ~0.44881129 —0.44822262
0.4 0.004 -0.43121886 ~0.43121885 ~0.43186126 —0.43115521
0.5 0.005 -0.4143285 ~0.41432848 ~0.41504090 ~0.41424978
0.6 0.006 -0.39763721 ~0.39763717 ~0.39839276 ~0.39754397
0.7 0.007 -0.38118069 ~0.38118064 ~0.38195995 ~0.38107357
0.8 0.008 -0.36499256 ~0.36499250 ~0.36571227 ~0.36487227
0.9 0.009 -0.34910408 ~0.34910400 ~0.34910129 ~0.34897140
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Table 2: Comparison of the absolute errors of ®®) of ADJTM, MVIA-II and TBS of Example
5.1.

t =0.001 t = 0.005 t=0.01

ADJTM MVIA-II | ADJTM MVIA-II | ADJTM MVIA-II
o®  TBS[9] T o®  TBS[91 T o®  TBS[91 T

0.1| 1.150E-9 2.448E-4 1.620E-5 | 5.502E-9 9.687E-4 8.101E-5 | 1.040E-8 1.606E-3 1.621E-4
0.2| 2.302E-9 2.000E-4 1.614E-5 | 1.126E-8 1.016E-3 8.073E-5 | 2.194E-8 1.935E-3 1.615E-4
0.3| 3.431E-9 1.797E-4 1.604E-5 | 1.690E-8 9.082E-4 8.024E-5 | 3.327E-8 1.826E-3 1.606E-4
0.4| 4.527E-9 1.594E-4 1.590E-5 | 2.239E-8 8.052E-4 7.956E-5 | 4.427E-8 1.632E-3 1.593E-4
0.5 5.578E-9 1.410E-4 1.572E-5 | 2.765E-8 7.124E-4 7.869E-5 | 5.485E-8 1.444E-3 1.576E-4
0.6| 6.577E-9 1.242E-4 1.551E-5 | 3.266E-8 6.280E-4 7.764E-5 | 6.491E-8 1.273E-3 1.555E-4
0.7\ 7.514E-9 1.091E-4 1.526E-5 | 3.736E-8 5.520E-4 7.643E-5 | 7.437E-8 1.116E-3 1.531E-4
0.8| 8.383E-9 9.502E-5 1.499E-5 | 4.172E-8 4.824E-4 7.505E-5 | 8.316E-8 9.434E-4 1.504E-4
0.9| 9.177E-9 8.886E-5 1.468E-5 | 4.572E-8 3.725E-4 7.535E-5 | 9.121E-8 6.534E-4 1.441E-4

X

Example 5.2: Consider the Eq. (1) withr = 3, = 1and f = —1, which gives the Allen-
Cahn equation of the form [29].

a a
AR 25)
subject to the following initial-boundary conditions

\/E _1

¢(x,0) = (1+e_7x) . (26)
3 —1

$(0,0) = (1+e7") . 27)
VI, 3vZ, \ L

d(1,t) = (1+e_7(1+7t)> . (28)

The exact solution of this problem is [29].

d(x,t) = (1 + e‘g(’”?'z—ﬁ”)_l . (29)
Applying J- transform on Eq. (25) subject to the c?ndition (26), we obtain
o 0] = ({1 +e77) 142 I+ g - 9] (30)
Apply the inverse J- transform on Eq. (30), we gain
¢(x,t)=(1+e_gx> +J "ﬂ[ax2+¢—¢3”. 31)
From the AD]JTM, rewrite Eq. (31) as follows

vz

z;’;=o¢m<x,t)=(1+e‘7’“)_ +J uu[axzz;';=o¢m<x.t>+z;;°;=oAm]]. (32)

Where, A,, are Adomian polynomials. Using Eq. (12) 4,,, can be deduced as follows

Ay = @3, A1 =3d5h1, Ay =3Po(P7 + Pod2), Az = P37 + 6PoP1d, + 3P5Ps, ...
Using Eq. (14) we have

X X X X X
1 3e‘/_—t 9eV2(—1+eV2)t2 9eV2(1—4eV2+eV2%)t3
¢0 = EZE) ¢1 = 5 ¢2 = - Ea 5 ¢)3 = X )
1+e ﬁ 2(1+ef)2 8(1+ev2)3 16(1+eV2)4

27e\/—( 1+ef)(1 10ef+e‘/—")t4

s =
128(1+e‘/—)5
Hence, By Eq. (15) we have
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X
1 e~V2x e V2 1
—~ + — + t

X\ 2 X

_xN\3 _x\3 _x
(1+eﬁ) (1+eﬁ) 2(1+eﬁ) l1+e V2

1
W = —— — ¢

1+e V2

—

ﬂ|><

X X
e\/_> t2  9evz (1 — 4eV2 + e‘/i") t3
+ 7

o
(1 ) 16 (1 + e75>

X X
27e\/—( 1+ e\/—) (1 —10eVZ + eﬁX> t

x5

128 (1 + eﬁ)
We note that the absolute error is largely dropped when modifying the solution by taking
further terms. Table 3 and Figure 3 are explained this fact.

00

(b)
Figure 2: (a) Exact solution, (b) ®©® of ADJTM and (c) ®® of ADJTM for Example 5.2.

Table 3: Comparison of the absolute errors of ®®* and ®® of ADJTM, MVIA-II and TBS
of Example 5.2.

t t

= 0.001 = 0.005 = (o

ADJTM MVIA-II| ADJTM MVIA-II| ADJTM MVIA-II ADJTM

ot TBS[29 0 ot TBS[291 5, ot TBS[29] 5 @6

0.114.250E-17 2.509E-4 3.765E-5|4.891E-14 1.127E-3 2.882E-4 |1.564E-12 2.108E-3 5.763E-4 2.880E-17
0.2|7.478E-17 3.351E-4 5.744E-5 |4.739E-14 1.715E-3 2.871E-4 (1.513E-12 3.446E-3 5.738E-4 1.636E-17
0.318.824E-17 4.389E-4 5.708E-5 |4.477E-14 2.233E-3 2.852E-4 (1.431E-12 4.555E-3 5.700E-4 1.761E-17
0.4|2.625E-17 5.456E-4 5.658E-5 |4.136E-14 2.768E-3 2.827E-4 (1.321E-12 5.639E-3 5.648E-4 1.026E-16
0.5|2.807E-17 6.542E-4 5.595E-5|3.707E-14 3.314E-3 2.795E-4 (1.187E-12 6.735E-3 5.582E-4 5.848E-17
0.6|3.061E-17 7.626E-4 5.519E-5|3.242E-14 3.857E-3 2.756E-4 (1.033E-12 7.830E-3 5.505E-4 7.851E-17
0.7|5.534E-17 8.697E-4 5.432E-5|2.712E-14 4.399E-3 2.712E-4 (8.642E-13 8.850E-3 5.415E-4 1.726E-16
0.8|2.070E-17 9.653E-4 5.333E-5|2.147E-14 4.902E-3 2.662E-4 6.862E-13 9.353E-3 5.314E-4 7.802E-17
0.9|3.703E-17 1.161E-3 5.224E-5|1.599E-14 4.617E-3 2.607E-4 |5.041E-13 7.685E-3 5.203E-4 7.222E-17
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Absolute error

1.5x10-12}

1.x10-12}

5.x10"13

0.2 0.4 0.6 0.8

— absolute error of ®®
—— absolute error of ®©

Figure 3: Comparison of the absolute errors of ®® and ®©® of Example 5.2.

Example 5.3: Consider the Eq. (1) withr = 2, = 1and f = —1, which gives the Newell—-
Whitehead equation of the form [31].

] d
w=TE o0 (33)
Subject to the following initial conditions
X -2
¢(x,0) = (1 + eﬁ) : (34)
The exact solution of this problem is [31]
X 5,\ 2
o(x,t) —(1+ef6> . (35)
Applying J- transform on Eq. (33) subject to the condition (34), we obtain
2 X
pGe 0 = [(146%) 1425024 ¢ - g2 (36)
Apply the inverse J- transform on Eq. (36) we gain
EAN u
bx 1) = (1+evz) o B e +¢—¢2”. (37)

From the AD]JTM, rewrite Eq. (37) as follows
x\~2
SincobmG0 = (1+€5%) 417 2 ) [ 500 om0 ) + Ziamg b 0) -

2;‘;=0Am]]. (38)

Where, A,, are Adomian polynomials. Using Eq. (12) A,,, can be deduced as follows

Ay = @5, A1 =2¢0¢1, Ay = ¢F + 2¢0¢P2, Az = 2¢1 P, + 2o D3, ...
Using Eq. (14) we have

=2 x x x \/E x

- 5eV6t 259\/—( 1+Ze\/_)t2 125eV6(1+4eV3 —7ev3)t3
¢0 = (1 + e\/g) ) ¢1 = EZE) ¢2 ) ¢3

3(14eV6)3 36(1+e\/_)4 648(1+e\/_)5
X 2 3 x
_ 625e\/g(—1—33eJ;x+8e\/;x+18e\/g)t4

b, = = ) e

15552(1+eV6)6

By Eq. (15) we have
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X X
25e\/3<—1+2e\/3>t2

2. X

1 e\3 eve 1
BN + X\ E X3 + X2
<1+e*/3) <1+e\/€> 3<1+e\/3> <1+e\/3>

x F" x x F" Jix x
125eV6(14+4eV3 —7eV6)t3 N 625eV6(—1—33eV3" +8eV2" +18eV6)t*
x [l

X

648(1+eV6)5
We note that the absolute error is largely dropped when modifying the solution by taking
further terms. Table 4 explain this fact.

(a)

15552(1+eV6)6

®)

i 4
36<1+e\/€>

©
Figure 4: (a) Exact solution, (b) @@ of ADJTM and (c) ®® of ADJTM for Example 5.3.

Table 4: Comparison of the absolute errors of ®®) and ®* of ADJTM, LTDM and VITM

with t = 0.0001

of Example 5.3.

x ADJTM &® LTDM and VITM [31] ADJTM &®
0.0 1.20956 E-14 1.0000000000E-10 3.87426 E-17
0.1 1.10653 E-14 5.0941566800E-11 1.18119 E-17
0.2 1.00293 E-14 8.1583004800E-11 1.21851 E-17
0.3 9.02068 E-15 1.3295068340E-10 6.56684 E-17
0.4 7.88704 E-15 1.7637132220E-10 1.25649 E-17
0.5 6.82862 E-15 1.5669454130E-10 4.56336 E-17
0.6 5.71687 E-15 1.0301314750E-10 2.89665 E-17
0.7 4.56864 E-15 2.3924337590E-10 2.77911 E-17
0.8 3.47356 E-15 2.9445508530E-10 4.20051 E-17
0.9 2.43401 E-15 3.1297190840E-10 1.79653 E-17
1.0 1.44329 E-15 2.6399135400E-10 2.77556 E-17

Example 5.4: Consider the Eq. (1) with r
Whitehead equation of the form [32].

6x2+¢ Pp*,0<x<1,t>0,

subject to the following initial conditions

¢(x,0) =1+ e\/%x)_?z.

29 _
at

The exact solution of this problem is [32]

o(x,t) = (lTanh[—

Jlg(x, )] =

=4 a =

2
= (x = Z=D)] )5
Applying J- transform on Eq (39) subJect to the condition (40), we obtain
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(40)

(41)
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Apply the inverse J- transform on Eq. (42), we gain

P = A +em)s +] L ][22+ ¢~ ¢>4]]. (43)
From the AD]JTM, rewrite Eq. (43) as follows
x\ —2 [ 2
SincabmCs0 = (1+6%)  +17 [* I [ 2 T b 8) + Binco (6, 0) =
z,‘;‘;oAm]]. (44)

Where, A,, are Adomian polynomials. Using Eq. (12) 4,,, can be deduced as follows

Ay = 5, Ay = 431, Ay = 205 (3h7 + 2¢002), Az = 4o (@7 + 3PoP1P2 + PG P3), ...
Using Eq. (14) we have

3x 3x 3x

3 -2 o Ta ey
—x. 22 7eV10¢t 49eV10(—342¢V10)¢2
$o = (14 e107) sy 1= b, = =3 s Pz =
5(1+eV10)5/3 100(1+eV10)8/3
3% 3\@ 3% 3% 3\@ 3% 9x
343eV10(94+4e V5 —27eV10)t3 _2401eV10(—27-171e V5 +234eV10+8eV10)¢*
3x > Pa = 3% > o
3000(1+eV10)11/3 120000(1+eV10)14/3
Hence, By Eq. (15) we have
3 gx 3x
. 1 1 e N5 3eV10
oW = + (- +

E3 el £l E3
(1 + eV10)2/3 (14 eV10)8/3 (1 + eV10)8/3  5(1 + eV10)5/3
3x 3x 3x

1 49eVi0(1 + eV10)1/3(=3 + 2¢V10)¢?
+ + n

3x \F X X
(1+eV10)2/3  100(1 + eV5" — eV10)3(1 + eV10)3
Table 5: Comparison of the absolute errors of ®® of ADJTM, MVIA-II and HPTM of
Example 5.4.

t=0.1

t=20.3

t=05

AD]JTM
(18]

MVIA-II
[30]

HPTM
[32]

ADJTM
' IC))

MVIA-II
[30]

HPTM
[32]

AD]JTM
P10

MVIA-II
[30]

HPTM
[32]

0.0
0.2
0.4
0.6
0.8
1.0

4.555 E-7
5.137 E-7
5.020 E-7
4.268 E-7
3.077 E-7
1.704 E-7

9.258 E-6
1.135E-5
1.268 E-5
1.315E-5
1.281 E-5
1.188 E-5

1.221 E-4
1.328 E-4
1.352 E-4
1.296 E-4
1.168 E-4
9.893 E-5

1.004 E-4
1.199 E-4
1.233 E-4
1.106 E-4
8.553 E-5
5.367 E-5

3.857 E-5
1.519 E-4
2918 E-4
3.631 E-4
3.652E-4
3.133E-4

3.022 E-3
3415E-3
3.602 E-3
3.570 E-3
3.333E-3
2.929 E-3

1.133 E-3
1.438 E-3
1.554 E-3
1.467 E-3
1.205 E-3
8.335E-4

1.621 E-3
1.870 E-4
1.673 E-3
2.614E-3
2933 E-3
2.708 E-3

1.245 E-2
1.462 E-2
1.597 E-2
1.636 E-2
1.580 E-2
1.440 E-2

(a) (b)

Figure 5: (a) Exact solution and (b) ®® of ADJTM for Example 5.4.
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Example 5.5: Consider the Eq. (1) withr = 7, = land f = —1, which gives the Fisher’s
model of the form [26]

99 _ 7
ot 6x2 d) ¢

(45)
subject to the following initial conditions
3x -1
¢(x,0)=(1+e2)s. (46)
The exact solution of this problem is [26].
1
¢(x,t) = GTanh[—> (x — 2 £)] +)5. (47)
Applying J- transform on Eq (45) subject to the cond1t10n (46), we obtain
NGOl =11 +e2)3 ] +2 )22+ ¢ — ¢7). (48)
Apply the inverse J- transform on Eq. (48) We gain
3x -1
PO =(+en)s +]7 L J[22+ ¢~ ¢>]] (49)

From the AD]JTM, rewrite Eq. (49) as follows
x\ =2
Siobm(0 = (1+€5) 417 2 ) [ 500 mC6,6) + Zimg b 6) -

2;7;=0Am]]. (50)

Where, A,, are Adomian polynomials. Using Eq. (12) A,,, can be deduced as follows

Ay = @f, AL = T51, Ay = 75 (3h5 + Podh2),
Using Eq. (14) we have
3x —1 5e3x/2¢ 25e3%/2(—34¢3%/2)12
d)o = (1+62)3 7¢)1 :W 5¢2 = 32(1+93x/2)7/3 5 wue

Hence, By Eq. (15) we have

eBx 3€3x/2
1+ e3x/2)7/3 + 1+ e3x/2)7/3 o 4(1 + eSx/2)4-/3
2583x/2(_3 + e3x/2)(1 + €3x/2)2/3t2
+ t+
A+ e Y T 320 4 e /A1 — o2 1 ey
We note that the absolute error is largely dropped when modifying the solution by taking
further terms. Table 6 explain this fact.

1
2) —
@ = (1 + e3%/2)1/3 + (=

Figure 6: (a) Exact solution, (b) ®*) of ADJTM and (c) ®® of ADJTM for Example 5.5.
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Table 6: Comparison of the absolute errors of @) and ®®of ADJTM, MVIA-IT and HPTM
of Example 5.5.

t=02

t=04

X

AD]JTM
138

ADJTM
YO

ADM [26] MVIM [26]

AD]TM
(1%

ADJTM
O

ADM [26]

MVIM [26]

0.0
0.2
0.4
0.6
0.8
1.0

5.04358E-5
1.02130E-4
1.22688E-4
1.08280E-4
7.11481E-5
2.91972E-5

1.49970E-3
2.32570E-3
2.86477E-3
3.03127E-3
2.84591E-3
2.40914E-3

5.24926E-2 4.54137E-2
7.79547E-2 4.17460E—2
1.10805E—1 3.23276E—2
1.51375E—1 1.91936E—2
1.99601E—1 5.03821E-3
2.55137E-1 7.85833E—3

8.14718E-4
2.56843E-3
3.59434E-3
3.58249E-3
2.71657E-3
1.47529E-3

7.45300E-3
1.43093E-2
1.97309E-2
2.27394E-2
2.30245E-2
2.09547E-2

1.21845E—-1
2.17494E-1
3.41710E-1
4.94354E—-1
6.74017E—-1
8.78892E—-1

1.97465E—1
8.39974E-2
9.22231E—4
4.10631E—2
4.10631E—2
1.46625E—-2

6. Discussion the results

The AD]JTM is examined out to some nonlinear parabolic equations. The accuracy and
efficiency of this technique was exemplified by five examples. In Figs.1-6 the comparison of
the approximate solutions obtained by AD]JTM with various order of approximations with the
exact solution of examples 5.1-5.5 is presented. In tables 1-3, comparison of ADJTM, TBS and
MVIA-II of example 5.1 and 5.2 are presented. In tables 2-6, comparison of absolute errors of
AD]JTM, MVIA-II, TBS, LTDM, VITM, HPTM and ADM are presented. We note that the
absolute error is largely dropped when modifying the solution by taking further terms. Figure
3 and Tables 3, 4 and 6 are explained this fact.

7. Conclusions

In this paper, the ADJTM is successfully applied for solving AC, NW and Fisher equations
with different parameters. The AD]JTM is an aggregation of Adomian decomposition scheme
and ] -transform. The main advantage of the proposed technique is that it solves the problems
without any form of differentiation, linearity or perturbation. Results show that the AD]JTM is
so helpful to gain approximate analytical solutions. Eventually, we can detect that the ADJTM
is an efficient and accurate approach in solving partial differential equations that arises in
physics, engineering and various areas of mathematics.
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