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Abstract.

In this article, we will go over the basics of e*S—hollow modules, e*S—coessential
submodules and e*S—coclosed submodules as a generalization of the concepts of
hollow modules, coessential submodules and coclosed submodules, respectively. We
shall demonstrate some characteristics of these ideas.
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1. Introduction.

In this paper C will be a unitary left R-module, and R be an associative ring with identity.
Notationally, it is commonly known that a submodule D of an R-module C is small. D « C if
for every submodule L of C, D + L = C, then L = C, [1], [2]. A non-zero submodule D of C is
considered to be an essential if and only if, for every submodule L of C, L = {0} whenever D
N L= {0}. Here, we denote D <, C, where C is known as the essential extension of D [2] [3].
In a module C, a submodule D is closed if and only if has no proper essential extension [4],

[5].

A new submodule type was created by Baanoon and Khaild in [6] and which is a
generalization of the essential submodule and it is called an ex-essential as follows: For any
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non-zero cosingular submodule B of C, if A N B # 0, we say that A is an e*-essential submodule
in C. Denoted by A <, C.

Now, we will define the singular module: Z(C) = {m in C: ann(m) <.R}. Notice, if Z(C) = C,
then C is called a singular module and if Z(C) = 0, then C is called non-singular [4], [7]. We
generalized Z(C) to Z,,(C), by applying e* essential submodule. Let C be a module and define
Z0.(C) = {n in C: ann(n) <,, R}, if Z,,(C) = C, then C is called an e*_singular. As well as if
Z¢.(C) =0, then C is called an e* non-singular module [6].

A non-zero module C is considered to be hollow if each proper submodule of C is small in
C, see [8], [9]. Many authors present generalizations of a small submodule, see [10] [11] [12]
[13]. In [6], the generalization of small submodule known as an e*S—small submodule which
is introduced by A. Kabban and W. Khalid. A submodule D of C is called an e*S—small

submodule of C (signified by D «,,s C) if whenever C = D + H, with Z e*(%) = % implies

that C = H. A non-zero R—module C is called an e*S—hollow module if each proper submodule
of C is an e*S—small in C, and this is the definition of the e*S—hollow modules as
generalizations of hollow modules. Give a description of e*S—hollow modules and prove under
conditions in which the direct sum of an e*S—hollow module is an e*S—hollow, in addition to
presenting its basic properties.

LetHE D c C, if% < % , then H is called a coessential submodule of D in C [14], [15]. Now,

we introduce the e*S-coessential submodule, which is a generalization of the coessential

submodule. Let C be an R—module, and let D, H € C, such that D € H € C, then D is called

an e*S—coessential submodule of H in C (denoted by D S5 e H in C) if % Kexs %. A

submodule D of C is a coclosed submodule of C (denoted by D <. C) if whenever % K %

implies that D =L, see [16], [17]. Based on this idea, we provide the following concept. Let C
be an R-module and H submodule of C. We say that H is called an e*S—coclosed submodule

of C (denoted by H S¢.s ¢ C) if whenever D S, e H, (i€, % Kexs %) implies that D =
H. The fundamental characteristics of these ideas are shown in this work.

2. e*S-hollow modules
We illustrate some of the features of an e*S-hollow modules. As a generalization of hollow
modules, and present them in this section.
First, we need to list basic properties of the concept of e*S—small [6].
Lemma 2.1: [6]. Let C be any R—module then,
C

D IfD €W S C. Then W K¢, C if and only if D .5 C and —— Ke.s = .

2) Let D and W be submodules of C. Then D + W <,,g C if and only if D <,,g C and W <g,g
C.

3)Let N;,N,,...,N, € C.Then Y{L; N; <e,s Cifandonlyif N; Ke,s C,V i=1,2,...,n.
4) Let D € W be a submodule of C. If D <g,g W, then D «<,,g C.

5)Letf: C— D be a homomorphisim. [f W <,g C, then (W) <.g D.

6) Let C=M; © M, be an R—module and N; € M; and N, € M,. Then N;@® N, <., M;
M, if and only if N; <eis M; and N, <q.5 Ms.

Lemma 2.2: [6] For any R-module C, and W, L be two submodules of C. If Z, (%) = % then

¢ y__C
(W) = Trw

The concept of an e*S—small submodule, lead to introduce the following:
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Definition 2.3: A non-zero R—module C is called e*_Singular—hollow module (used for brief
e*S—hollow) if each proper submodule of C is an e*S—small in C.

Examples and remarks 2.4:

1) Clearly, every hollow module is an e*S—hollow module. But the convers need not be
accurate in general for example, let M = Z, @® Z, as Z,—module, Z, @ {0} is a proper e*S—
small submodule in M, but not small in M. See (Examples and remarks. 2) [6].

2) Every simple module is an e*S-hollow. For example, Z, as Z-module (p is prime).

3) The Z, as Z—module is an e*S—hollow. By (1).

4) Consider M =Z @ Zy as Z-module is not an €*S-hollow. Since 0 @ Zy~ proper submodule

of M but 0 @ Z, is not an e*S—small of M. Since Ze*(%) = Zeu(Zpw) = Zpeo = %, but M #
Z. S0, Zp~ dose not an e*S—small submodule of M.

5) Since (2) and (3) are not e*S—small in Z¢.Then Z4 as Z-module is not an e*S—hollow.
6) In Z-module Z is not an e*S—hollow. See (Examples and remarks. 2) [6].
Under a certain condition the concept of hollow and e*S—hollow submodules coincide.

Theorem 2.5: Let C be an e* Singular module. Then C is an e*S—hollow module if and only
if each proper submodule D of C is small in C.
Proof:

=) Let D be a proper submodule of C such that Ze*(%) = %, to show that D « C. Assume
that there exists K & C such that C = D + K. Since C is e*S—hollow, then K <,.s C and we
have Z. (%) = %, then C = D, which is a contradiction. Thus D « C.

<) To show that C is an e*S—hollow, let D be a proper submodule of C. Assume that D is not
e*S—small in C, there exists a proper submodule K of C such that Z, (%) = % and C=D +
K. By our assumption K « C, then D = C, which is a contradiction. Thus, C is e*S—hollow.

Proposition 2.6: A non-zero epimorphic image of an e*S—hollow module is an e*S—hollow.
Proof:

Letf: C — W be an epimorphism, and C be an e*S—hollow module, with K & W, to show K
Keus W, since K € W, then f~1(K) &€ C. If f~1(K)=C, then K =f(C) =W, hence K =W, this
is a contradiction and since C is e*S—hollow, therefore f~}(K) <,.s C, and by Lemma 2.1,
F(FHK)) Keus W, then K KL, g W.

Corollary 2.7: Let C be an R—-module and N € C, if C is an e*S—hollow then % is e*S—hollow.

Remember that a fully invariant submodule D of C is defined as follows: g (D) € D, for every
g € End (C) and C is called duo module if each submodule of C is fully invariant. See [18],
[19].

Proposition 2.8: Let C be duo module and C = C; @ C,, then C is an e*S—hollow if and only
if C; and C, are e*S—hollow. Provided NN C; # C; foralli=1,2,..Nc C.

Proof:

=) Let C is e*S—hollow and N;y@® N, & C;® C, ,with N; £ C;and N, & C,, and N; D N, K,.s
C; @ C,=C, to show C; is an e*S—hollow. Let m;: C;@® C, — C; be the projection map, which
is define as follows, m1(c,+ ¢;) = ¢4, for all ¢;+ ¢, € C;® C,, since Ny@® N, K,.s C;D C,,
then by Lemma 2.1, m; ( Ny® N, ) K,.s m1(C1D C,), then, N; K,,s Cq, thus C; is an e*S—
hollow, and similarly C, is an e*S—hollow.
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<) Let C; and C, be e*S—-hollow. To prove, N;@® N, <,.s C; @ C,, since N; K,.s C; €C,
and N, <,.s C; € C, then by Lemma 2.1, N; <,,s C and N, <,,s C. By Lemma 2.1 again,
N1® NZ <<e*s C = C1® Cz.

Proposition 2.9: Let C be an e*S—hollow module, if C has e*S—small proper submodule of D
and % is a finitely generated e* Singular, then C is finitely generated.
Proof:

Since % is finitely generated there are y;,y,,...,y, € C, such that % ={(y;+D,y, +

D, ...,y, + D). We claim that C = (y;,y,, ..., ¥n) let c € C. Hence, ¢ + D € % and c + D =

(ry, + ny, + ...+ 1y, + D, forsome ry, 1y, ..., 1, ER. So, c — (yy1 + Ry, + ..+ 10,)
€D.Letn=c—(nny; + ny, + ...+ 1,y,) where n € D. Hence, ¢ = (ry; + iy, + ...+
TVn) T 1, thus C=(yq, Vo, ooy, V) T D.IEC # (Y1, Vo, oo, Yu), then (¥4, Y2, .., Y ) is €*S—small
in C and since D is an e*S—small submodule. Hence, C = D which is a contradiction. Therefore,

C= (y1! Y2, "'!yn>'

3. e*Singular—coessential submodules
This section defines the e*S—Coessential submodule and proves various features pertinent
to our work. It is a generalization of the coessential submodule.

Definition 3.1: Let C be an R—module and D, H are submodules of C. Such that D € H € C,

then D is called e*_Singular—coessential submodule of H in C (used for brief e*S—coessential

submodule, denoted by D S5 o Hin C) if % Kexs %.

Examples and remarks 3.2:

1) Everyone can see that coessential submodule is e*S—coessential submodule. But the convers
is not true in general for example: {0} is an e*S—coessential of Z; @ {0} in M = Z; ® Z5 as
Z;—module, but not coessential in M.

2) Let C be an R—module and let D be a submodule of C. Then D <,.s C if and only if {0}
Ceisce DinC.

3) Z¢ as Z-module. Clear that (0) is not e*S—coessential submodule of (3) in Zg.

4) Zg as Z-module. As { 0,4 } Seu5.cei0,2,4,6} in Zg.

5) In Z as Z-module. 4Z is e*S—coessential submodule of 2Z in Z.

6) Let C =Z @ Zp~ as Z-module. It is clear that (0) is not e*S—coessential submodule of Ly

— Z oo
in C. (0) € Zy= S C, since <%—) not e*S—small in %.
The following proposition give a characterization of e*S—coessential submodule.

Theorem 3.3: Let C be an e* singular module and W € H € C, then the following are
equivalent.

W Ceus ce Hin C;

2) For any submodule X € C, H + X = C implies that W + X = C.

Proof:
C_H , X+W . C C C
(l)C:>(2) Letl({j =H+ )c(, then o WC+ v V.vSmce Ze*(W) =W then by Lemma 2.2, Z,, (m)
+
= oW But W Lexs 3> therefore wo oW Thus C=X+W.

(2)=(1) Let o=+, where W € A with Ze,(——) = . Then C = H+ A, by (2) we get C =
W +A. But W € A, therefore C = A. And hence W S5 e Hin C.

2480



Kabban and Khalid Iraqi Journal of Science, 2025, Vol. 66, No. 6, pp: 2477-2486

The following proposition give some properties of e*S—coessential submodule which are
needed later.

Proposition 3.4: Let C be an R—module and L € K& N € C. Then K S,,5 ¢ N in C if and
only 1f Cexs_ce ll\j in % .
Proof:

N C
=) Assume that K Ce,5 ce N in C, since ¢ = g and & = =, by the (Third Isomorphism

i T

C

N
N T K N. C
Theorem) and < <<e*5 , we have & < Kexs F < thus Cessce INT
T

<) Suppose that Cess ce I: in E since K =— = by the (Third Isomorphism Theorem)

N C
and since K Kexs R 1< , We have ~ <<e*5 ,thus K Sq,5 e Nin C.

Pr0p0s1t10n 3.5: For any R-module C,let LE D € H € C. Then L S,,5 ¢ H in C if and only
ifL Seis ce DiInCand D S5 e Hin C.
Proof:

H_C

. . D C
=) Suppose that L Se,s e H in C. Since TS ES,an d Kexs f then Kews T by

Lemma 2.1. So, L S5 ce Din C. Now deﬁnef' E—>—byf(m+L)—m+Dforallm € C.
Clearly f1s an epimorphosis. Since & T Kes s ,hence f (—) = <<e* s , by Lemma 2.1. Thus
DCSqsce HinC.

c) Assume that L € —e*S ceDinCandD S5 e Hin C, to show L S5 .e Hin C. Let i + X

A

C _ H+X X+D

=, with Ze*(T) =—, then C =H+ X and hence — = %—EJr 22 Since Ze*( ) =
C X+D _ C

by Lemma 2.2. Ze*( ) = — But Kexs — , therefore RS ,and hence X + D =C,
o b XD X4D D . B D
therefore, f + f = E’ since ? Kess E’ and Ze*(T) = 7, then T = E

Proposition 3.6: For any R-module C. If W €., e HnCand LE C,then W+ L &S5 e H
+ L in C. The converse is true if L <,,g C.

Proof:

Assume that W &,,5 e HinCand L € C. ToshowthatWJrLQe*SCeHJerClet%
+L—Lwnhze*( )—— thenC—H+L+YsmceLCW+LCYthenC—H+Y,
W+L  W+L

C _ H+Y H C cC Y Y C

—————+— ndZe*( )=—and <<e*S hence —=— and —=—.
w oW w w’ wow W+L  W+L

Conversely, suppose that W + L Cess ce H +Lin C and L <,,s C. To show that W &5 .« H

. C_H,Y . C C C H+L | Y+L .
in C. Let wowlw , with Ze*(—) =— Now, C=H+Y, hence =1 2 Since

C H+L VcV+L WAL WE v
Ze*( )=— then by Lemma 2.2, Z,, (Y+L) = m But WL Kes§ = Wt , therefore Wil Wil

and hence C =Y + L. Since L <,,s C and Ze*(T) = % ,then C =Y. Therefore, iw = % and
WESesce HinC.

Proposition 3.7: For any R-module C, let W <, C. If Y S5 (e HInC, then Y Sq,5 e H+
Win C.
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Proof:
Suppose that Y Se.s ce H in C and W <,,s C. To show that Y S, ce H + W in C. Let g =
@ with Ze*(— =— . Hence, C=H + W + X, since Ze*(— = 7 then by Lemma
C C
2.2, Ze*(X+H) = and W <<e*5 C, then C =H + X, and -== + =.But - <<e*S 3 and

Ze*(T) = 7 , therefore % =7 Thus, Y Seus ce H+ W in C.

Proposition 3.8: Let C and W be an R—modules, let f: C — W be an homomorphism if D
—e*S ce Hin C thenf(D) =ex*S cef(H) 1nf(C)
Proof:

Suppose that D S,,5 e H in C. To show that /(D) Sq.5 ce f (H) in f(C). Define (p ]{Eg

by ¢ (m + D) f(m) + f(D), for each m € C, since — <<e*5 , then by Lemma 2. 1 1) ( )=

£ (H) _F©
(D) Ceus @ (5)= 10

. Thus, we get the result.

Proposition 3.9: For any R—module C, let LEHCS C.If H=L+ W and W <,,¢ C, then L
ge*s_ce HinC.

Proof:

Suppose that H=L + W and W «,,s C. Let % = % + % with Ze*(%) = %, for some S € C,
thenC=H+S,andhence C=L+ W+ S=S+ W, since W «,,¢ C and Ze*(%) = %, therefore
C=S,and —==.Thus, L S5 ce Hin C.

Proposition 3.10: For any R-module C,let WEHC C. If C=W+H, Wc X< Cand XN
H K5 C, then W S5 e X'in C.

Proof:

Suppose that C=W + H, W € X € Cand X N H <,,g C. Let %: % +V%with Ze*(%) = %
where DE C,thenC=X+Dand X=X NC=XN (W +H)=W+ (X n H), by (Modular
Law). ThenC=X+D =W+ (X NH)+ D. So, C=(XNH)+D. But XN H K,.s C and
Ze*(%) = %, therefore C = D and % = % . Thus W S5 e XinC.

Proposition 3.11: Let C be an R—module. If L S5 (¢ D in C and X S¢,5 (¢ Hin C, then L+X
ge*s_ce D+HinC.
Proof:

Suppose that L So.5 e Din Cand X S5 (¢ Hin C. To show that L + X S5 ce D + Hin C,

letf: — —>—beamapdeﬁnedbyf(m+L) m+(L+X)f0reachm€Candg L-(I:-_X

be a map deﬁned byg(m+X)=m+ (L+X) for each m € C. Clearly, eachfand g are

. @i D o H C D, _ (D+X) H, _ (H+X)

ep1morph051s Since T Kews T and <<e*SX,then f( ) T Lews % and g ( ) T
D+X | H+X D+H

<<e*S X , by Lemma 2.1. And hence x| Tox < Lexs Tox - by Lemma 2.1. Thus L +

X Ceisce DTHInC.
Proposition 3.12: Let B, D, H and X be submodules of an R-module C. The following

statements are equivalent.
DIfB Seusce BTDinC,thenBND S5 e Din C;
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2)If B Ceu5ce Din Cand Y € C,thenBNY Soug e DN Yin C;
3)If B Caus ce D in C and X Sgu5 ce Hin C, then BN X Sg,5 e DN Hin C;

Proof:
(D)=>@2)LetBESqsce DinCandYES C. SinceB+(DNY)E D, thenB Sq.5 e B+(DNY)
in C, by Proposition 3.5. Hence BN (D N'Y) Seus ce (D NY) in C, by (1). This implies that B
NY Seus ce DNY in C.
(2)>(3) Let B Sous ce Din Cand X S5 e Hin C. By (2), B N X Se.5 ce D N X in C. Also,
XCeasce HmCandDEC, thenDNX S5 e DNHINC. ThusBN X So5 e DN Hin
C, by Proposition 3.5.
(3)=(1) Let B Seus ce B+ D in C. Since D S¢,5 ce D in C, then by (3) BN D S5 ce (B + D)
NDinC. Thus BN D Seu5 e Din C.

We use the following lemma in next theorem.

Lemma 3.13: Let C be a module such that C=H + D and C = (H N D) + W for submodules
H,Dand Wof C. ThenC=(DNW)+H=HnNW)+D.
Proof: See [20], Lemma 1.2.

Theorem 3.14: Let C = W + X be an e*_singular module. Let X € H and X Se.s e H in C.
ThenWNXCE.5ce WNHInC.
Proof:

Let—C —Wnl) L

WnX) (WnX) (WnX)
impliesthatC=H+L ByLemma3 13,C=(WNL)+H, + =

=% - then Ze.( (WnL)+x )= (Wn L)+X
L) + X. Again, by Lemma 3.13, C=(W N X)+ L=L. Thus

C
wnX °

. C,_C¢C c
w1che*(T)— L,toprove(WnX) (an) ,C=(WnH)+L,

(WnL)+X
X
, by Lemma 2.2. But <<e*S therefore C= (W N

C _ L and WNH Wwn
WnX) WnXx)’ WnX

+—. Since Ze*(—)

<<e*S

4. e*Singular—coclosed submodules
Here we define an e*S-coclosed submodule and go over a few of its characteristics.

Definition 4.1: Let C be an R—module and D be submodule of C. We say that D is called
e* Singular—coclosed submodule of C (used for brief e*S—coclosed submodule, denoted by

D S5 cc ) if whenever H E,,5 e D, (i€, % Kexs %) implies that D = H.

Examples and remarks 4.2:

1) Every e*S—coclosed submodule is coclosed submodule.

Let Cbea module, let W be an e*S—coclosed submodule of C, and let A be submodule of W
such that % « — . By (Example and remark. 2) [6], — <Ke.s % , because W is e*S—

coclosed in C. Thus W = A and hence W is a coclosed submodule of C.

2) The convers of (1) need not be accurate in general for example let M=7,®Z, as Z,—
module, {0} € Z, @® {0} and %}{0} = 7, ® (0} Kpug ﬁ — M, but {0} # Z, ® {0}. So
Z, ® {0} is not e*S—coclosed, but is coclosed, since Z, @ {0} not small in M.
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3)Let C=Z @ Zy~ as Z-module. It is clear that (0) is proper submodule of Zpo in C, but ( )

= Zpe, (0—) = C. So, Zy dose not e*S-small submodule of C. Also, Zy # (0). Therefore,

Zy is e*S—coclosed.

4) In Z as Z—module. A 27 dose not an e*S—coclosed submodule of Z. Since 4Z is proper
submodule of 2Z, % = (2) and — = 7,. By (Example and remark. 2) [6]. (2) K¢.s Z4 and 2Z
* 47.

5) Let W be an e*S—hollow module. Then W has only one proper e*S—coclosed which is the

<< exS T ThIlS

zero submodule. Let D be a proper submodule of W. Then D «,,¢ W and 8075 { )

if D is an e*S—coclosed in W, then D = {0}.
The following gives some basic properties of an e*S—coclosed submodules.

{0}

Proposition 4.3: Let C be an R—module and let W € B € M. Then:

1) If B is an e*S—coclosed in C, then % is an e*S—coclosed in % .

2) [f W <,.s B and % is an e*S—coclosed in % , then B is an e*S—coclosed in C (provided C

is an e*_singular module).
3) If W is an e*S—coclosed in C, then W is an e*S—coclosed in B.

Proof:
C

B
1) Assume that B is an e*S—coclosed in C, let — ¢ = such that —¥— Ke.s —x— by (The Third
w’ w w

§><

<o
s|o
IR

w

><|n

. B c . .
Isomorphism Theorem), —— = ~ and . As aresult, 7 Kews > SiNCE B is e*S—

s[>

X B B . . C
coclosed in C. Thus, B =X and — = —, therefore — is an e*S—coclosed in — .
wow w w

2) Suppose that L € B, such that L S5 . B (1.e,, % Kexs %). Letm: C — % be the natural
C

. . .. L+W B .. w T o B .
epimorphism, so by Proposition 3.4, === Ce.s ce - (i.€., w Kews Tvw)- Since ~ isane*S—

W W
coclosed in W S0 % W and B =L + W. Since W «,,s B, thus B = L. Therefore, B is an
e*S—coclosed in C.
3) Let L € W such that % Kexs % c % . So, by Lemma 2.1, — <<e*5 . Since W is an

e*S—coclosed in C, so L = W. Therefore, W is an e*S—coclosed in B

Proposition 4.4: Let C = M; @ M, be a module, and L S.,5 . M;. Then L S5 . C.

Proof:
C M OM M W &M M
Let W € L such that — w7 Lews o % Hence, — <<e*S Wl (&) W 2. So, <<e*5 wl ,

by Lemma 2.1. Since L Cess cc My, therefore W =L and L<Sescc C.

Proposition 4.5: Let C be a module and K be a non-zero submodule of C. If K S¢,s . C, then
K is not an e*S—small in C.

Proof:

Assume K is an e*S—small in C and K E,,5 . C. Because {0} € K and K = %

C. Then K = {0} which is a contradiction. Therefore, K is not an e*S—small in C.

M
{03

~

Kess
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The following proposition shows that the e*S—coclosed submodule is a condition to be the
submodule of an e*S—hollow module is an e*S—hollow.

Proposition 4.6: Every non-zero e*S—coclosed submodule of an e*S—hollow module is an
e*S—-hollow
Proof:

Suppose that C is an e*S—hollow module and W is e*S—coclosed in C. Let A be a proper

submodule of W, such that W =A + H with Z, (% = % . Since C is e*S—hollow by Corollary
2.7, % is e*S—hollow. Now, if % is a proper submodule of % , then % is an e*S—small

submodule of % , since W is e*S—coclosed. Thus, W = H and A is an e*S—small submodule of
W. Hence, W is e*S—hollow.

Proposition 4.7: Le C be an R—module, and let K be a non-zero e*S—hollow submodule of C,
then either K «,,¢ C or K is e*S—coclosed submodule of C but not both.
Proof:

Let K is a non-zero e*S—hollow submodule of C and K is not an e*S—coclosed. We have to

) ) . . K
show that K «,.s C. Since K is not an e*S—coclosed in C, then there exists L & K such that -
K , L+A

<<e*5 . To prove that K <<e*5 C let C = K + A with Ze*( ) =—, then — = =Tt by

Lemma 2.2. Ze*( ) =— but <<e*5 , therefore C = L+A Now, K KnC= K N (L

+A)= L + (KN A) by (Modular Law). Note that by (Second Isomorphism Theorem) m =

K+A K

T , which is Ze,.g(K - A) = . But K is an e*S—hollow and L is a proper submodule of

K, therefore L Kews K,hence K=K NA,KCS A then C A. Thus, K <. C.

If K «,.s C and K is an e*S—coclosed, then © Kess — 0 by Lemma 2.1. Implies that K = 0,

which is a contradiction.
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