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Abstract. 

     In this article, we will go over the basics of e*S–hollow modules, e*S–coessential 

submodules and e*S–coclosed submodules as a generalization of the concepts of 

hollow modules, coessential submodules and coclosed submodules, respectively. We 

shall demonstrate some characteristics of these ideas. 
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من النمط    المفردةالأساسية المغلقة والمقاسات الجزئية ضد  *eمن النمط   المفردة المقاسات المجوفة
e* 

 

 ، وسن خالد حسن *كبان عطيةعلي عبد 

 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق 
 

 الخلاصة.
هذه        المجوفة  البحث، في  المقاسات  أساسيات  النمط    المفردة  سنتناول  ضد    *eمن  الجزئية  والمقاسات 

كتعميم    *eمن النمط    المفردة   المغلقة الأساسيةضد  والمقاسات الجزئية    *eمن النمط    المفردة   الجوهرية الأساسية
  الاساسية  المغلقة  مقاسات الجزئية ضد وال مقاسات الجزئية ضد الجوهرية الاساسيةالمجوفة وال  مقاساتلمفاهيم ال

 على التوالي. وسنبين بعض خصائص هذه الأفكار.
 

1. Introduction. 

     In this paper C will be a unitary left R-module, and R be an associative ring with identity. 

Notationally, it is commonly known that a submodule D of an R-module C is small.  D ≪ C if 

for every submodule L of C, D + L = C, then L = C, [1], [2]. A non-zero submodule D of C is 

considered to be an essential if and only if, for every submodule L of C, L = {0} whenever D 

∩ L = {0}. Here, we denote D ≤𝑒 C, where C is known as the essential extension of D [2] [3]. 

In a module C, a submodule D is closed if and only if has no proper essential extension [4], 

[5]. 

 

     A new submodule type was created by Baanoon and Khaild in [6] and which is a 

generalization of the essential submodule and it is called an e∗-essential as follows: For any 
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non-zero cosingular submodule B of C, if A ∩ B ≠ 0, we say that A is an e*-essential submodule 

in C. Denoted by A ≤𝑒∗ C. 

Now, we will define the singular module: Z(C) = {m in C: ann(m) ≤𝑒R}. Notice, if Z(C) = C, 

then C is called a singular module and if Z(C) = 0, then C is called non-singular [4], [7]. We 

generalized Z(C) to 𝑍𝑒∗(C), by applying e*_essential submodule. Let C be a module and define 

𝑍𝑒∗(C) = {n in C: ann(n) ≤𝑒∗ R}, if 𝑍𝑒∗(C) = C, then C is called an e*_singular. As well as if  

𝑍𝑒∗(C) = 0, then C is called an e*_non-singular module [6]. 

 

     A non-zero module C is considered to be hollow if each proper submodule of C is small in 

C, see [8], [9]. Many authors present generalizations of a small submodule, see [10] [11] [12] 

[13]. In [6], the generalization of small submodule known as an e*S–small submodule which 

is introduced by A. Kabban and W. Khalid. A submodule D of C is called an e*S–small 

submodule of C (signified by D  ≪𝒆∗𝑺 C) if whenever C = D + H, with 𝑍𝑒∗(
  C  

H
) = 

  C  

H
 implies 

that C = H. A non-zero R–module C is called an e*S–hollow module if each proper submodule 

of C is an e*S–small in C, and this is the definition of the e*S–hollow modules as 

generalizations of hollow modules. Give a description of e*S–hollow modules and prove under 

conditions in which the direct sum of an e*S–hollow module is an e*S–hollow, in addition to 

presenting its basic properties. 

Let H ⊆ D ⊆ C, if 
 D 

H
 ≪ 

 C 

H
 , then H is called a coessential submodule of D in C [14], [15]. Now, 

we introduce the e*S-coessential submodule, which is a generalization of the coessential 

submodule. Let C be an R–module, and let D, H ⊆ C, such that D ⊆ H ⊆ C, then D is called 

an e*S–coessential submodule of H in C (denoted by D ⊆e∗S_ce H in C) if  
H 

D 
 ≪𝒆∗𝑺  

C 

D 
. A 

submodule D of C is a coclosed submodule of C (denoted by D ⊆𝑐𝑐 C) if whenever 
 D 

L
 ≪ 

 C 

L
 

implies that D = L, see [16], [17]. Based on this idea, we provide the following concept. Let C 

be an R–module and H submodule of C. We say that H is called an e*S–coclosed submodule 

of C (denoted by H ⊆e∗S_cc C) if whenever D ⊆e∗S_ce H, (i.e.,  
  H   

D 
 ≪𝒆∗𝑺  

C 

 D  
) implies that D = 

H. The fundamental characteristics of these ideas are shown in this work. 

 

2. e*S-hollow modules 

     We illustrate some of the features of an e*S-hollow modules. As a generalization of hollow 

modules, and present them in this section. 

   First, we need to list basic properties of the concept of e*S–small [6]. 

Lemma 2.1: [6]. Let C be any R–module then, 

1) If D ⊆ W ⊆ C. Then W ≪𝐞∗𝐒 C if and only if D ≪𝐞∗𝐒 C and 
  W  

D
 ≪𝐞∗𝐒 

  C   

D
 . 

2) Let D and W be submodules of C. Then D + W ≪𝐞∗𝐒 C if and only if D ≪𝐞∗𝐒 C and W ≪𝐞∗𝐒 

C. 

3) Let  N1 , N2 , …, Nn ⊆ C. Then ∑ Ni 
n
i=1 ≪𝐞∗𝐒 C if and only if Ni ≪𝐞∗𝐒 C, ∀   i = 1, 2, …, n. 

4) Let D ⊆ W be a submodule of C. If D ≪𝐞∗𝐒 W, then D ≪𝐞∗𝐒 C. 

5) Let f : C ⟶  D  be a homomorphisim. If W ≪𝐞∗𝐒 C, then f (W) ≪𝐞∗𝐒 D. 

6) Let C = M1 ⨁ M2 be an R–module and  N1 ⊆ M1 and N2 ⊆ M2. Then  N1⨁ N2 ≪𝐞∗𝐒 M1 ⨁ 

M2 if and only if N1 ≪𝐞∗𝐒 M1 and  N2 ≪𝐞∗𝐒 M2. 

 

Lemma 2.2: [6] For any R-module C, and W, L be two submodules of C. If Ze∗(
  C  

W
) = 

  C  

W
 then 

Ze∗(
  C  

L+W
) = 

  C  

L+W
. 

   The concept of an e*S–small submodule, lead to introduce the following: 
 



Kabban and Khalid                                  Iraqi Journal of Science, 2025, Vol. 66, No. 6, pp: 2477-2486 

 

2479 
 

Definition 2.3: A non-zero R–module C is called e*_Singular–hollow module (used for brief 

e*S–hollow) if each proper submodule of C is an e*S–small in C. 

Examples and remarks 2.4: 

1) Clearly, every hollow module is an e*S–hollow module. But the convers need not be 

accurate in general for example, let M = Z2 ⨁ Z2 as Z2–module, Z2 ⨁  {0̅} is a proper e*S–

small submodule in M, but not small in M. See (Examples and remarks. 2) [6]. 

2) Every simple module is an e*S–hollow. For example, Zp as Z–module (p is prime). 

3) The Z4 as Z–module is an e*S–hollow. By (1). 

4) Consider M = Z ⨁ Zp∞  as Z–module is not an e*S–hollow. Since 0 ⨁ Zp∞ proper submodule 

of M but 0 ⨁ Zp∞  is not an e*S–small of M. Since 𝑍𝑒∗(
 M 

𝑍
) ≅ 𝑍𝑒∗(𝑍𝑝∞) = 𝑍𝑝∞ ≅ 

  M 

 𝑍
, but M ≠ 

Z. So, 𝑍𝑝∞ dose not an e*S–small submodule of M. 

5) Since 〈2̅〉 and 〈3̅〉 are not e*S–small in Z6.Then Z6 as Z–module is not an e*S–hollow. 

6)  In Z-module Z is not an e*S–hollow. See (Examples and remarks. 2) [6]. 

   Under a certain condition the concept of hollow and e*S–hollow submodules coincide. 

 

Theorem 2.5: Let C be an e*_Singular module. Then C is an e*S–hollow module if and only 

if each proper submodule D of C is small in C. 

Proof:  

⇒) Let D be a proper submodule of C such that Ze∗(
  C  

D
) = 

  C  

D
, to show that D ≪ C. Assume 

that there exists K ⊊ C such that C = D + K. Since C is e*S–hollow, then K ≪𝒆∗𝑺 C and we 

have Ze∗(
  C  

D
) = 

  C  

D
, then C = D, which is a contradiction. Thus D ≪ C. 

⇐) To show that C is an e*S–hollow, let D be a proper submodule of C. Assume that D is not 

e*S–small in C, there exists a proper submodule K of C such that Ze∗(
  C  

K
) = 

  C  

K
 and C = D + 

K. By our assumption K ≪ C, then D = C, which is a contradiction. Thus, C is e*S–hollow. 

 

Proposition 2.6: A non-zero epimorphic image of an e*S–hollow module is an e*S–hollow. 

Proof:  

Let f : C ⟶  W  be an epimorphism, and C be an e*S–hollow module, with K ⊊ W, to show K 

≪𝒆∗𝑺 W, since K ⊊ W, then 𝑓−1(K) ⊊ C. If  𝑓−1(K) = C, then K = f (C) = W, hence K = W, this 

is a contradiction and since C is e*S–hollow, therefore 𝑓−1(K) ≪𝒆∗𝑺 C, and by Lemma 2.1,  

f (𝑓−1(K)) ≪𝒆∗𝑺 W, then K ≪𝒆∗𝑺 W. 

 

Corollary 2.7: Let C be an R–module and N ⊆ C, if C is an e*S–hollow then 
  C  

N
 is e*S–hollow. 

   Remember that a fully invariant submodule D of C is defined as follows: g (D) ⊆ D, for every 

g ∈ End (C) and C is called duo module if each submodule of C is fully invariant. See [18], 

[19]. 

 

Proposition 2.8: Let C be duo module and C = C1 ⨁ C2, then C is an e*S–hollow if and only 

if C1 and C2 are e*S–hollow. Provided N ∩ C𝑖 ≠ C𝑖 for all i = 1, 2, …N ⊆ C. 

 

Proof: 

⇒) Let C is e*S–hollow and N1⨁ N2 ⊊ C1⨁ C2 ,with N1 ⊊ C1and N2 ⊊ C2, and N1⨁ N2 ≪𝒆∗𝑺 

C1 ⨁ C2= C, to show C1 is an e*S–hollow. Let  𝜋1: C1⨁ C2 ⟶ C1 be the projection map, which 

is define as follows, 𝜋1(𝑐1+ 𝑐2) = 𝑐1, for all 𝑐1+ 𝑐2 ∈ C1⨁ C2, since N1⨁ N2 ≪𝒆∗𝑺 C1⨁ C2, 

then by Lemma 2.1, 𝜋1 ( N1⨁ N2 ) ≪𝒆∗𝑺 𝜋1(C1⨁ C2), then, N1 ≪𝒆∗𝑺 C1, thus C1 is an e*S–

hollow, and similarly C2 is an e*S–hollow. 
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⇐) Let C1 and C2 be e*S–hollow. To prove, N1⨁ N2 ≪𝒆∗𝑺 C1 ⨁ C2, since  N1 ≪𝒆∗𝑺 C1 ⊆ C, 

and N2 ≪𝒆∗𝑺 C2 ⊆ C, then by Lemma 2.1, N1 ≪𝒆∗𝑺 C and N2 ≪𝒆∗𝑺 C. By Lemma 2.1 again, 

N1⨁ N2 ≪𝒆∗𝑺 C = C1⨁ C2. 

 

Proposition 2.9: Let C be an e*S–hollow module, if C has e*S–small proper submodule of D 

and 
  C  

D
 is a finitely generated e*_Singular, then C is finitely generated. 

Proof: 

   Since 
  C  

D
 is finitely generated there are 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ C, such that 

  C  

 D
 = 〈𝑦1 + 𝐷, 𝑦2 +

𝐷, … , 𝑦𝑛 + 𝐷〉. We claim that C = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 let c ∈ C. Hence, c + D ∈ 
  C  

D
 and c + D = 

(𝑟1𝑦1 +  𝑟2𝑦2 +  … + 𝑟𝑛𝑦𝑛) + D, for some 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ R. So, c – (𝑟1𝑦1 + 𝑟2𝑦2 + … +  𝑟𝑛𝑦𝑛) 

∈ D. Let n = c – (𝑟1𝑦1 +  𝑟2𝑦2 +  … +  𝑟𝑛𝑦𝑛) where n ∈ D. Hence, c = (𝑟1𝑦1 +  𝑟2𝑦2 +  … +
 𝑟𝑛𝑦𝑛) + n, thus C = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 + D. If C ≠ 〈𝑦1, 𝑦2, … , 𝑦𝑛〉, then 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 is e*S–small 

in C and since D is an e*S–small submodule. Hence, C = D which is a contradiction. Therefore, 

C = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉. 
 

3. e*Singular–coessential submodules 

    This section defines the e*S–Coessential submodule and proves various features pertinent 

to our work. It is a generalization of the coessential submodule. 

 

Definition 3.1: Let C be an R–module and D, H are submodules of C. Such that D ⊆ H ⊆ C, 

then D is called e*_Singular–coessential submodule of H in C (used for brief e*S–coessential 

submodule, denoted by D ⊆e∗S_ce H in C) if  
H 

D 
 ≪𝒆∗𝑺  

C 

D 
. 

 

Examples and remarks 3.2: 

1) Everyone can see that coessential submodule is e*S–coessential submodule. But the convers 

is not true in general for example: {0̅} is an e*S–coessential of Z3 ⨁  {0̅} in M = Z3 ⨁ Z3 as 

Z3–module, but not coessential in M. 

2) Let C be an R–module and let D be a submodule of C. Then D ≪𝒆∗𝑺 C if and only if {0} 

⊆e∗S_ce D in C. 

3) Z6 as Z–module. Clear that 〈0̅〉 is not e*S–coessential submodule of 〈3̅〉 in ℤ6. 

4) Z8 as Z–module. As { 0̅ , 4̅ } ⊆e∗S_ce{0̅ , 2̅ , 4̅ , 6̅} in Z8.  

5) In Z as Z–module. 4Z is e*S–coessential submodule of 2Z in Z. 

6) Let C = Z ⨁ Zp∞  as Z–module. It is clear that 〈0̅〉 is not e*S–coessential submodule of Zp∞  

in C. 〈0̅〉 ⊆ Zp∞  ⊆ C, since  
Zp∞  

〈 0 ̅̅ ̅〉  
 not e*S–small in 

C 

〈 0 ̅̅ ̅〉  
.  

   The following proposition give a characterization of e*S–coessential submodule. 

 

Theorem 3.3: Let C be an e*_singular module and W ⊆ H ⊆ C, then the following are 

equivalent. 

1) W ⊆e∗S_ce H in C; 

2) For any submodule X ⊆ C, H + X = C implies that W + X = C. 

Proof:  

 (1)⇒(2) Let C = H + X, then 
C

W
 = 

 H 

W
 + 

X + W

W
 . Since Ze∗(

  C   

W
) = 

  C  

W
, then by Lemma 2.2, Ze∗(

  C  

X+W
) 

= 
  C  

X+W
. But  

 H 

W
≪𝒆∗𝑺 

 C 

W
 , therefore 

 C  

W
 =  

X+W

W
. Thus C = X + W. 

(2)⇒(1) Let 
C

W
 = 

H

W
 + 

A

W
 , where W ⊆ A with Ze∗(

  C   

A
) = 

  C  

A
. Then C = H + A, by (2) we get C = 

W + A. But W ⊆ A, therefore C = A. And hence W ⊆e∗S_ce H in C. 
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   The following proposition give some properties of e*S–coessential submodule which are 

needed later. 

 

Proposition 3.4: Let C be an R–module and L ⊆ K ⊆ N ⊆ C. Then K ⊆e∗S_ce N in C if and 

only if  
K 

L 
 ⊆e∗S_ce 

N 

L 
 in 

 C 

L 
 .  

Proof: 

 ⇒) Assume that K ⊆e∗S_ce N in C, since 

 N 

 L 
 K 

 L 

 ≅ 
N

K
 and 

 C 

 L 
 K 

 L 

 ≅ 
C

K
 , by the (Third Isomorphism 

Theorem) and 
N 

K 
 ≪𝒆∗𝑺

C 

K 
 , we have 

 N 

 L 
 K 

 L 

 ≪𝒆∗𝑺 

 C 

 L 
 K 

 L 

 , thus 
 K 

L 
 ⊆e∗S_ce 

N 

L 
 in 

C 

L 
. 

⇐) Suppose that 
K 

L 
 ⊆e∗S_ce 

N 

L 
 in 

C 

L 
, since 

 N 

 L 
 K 

 L 

 ≅ 
N

K
 , 

 
C 

 L 
 K 

 L 

 ≅ 
C

K
 , by the (Third Isomorphism Theorem) 

and since 

 N 

 L 
 K 

 L 

 ≪𝒆∗𝑺 

 C 

 L 
 K 

 L 

 , we have 
N 

K 
 ≪𝒆∗𝑺

C 

K 
 , thus K ⊆e∗S_ce N in C. 

Proposition 3.5: For any R–module C, let L ⊆ D ⊆ H ⊆ C. Then L ⊆e∗S_ce H in C if and only 

if L ⊆e∗S_ce D in C and D ⊆e∗S_ce H in C. 

Proof:  

⇒) Suppose that L ⊆e∗S_ce H in C. Since 
D 

L 
 ⊆ 

H 

L 
⊆ 

C 

L 
 , and 

H 

L 
 ≪𝒆∗𝑺  

C 

L 
 , then 

D 

L 
 ≪𝒆∗𝑺

C 

L 
 , by 

Lemma 2.1. So, L ⊆e∗S_ce D in C. Now, define f : 
C 

L 
⟶ 

C 

D 
 by f (m + L) = m + D for all m ∈ C. 

Clearly f is an epimorphosis. Since 
H 

L 
 ≪𝒆∗𝑺

C 

L 
 , hence   f (

  H  

L 
) = 

H 

D 
 ≪𝒆∗𝑺 

C 

D 
 , by Lemma 2.1. Thus 

D ⊆e∗S_ce H in C. 

⇐) Assume that L ⊆e∗S_ce D in C and D ⊆e∗S_ce H in C, to show L ⊆e∗S_ce H in C. Let  
 H 

L 
 + 

X 

L 
= 

C 

L 
 , with Ze∗(

  C   

X
) = 

  C  

X
 , then C = H + X and hence  

C 

 D 
 = 

H+X 

D 
 = 

H 

D 
 + 

X+D 

D
. Since Ze∗(

  C   

X
) = 

  C  

X
, 

by Lemma 2.2. Ze∗(
  C  

X+D
) = 

  C  

X+D
 . But 

H 

D 
 ≪𝒆∗𝑺

C 

D 
 , therefore  

X+D 

D 
 = 

C 

D 
 , and hence X + D = C, 

therefore, 
X 

L 
 + 

D 

L 
 = 

C 

L 
, since  

D 

L 
 ≪𝒆∗𝑺 

C 

L 
, and Ze∗(

  C   

X
) = 

  C  

X
, then 

 X  

L 
 = 

C 

L 
. 

 

Proposition 3.6: For any R–module C. If W ⊆e∗S_ce H in C and L ⊆ C, then W + L ⊆e∗S_ce H 

+ L in C. The converse is true if L ≪𝒆∗𝑺 C. 

Proof:  

    Assume that W ⊆e∗S_ce H in C and L ⊆ C. To show that W + L ⊆e∗S_ce H + L in C, let  
H+L

W+L
 

+ 
Y

W+L
 = 

C

W+L
 with Ze∗(

  C   

Y
) = 

  C  

Y
 , then C = H + L + Y since L ⊆ W + L ⊆ Y, then C = H + Y,  

 C 

W
 = 

H+Y

W
 = 

H

W
 + 

Y

W
  and Ze∗(

  C   

Y
) = 

  C  

Y
, and  

H  

W  
 ≪𝒆∗𝑺 

C

 W
, hence 

C  

W 
 = 

Y

W
  and  

Y

W+L
 = 

C

W+L
 . 

Conversely, suppose that W + L ⊆e∗S_ce H + L in C and L ≪𝒆∗𝑺 C. To show that W ⊆e∗S_ce H 

in C. Let  
C

W
 = 

H

W
 + 

Y

W
 , with Ze∗(

  C   

Y
) = 

  C  

Y
. Now, C = H + Y, hence 

C

W+L
 = 

H+L

W+L
 + 

Y+L

W+L
 . Since 

Ze∗(
  C   

Y
) = 

  C  

Y
, then by Lemma 2.2, Ze∗(

  C  

Y+L
) = 

  C  

Y+L
 . But  

H+L

W+L
≪𝒆∗𝑺 

C

W+L
 , therefore 

C

W+L
 =  

Y+L

W+L
  

and hence C = Y + L. Since L ≪𝒆∗𝑺 C and Ze∗(
  C   

Y
) = 

  C  

Y
 , then C = Y. Therefore,  

C

 W
 = 

Y

W
  and 

W ⊆e∗S_ce H in C. 

 

Proposition 3.7: For any R–module C, let W ≪𝒆∗𝑺 C. If Y ⊆e∗S_ce H in C, then Y ⊆e∗S_ce H + 

W in C. 
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Proof:  

   Suppose that Y ⊆e∗S_ce H in C and W ≪𝒆∗𝑺 C. To show that Y ⊆e∗S_ce H + W in C. Let 
C

Y
 = 

H+W

Y
 + 

X

Y
 , with Ze∗(

  C   

X
) = 

  C  

X
 . Hence, C = H + W + X, since Ze∗(

  C   

X
) = 

  C  

X
 , then by Lemma 

2.2, Ze∗(
  C  

X + H
) = 

  C  

X+H
  and W ≪𝒆∗𝑺 C, then C = H + X, and  

C

Y
 = 

H

Y
 + 

X

Y
 . But  

H

Y
≪𝒆∗𝑺 

C

Y
  and 

Ze∗(
  C   

X
) = 

  C  

X
 , therefore 

 C 

Y
 = 

 X 

Y
. Thus, Y ⊆e∗S_ce H + W in C. 

 

Proposition 3.8: Let C and W be an R–modules, let f : C ⟶ W be an homomorphism if D 

⊆e∗S_ce H in C, then f (D) ⊆e∗S_ce f (H) in f (C). 

Proof:  

  Suppose that D ⊆e∗S_ce H in C. To show that f (D) ⊆e∗S_ce f (H) in f (C). Define 𝜑: 
C 

D 
⟶ 

𝑓 (C) 

𝑓 (D) 
 

by 𝜑 (m + D) = f (m) + f (D), for each m ∈ C, since 
 H 

D
≪𝒆∗𝑺 

 C 

D
 , then by Lemma 2.1. 𝜑 ( 

H

D
 ) = 

𝑓 (H) 

𝑓 (D) 
 ≪𝒆∗𝑺 𝜑 ( 

C

D
 ) = 

𝑓 (C) 

𝑓 (D) 
 . Thus, we get the result. 

 

Proposition 3.9: For any R–module C, let L ⊆ H ⊆ C. If H = L + W and W ≪𝒆∗𝑺 C, then L 

⊆e∗S_ce H in C. 

Proof:  

   Suppose that H = L + W and W ≪𝒆∗𝑺 C. Let 
C

L
 = 

H

L
 + 

S

L
 with Ze∗(

  C   

S
) = 

  C  

S
, for some S ⊆ C, 

then C = H + S, and hence C = L + W + S = S + W, since W ≪𝒆∗𝑺 C and Ze∗(
  C   

S
) = 

  C  

S
, therefore 

C = S, and  
 C 

L
 = 

 S 

L
 . Thus, L ⊆e∗S_ce H in C. 

 

Proposition 3.10: For any R–module C, let W ⊆ H ⊆ C. If C = W + H, W ⊆ X ⊆ C and X ∩ 

H ≪𝒆∗𝑺 C, then W ⊆e∗S_ce X in C. 

Proof:  

 Suppose that C = W + H, W ⊆ X ⊆ C and X ∩ H ≪𝒆∗𝑺 C. Let  
C

W
 = 

X

W
 + 

D

W
 with Ze∗(

  C   

D
) = 

  C  

D
, 

where D ⊆ C, then C = X + D and X = X ∩ C = X ∩ (W + H) = W + (X ∩ H), by (Modular 

Law). Then C = X + D = W + (X ∩ H) + D. So, C = (X ∩ H) + D. But X ∩ H ≪𝒆∗𝑺 C and 

Ze∗(
  C   

D
) = 

  C  

D
, therefore C = D and 

C

W
 = 

D

W
 . Thus W ⊆e∗S_ce X in C. 

 

Proposition 3.11: Let C be an R–module. If L ⊆e∗S_ce D in C and X ⊆e∗S_ce H in C, then L+X 

⊆e∗S_ce D + H in C. 

Proof:  

  Suppose that L ⊆e∗S_ce D in C and X ⊆e∗S_ce H in C. To show that L + X ⊆e∗S_ce D + H in C, 

let f : 
C 

L 
⟶ 

C 

L+X 
 be a map defined by f (m + L) = m + (L + X) for each m ∈ C and 𝑔 : 

C 

X 
⟶ 

C 

L+X 
 

be a map defined by 𝑔 ( m + X ) = m + ( L + X ) for each m ∈ C. Clearly, each f and 𝑔 are 

epimorphosis. Since 
D

L
≪𝒆∗𝑺 

C

L
  and  

H

X
≪𝒆∗𝑺 

C

X
 , then  f ( 

D 

L 
) = 

(D+X) 

(L+X)
 ≪𝒆∗𝑺 

C 

L+X
  and 𝑔 ( 

H 

X 
) = 

(H+X) 

(L+X)
 

≪𝒆∗𝑺 
H 

L+X
 , by Lemma 2.1. And hence  

D+X 

L+X
 + 

H+X 

L+X
 = 

D+H 

L+X
 ≪𝒆∗𝑺 

C 

L+X
 , by Lemma 2.1. Thus L + 

X ⊆e∗S_ce D + H in C. 

 

Proposition 3.12: Let B, D, H and X be submodules of an R–module C. The following 

statements are equivalent. 

1) If B ⊆e∗S_ce B + D in C, then B ∩ D ⊆e∗S_ce D in C; 
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2) If B ⊆e∗S_ce D in C and Y ⊆ C, then B ∩ Y ⊆e∗S_ce D ∩ Y in C; 

3) If B ⊆e∗S_ce D in C and X ⊆e∗S_ce H in C, then B ∩ X ⊆e∗S_ce D ∩ H in C; 

 

Proof:  

(1)⇒(2) Let B ⊆e∗S_ce D in C and Y ⊆ C. Since B + (D ∩ Y) ⊆ D, then B ⊆e∗S_ce B + (D ∩ Y) 

in C, by Proposition 3.5. Hence B ∩ (D ∩ Y) ⊆e∗S_ce (D ∩ Y) in C, by (1). This implies that B 

∩ Y ⊆e∗S_ce D ∩ Y in C. 

(2)⇒(3) Let B ⊆e∗S_ce D in C and X ⊆e∗S_ce H in C. By (2), B ∩ X ⊆e∗S_ce D ∩ X in C. Also, 

X ⊆e∗S_ce H in C and D ⊆ C, then D ∩ X ⊆e∗S_ce D ∩ H in C. Thus B ∩ X ⊆e∗S_ce D ∩ H in 

C, by Proposition 3.5. 

(3)⇒(1) Let B ⊆e∗S_ce B + D in C. Since D ⊆e∗S_ce D in C, then by (3) B ∩ D ⊆e∗S_ce (B + D) 

∩ D in C. Thus B ∩ D ⊆e∗S_ce D in C. 

   We use the following lemma in next theorem. 

 

Lemma 3.13: Let C be a module such that C = H + D and C = (H ∩ D) + W for submodules 

H, D and W of C. Then C = (D ∩ W) + H = (H ∩ W) + D. 

Proof: See [20], Lemma 1.2. 

 

Theorem 3.14: Let C = W + X be an e*_singular module. Let X ⊆ H and X ⊆e∗S_ce H in C. 

Then W ∩ X ⊆e∗S_ce W ∩ H in C. 

Proof:  

  Let 
C

(W ∩ X)
 = 

(W ∩ H)

(W ∩ X)
 + 

L

(W ∩ X)
 with Ze∗(

  C   

L
) = 

  C  

L
, to prove 

C

(W ∩ X)
 = 

L

(W ∩ X)
 , C = (W ∩ H) + L, 

implies that C = H + L. By Lemma 3.13, C = (W ∩ L) + H,  
 C 

X
  =  

(W ∩ L)+X

X
 + 

  H  

X
 . Since Ze∗(

  C   

X
) 

= 
  C  

X
 , then Ze∗( 

C

(W ∩ L)+X
 ) = 

C

(W ∩ L)+X
 , by Lemma 2.2. But  

  H  

X
≪𝒆∗𝑺 

C

X
 , therefore C = (W ∩ 

L) + X. Again, by Lemma 3.13, C = (W ∩ X) + L = L. Thus  
C

(W ∩ X)
 = 

L

(W ∩ X)
  , and  

W ∩ H

W ∩ X
 ≪𝒆∗𝑺 

C

W ∩ X
  . 

 

4. e*Singular–coclosed submodules 

   Here we define an e*S-coclosed submodule and go over a few of its characteristics. 

 

Definition 4.1: Let C be an R–module and D be submodule of C. We say that D is called 

e*_Singular–coclosed submodule of C (used for brief e*S–coclosed submodule, denoted by 

D ⊆e∗S_cc C) if whenever H ⊆e∗S_ce D, (i.e.,  
  D   

H 
 ≪𝒆∗𝑺  

C 

 H  
) implies that D = H. 

 

Examples and remarks 4.2: 

1) Every e*S–coclosed submodule is coclosed submodule.  

Let C be a module, let W be an e*S–coclosed submodule of C, and let A be submodule of W 

such that 
  W   

A 
 ≪  

C 

 A  
 . By (Example and remark. 2) [6], 

  W   

A 
 ≪𝒆∗𝑺  

C 

 A  
 , because W is e*S–

coclosed in C. Thus, W = A and hence W is a coclosed submodule of C. 

2) The convers of (1) need not be accurate in general for example, let M = Z2 ⨁ Z2 as Z2–

module, {0̅} ⊆ Z2 ⨁  {0̅} and 
Z2 ⨁  {0̅}

{0̅}
 = Z2 ⨁  {0̅} ≪𝒆∗𝑺 

  M 

{0̅}
 = M, but {0̅} ≠ Z2 ⨁  {0̅}. So 

Z2 ⨁  {0̅} is not e*S–coclosed, but is coclosed, since Z2 ⨁  {0̅} not small in M. 
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3) Let C = Z ⨁ Zp∞  as Z–module. It is clear that 〈0̅〉 is proper submodule of Zp∞  in C, but  
Zp∞  

〈0̅〉  
 

≅ Zp∞ ,  
C  

〈0̅〉  
 ≅ C. So, Zp∞  dose not e*S–small submodule of C. Also, Zp∞  ≠ 〈0̅〉. Therefore, 

Zp∞  is e*S–coclosed. 

4) In Z as Z–module. A 2Z dose not an e*S–coclosed submodule of Z. Since 4Z is proper 

submodule of 2Z, 
 2Z 

4Z
 ≅ 〈2̅〉 and 

  Z 

4Z
 ≅ Z4. By (Example and remark. 2) [6]. 〈2̅〉 ≪𝒆∗𝑺 Z4 and 2Z 

≠ 4Z. 

5) Let W be an e*S–hollow module. Then W has only one proper e*S–coclosed, which is the 

zero submodule. Let D be a proper submodule of W. Then D ≪𝒆∗𝑺 W and so 
 D 

{0}
 ≪𝒆∗𝑺 

 W

{0}
 . Thus, 

if D is an e*S–coclosed in W, then D = {0}. 

   The following gives some basic properties of an e*S–coclosed submodules. 

 

Proposition 4.3: Let C be an R–module and let W ⊆ B ⊆ M. Then: 

1) If B is an e*S–coclosed in C, then 
  B  

W
 is an e*S–coclosed in 

  C  

W
 . 

2) If W ≪𝒆∗𝑺 B and 
  B  

W
 is an e*S–coclosed in 

  C  

W
 , then B is an e*S–coclosed in C (provided C 

is an e*_singular module). 

3) If W is an e*S–coclosed in C, then W is an e*S–coclosed in B.  

 

Proof:  

1) Assume that B is an e*S–coclosed in C, let 
  X  

W
 ⊊ 

  B  

W
 , such that 

  
  B  

W
  

  X  

W

 ≪𝒆∗𝑺 
  

C 

W
  

  X  

W

 by (The Third 

Isomorphism Theorem),  
  

  B  

W
  

  X  

W

 ≅ 
  B  

X
 and 

  
  C  

W
  

  X  

W

 ≅ 
  C  

X
 . As a result, 

  B  

X
 ≪𝒆∗𝑺 

  C  

X
 , since B is e*S–

coclosed in C. Thus, B = X and 
  X  

W
 = 

  B  

W
 , therefore 

  B  

W
 is an e*S–coclosed in 

  C  

W
 . 

2) Suppose that L ⊆ B, such that L ⊆e∗S_ce B (i.e., 
  B  

L
 ≪𝒆∗𝑺 

  C  

L
). Let 𝜋: C ⟶ 

  C  

W
 be the natural 

epimorphism, so by Proposition 3.4, 
L+W

W
 ⊆e∗S_ce 

  B  

W
 (i.e., 

 B 

W
L+W

W

 ≪𝒆∗𝑺 

 C 

W
L+W

W

). Since 
  B  

W
 is an e*S–

coclosed in 
  C  

W
 , so 

L+W

W
 = 

  B  

W
 and B = L + W. Since W ≪𝒆∗𝑺 B, thus B = L. Therefore, B is an 

e*S–coclosed in C. 

3) Let L ⊊ W such that 
  W  

L
 ≪𝒆∗𝑺 

  B  

L
 ⊆  

  C  

L
 . So, by Lemma 2.1, 

  W  

L
 ≪𝒆∗𝑺 

  C  

L
. Since W is an 

e*S–coclosed in C, so L = W. Therefore, W is an e*S–coclosed in B. 

 

Proposition 4.4: Let C = M1 ⨁ M2 be a module, and L ⊆e∗S_cc M1. Then L ⊆e∗S_cc C. 

Proof: 

 Let W ⊊ L such that 
  L  

W
 ≪𝒆∗𝑺 

  C  

W
 = 

M1 ⨁ M2

W
 . Hence, 

  L  

W
 ≪𝒆∗𝑺 

  M1  

W 
 ⨁ 

W ⨁ M2

W
 . So, 

  L  

W
 ≪𝒆∗𝑺 

  M1  

W 
, 

by Lemma 2.1. Since L ⊆e∗S_cc M1, therefore W = L and L ⊆e∗S_cc C. 

 

Proposition 4.5: Let C be a module and K be a non-zero submodule of C. If K ⊆e∗S_cc C, then 

K is not an e*S–small in C. 

 

Proof: 

   Assume K is an e*S–small in C and K ⊆e∗S_cc C. Because {0} ⊆ K and K ≅ 
 K 

{0}
 ≪𝒆∗𝑺 

 M 

{0}
 ≅ 

C. Then K = {0} which is a contradiction. Therefore, K is not an e*S–small in C. 
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  The following proposition shows that the e*S–coclosed submodule is a condition to be the 

submodule of an e*S–hollow module is an e*S–hollow. 

 

Proposition 4.6: Every non-zero e*S–coclosed submodule of an e*S–hollow module is an 

e*S–hollow  

Proof: 

   Suppose that C is an e*S–hollow module and W is e*S–coclosed in C. Let A be a proper 

submodule of W, such that W = A + H with Ze∗(
  W  

H
) = 

  W  

H
 . Since C is e*S–hollow by Corollary 

2.7, 
  C  

H
 is e*S–hollow. Now, if 

  W  

H
 is a proper submodule of 

  C  

H
 , then 

  W  

H
 is an e*S–small 

submodule of 
  C  

H
 , since W is e*S–coclosed. Thus, W = H and A is an e*S–small submodule of 

W. Hence, W is e*S–hollow. 

 

Proposition 4.7: Le C be an R–module, and let K be a non-zero e*S–hollow submodule of C, 

then either K ≪𝒆∗𝑺 C or K is e*S–coclosed submodule of C but not both. 

Proof:  

   Let K is a non-zero e*S–hollow submodule of C and K is not an e*S–coclosed. We have to 

show that K ≪𝒆∗𝑺 C. Since K is not an e*S–coclosed in C, then there exists L ⊊ K such that 
  K  

L
 

≪𝒆∗𝑺 
  C  

L
 . To prove that K ≪𝒆∗𝑺 C, let C = K + A with Ze∗(

  C  

A
) = 

  C  

A
 , then 

  C  

L
 = 

  K  

L
 + 

  L+A  

L
 by 

Lemma 2.2. Ze∗(
  C  

L+A
) = 

  C  

L+A
, but 

  K  

L
 ≪𝒆∗𝑺 

  C  

L
 , therefore C = L + A. Now, K = K ∩ C = K ∩ (L 

+ A) = L + (K ∩ A), by (Modular Law). Note that by (Second Isomorphism Theorem) 
K

K ∩ A
 ≅ 

K+A

A
 = 

 C 

A
 , which is Ze∗(

K

K ∩ A
) = 

K

K ∩ A
 . But K is an e*S–hollow and L is a proper submodule of 

K, therefore L ≪𝒆∗𝑺 K, hence K = K ∩ A, K ⊆ A, then C = A. Thus, K ≪𝒆∗𝑺 C.  

If K ≪𝒆∗𝑺 C and K is an e*S–coclosed, then 
 K 

{0}
 ≪𝒆∗𝑺 

 C 

{0}
 by Lemma 2.1. Implies that K = 0, 

which is a contradiction. 
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