DOI: 10.24996/ijs.2025.66.6.23

ISSN: 0067-2904

e*Singular-Hollow Modules and e*Singular-Coclosed Submodules

Ali A. Kabban*, Wasan Khalid

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 13/4/2024 Accepted: 9/7/2024 Published: 30/6/2025

Abstract.

In this article, we will go over the basics of e*S-hollow modules, e*S-coessential submodules and e*S-coclosed submodules as a generalization of the concepts of hollow modules, coessential submodules and coclosed submodules, respectively. We shall demonstrate some characteristics of these ideas.

Keywords: e*_singular modules, e*S-small submodule, e*S-hollow module, e*S-coessential submodule, e*S-coclosed submodule.

المقاسات المجوفة المفردة من النمط *e والمقاسات الجزئية ضد المغلقة الأساسية المفردة من النمط e*

علي عبد عطية كبان*، وسن خالد حسن

قسم الرباضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة.

في هذه البحث، سنتناول أساسيات المقاسات المجوفة المفردة من النمط *e والمقاسات الجزئية ضد الجوهرية الأساسية المفردة من النمط *e والمقاسات الجزئية ضد المغلقة الأساسية المفردة من النمط *e كتعميم لمفاهيم المقاسات المجوفة والمقاسات الجزئية ضد الجوهرية الاساسية والمقاسات الجزئية ضد المغلقة الاساسية على التوالى. وسنبين بعض خصائص هذه الأفكار.

1. Introduction.

In this paper C will be a unitary left R-module, and R be an associative ring with identity. Notationally, it is commonly known that a submodule D of an R-module C is small. D \ll C if for every submodule L of C, D + L = C, then L = C, [1], [2]. A non-zero submodule D of C is considered to be an essential if and only if, for every submodule L of C, L = $\{0\}$ whenever D \cap L = $\{0\}$. Here, we denote D \leq_e C, where C is known as the essential extension of D [2] [3]. In a module C, a submodule D is closed if and only if has no proper essential extension [4], [5].

A new submodule type was created by Baanoon and Khaild in [6] and which is a generalization of the essential submodule and it is called an e*-essential as follows: For any

-

^{*} Email: alikuban5@gmail.com

non-zero cosingular submodule B of C, if $A \cap B \neq 0$, we say that A is an e*-essential submodule in C. Denoted by $A \leq_{e^*} C$.

Now, we will define the singular module: $Z(C) = \{m \text{ in } C: \operatorname{ann}(m) \leq_e R\}$. Notice, if Z(C) = C, then C is called a singular module and if Z(C) = 0, then C is called non-singular [4], [7]. We generalized Z(C) to $Z_{e*}(C)$, by applying e^* _essential submodule. Let C be a module and define $Z_{e*}(C) = \{n \text{ in } C: \operatorname{ann}(n) \leq_{e*} R\}$, if $Z_{e*}(C) = C$, then C is called an e^* _singular. As well as if $Z_{e*}(C) = 0$, then C is called an e^* _non-singular module [6].

A non-zero module C is considered to be hollow if each proper submodule of C is small in C, see [8], [9]. Many authors present generalizations of a small submodule, see [10] [11] [12] [13]. In [6], the generalization of small submodule known as an e*S-small submodule which is introduced by A. Kabban and W. Khalid. A submodule D of C is called an e*S-small submodule of C (signified by D \ll_{e*S} C) if whenever C = D + H, with $Z_{e*}(\frac{C}{H}) = \frac{C}{H}$ implies that C = H. A non-zero R-module C is called an e*S-hollow module if each proper submodule of C is an e*S-small in C, and this is the definition of the e*S-hollow modules as generalizations of hollow modules. Give a description of e*S-hollow modules and prove under conditions in which the direct sum of an e*S-hollow module is an e*S-hollow, in addition to presenting its basic properties.

Let $H \subseteq D \subseteq C$, if $\frac{D}{H} \ll \frac{C}{H}$, then H is called a coessential submodule of D in C [14], [15]. Now, we introduce the e*S-coessential submodule, which is a generalization of the coessential submodule. Let C be an R-module, and let D, $H \subseteq C$, such that $D \subseteq H \subseteq C$, then D is called an e*S-coessential submodule of H in C (denoted by $D \subseteq_{e*S_ce} H$ in C) if $\frac{H}{D} \ll_{e*S} \frac{C}{D}$. A submodule D of C is a coclosed submodule of C (denoted by $D \subseteq_{cc} C$) if whenever $\frac{D}{L} \ll \frac{C}{L}$ implies that D = L, see [16], [17]. Based on this idea, we provide the following concept. Let C be an R-module and H submodule of C. We say that H is called an e*S-coclosed submodule of C (denoted by $H \subseteq_{e*S_cc} C$) if whenever $D \subseteq_{e*S_ce} H$, (i.e., $\frac{H}{D} \ll_{e*S} \frac{C}{D}$) implies that D = H. The fundamental characteristics of these ideas are shown in this work.

2. e*S-hollow modules

We illustrate some of the features of an e*S-hollow modules. As a generalization of hollow modules, and present them in this section.

First, we need to list basic properties of the concept of e*S-small [6].

Lemma 2.1: [6]. Let C be any R-module then,

- 1) If $D \subseteq W \subseteq C$. Then $W \ll_{e*S} C$ if and only if $D \ll_{e*S} C$ and $\frac{W}{D} \ll_{e*S} \frac{C}{D}$.
- 2) Let D and W be submodules of C. Then D + W \ll_{e*S} C if and only if D \ll_{e*S} C and W \ll_{e*S} C.
- 3) Let N_1 , N_2 , ..., $N_n \subseteq C$. Then $\sum_{i=1}^n N_i \ll_{e*S} C$ if and only if $N_i \ll_{e*S} C$, $\forall i=1,2,...,n$.
- 4) Let $D \subseteq W$ be a submodule of C. If $D \ll_{e*S} W$, then $D \ll_{e*S} C$.
- 5) Let $f: C \to D$ be a homomorphism. If $W \ll_{e*S} C$, then $f(W) \ll_{e*S} D$.
- 6) Let $C = M_1 \oplus M_2$ be an R-module and $N_1 \subseteq M_1$ and $N_2 \subseteq M_2$. Then $N_1 \oplus N_2 \ll_{e*S} M_1 \oplus M_2$ if and only if $N_1 \ll_{e*S} M_1$ and $N_2 \ll_{e*S} M_2$.

Lemma 2.2: [6] For any R-module C, and W, L be two submodules of C. If $Z_{e*}(\frac{C}{W}) = \frac{C}{W}$ then $Z_{e*}(\frac{C}{L+W}) = \frac{C}{L+W}$.

The concept of an e*S-small submodule, lead to introduce the following:

Definition 2.3: A non-zero R-module C is called **e*_Singular-hollow module** (used for brief **e***S-hollow) if each proper submodule of C is an **e***S-small in C.

Examples and remarks 2.4:

- 1) Clearly, every hollow module is an e*S-hollow module. But the convers need not be accurate in general for example, let $M = Z_2 \oplus Z_2$ as Z_2 -module, $Z_2 \oplus \{\overline{0}\}$ is a proper e*S-small submodule in M, but not small in M. See (Examples and remarks. 2) [6].
- 2) Every simple module is an e*S-hollow. For example, Z_p as Z-module (p is prime).
- 3) The Z_4 as Z-module is an e*S-hollow. By (1).
- 4) Consider $M = Z \oplus Z_{p^{\infty}}$ as Z-module is not an e*S-hollow. Since $0 \oplus Z_{p^{\infty}}$ proper submodule of M but $0 \oplus Z_{p^{\infty}}$ is not an e*S-small of M. Since $Z_{e*}(\frac{M}{Z}) \cong Z_{e*}(Z_{p^{\infty}}) = Z_{p^{\infty}} \cong \frac{M}{Z}$, but $M \neq Z$. So, $Z_{p^{\infty}}$ dose not an e*S-small submodule of M.
- 5) Since $\langle \overline{2} \rangle$ and $\langle \overline{3} \rangle$ are not e*S-small in Z₆. Then Z₆ as Z-module is not an e*S-hollow.
- 6) In Z-module Z is not an e*S-hollow. See (Examples and remarks. 2) [6]. Under a certain condition the concept of hollow and e*S-hollow submodules coincide.

Theorem 2.5: Let C be an e*_Singular module. Then C is an e*S-hollow module if and only if each proper submodule D of C is small in C.

Proof:

- \Rightarrow) Let D be a proper submodule of C such that $Z_{e*}(\frac{C}{D}) = \frac{C}{D}$, to show that $D \ll C$. Assume that there exists $K \subsetneq C$ such that C = D + K. Since C is e*S-hollow, then $K \ll_{e*S} C$ and we have $Z_{e*}(\frac{C}{D}) = \frac{C}{D}$, then C = D, which is a contradiction. Thus $D \ll C$.
- \Leftarrow) To show that C is an e*S-hollow, let D be a proper submodule of C. Assume that D is not e*S-small in C, there exists a proper submodule K of C such that $Z_{e*}(\frac{C}{K}) = \frac{C}{K}$ and C = D + K. By our assumption K \ll C, then D = C, which is a contradiction. Thus, C is e*S-hollow.

Proposition 2.6: A non-zero epimorphic image of an e*S-hollow module is an e*S-hollow. **Proof:**

Let $f: C \to W$ be an epimorphism, and C be an e*S-hollow module, with $K \subsetneq W$, to show $K \ll_{e*S} W$, since $K \subsetneq W$, then $f^{-1}(K) \subsetneq C$. If $f^{-1}(K) = C$, then K = f(C) = W, hence K = W, this is a contradiction and since C is e*S-hollow, therefore $f^{-1}(K) \ll_{e*S} C$, and by Lemma 2.1, $f(f^{-1}(K)) \ll_{e*S} W$, then $K \ll_{e*S} W$.

Corollary 2.7: Let C be an R-module and $N \subseteq C$, if C is an e*S-hollow then $\frac{C}{N}$ is e*S-hollow. Remember that a fully invariant submodule D of C is defined as follows: $g(D) \subseteq D$, for every $g \in End(C)$ and C is called **duo module** if each submodule of C is fully invariant. See [18], [19].

Proposition 2.8: Let C be duo module and $C = C_1 \oplus C_2$, then C is an e*S-hollow if and only if C_1 and C_2 are e*S-hollow. Provided $N \cap C_i \neq C_i$ for all $i = 1, 2, ..., N \subseteq C$.

Proof:

 $\Rightarrow) \text{ Let C is e*S-hollow and } N_1 \oplus N_2 \subsetneq C_1 \oplus C_2 \text{ ,with } N_1 \subsetneq C_1 \text{ and } N_2 \subsetneq C_2, \text{ and } N_1 \oplus N_2 \ll_{e*S} C_1 \oplus C_2 = C, \text{ to show } C_1 \text{ is an e*S-hollow. Let } \pi_1 \colon C_1 \oplus C_2 \to C_1 \text{ be the projection map, which is define as follows, } \pi_1(c_1 + c_2) = c_1, \text{ for all } c_1 + c_2 \in C_1 \oplus C_2, \text{ since } N_1 \oplus N_2 \ll_{e*S} C_1 \oplus C_2, \text{ then by Lemma 2.1, } \pi_1 \left(N_1 \oplus N_2 \right) \ll_{e*S} \pi_1(C_1 \oplus C_2), \text{ then, } N_1 \ll_{e*S} C_1, \text{ thus } C_1 \text{ is an e*S-hollow, and similarly } C_2 \text{ is an e*S-hollow.}$

 \Leftarrow) Let C_1 and C_2 be e*S-hollow. To prove, $N_1 \oplus N_2 \ll_{e*S} C_1 \oplus C_2$, since $N_1 \ll_{e*S} C_1 \subseteq C$, and $N_2 \ll_{e*S} C_2 \subseteq C$, then by Lemma 2.1, $N_1 \ll_{e*S} C$ and $N_2 \ll_{e*S} C$. By Lemma 2.1 again, $N_1 \oplus N_2 \ll_{\rho * S} C = C_1 \oplus C_2$.

Proposition 2.9: Let C be an e*S-hollow module, if C has e*S-small proper submodule of D and $\frac{C}{D}$ is a finitely generated e*_Singular, then C is finitely generated.

Proof:

Since $\frac{C}{D}$ is finitely generated there are $y_1, y_2, ..., y_n \in C$, such that $\frac{C}{D} = \langle y_1 + D, y_2 + D \rangle$ $D, \ldots, y_n + D$. We claim that $C = \langle y_1, y_2, \ldots, y_n \rangle$ let $c \in C$. Hence, $c + D \in \frac{C}{D}$ and c + D = C $(r_1y_1 + r_2y_2 + ... + r_ny_n) + D$, for some $r_1, r_2, ..., r_n \in \mathbb{R}$. So, $c - (r_1y_1 + r_2y_2 + ... + r_ny_n)$ \in D. Let $n = c - (r_1y_1 + r_2y_2 + ... + r_ny_n)$ where $n \in$ D. Hence, $c = (r_1y_1 + r_2y_2 + ... + r_ny_n)$ $r_n y_n$) + n, thus C = $\langle y_1, y_2, ..., y_n \rangle$ + D. If C $\neq \langle y_1, y_2, ..., y_n \rangle$, then $\langle y_1, y_2, ..., y_n \rangle$ is e*S-small in C and since D is an e*S-small submodule. Hence, C = D which is a contradiction. Therefore, $C = \langle y_1, y_2, ..., y_n \rangle.$

3. e*Singular-coessential submodules

This section defines the e*S-Coessential submodule and proves various features pertinent to our work. It is a generalization of the coessential submodule.

Definition 3.1: Let C be an R-module and D, H are submodules of C. Such that $D \subseteq H \subseteq C$, then D is called e* Singular-coessential submodule of H in C (used for brief e*S-coessential submodule, denoted by $D \subseteq_{e*S_ce} H$ in C) if $\frac{H}{D} \ll_{e*S} \frac{C}{D}$.

Examples and remarks 3.2:

- 1) Everyone can see that coessential submodule is e*S-coessential submodule. But the convers is not true in general for example: $\{\overline{0}\}$ is an e*S-coessential of $Z_3 \oplus \{\overline{0}\}$ in $M = Z_3 \oplus Z_3$ as Z_3 -module, but not coessential in M.
- 2) Let C be an R-module and let D be a submodule of C. Then D \ll_{e*S} C if and only if $\{0\}$ \subseteq_{e*S} ce D in C.
- 3) \mathbb{Z}_6 as Z-module. Clear that $\langle \overline{0} \rangle$ is not e*S-coessential submodule of $\langle \overline{3} \rangle$ in \mathbb{Z}_6 .
- 4) Z_8 as Z-module. As $\{\overline{0}, \overline{4}\} \subseteq_{e*S ce} \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$ in Z_8 .
- 5) In Z as Z-module. 4Z is e*S-coessential submodule of 2Z in Z.
- 6) Let $C = Z \oplus Z_{p^{\infty}}$ as Z-module. It is clear that $\langle \overline{0} \rangle$ is not e*S-coessential submodule of $Z_{p^{\infty}}$ in C. $\langle \overline{0} \rangle \subseteq \mathbb{Z}_{p^{\infty}} \subseteq \mathbb{C}$, since $\frac{\mathbb{Z}_{p^{\infty}}}{\langle \overline{0} \rangle}$ not e^*S -small in $\frac{\mathbb{C}}{\langle \overline{0} \rangle}$.

The following proposition give a characterization of e*S-coessential submodule.

Theorem 3.3: Let C be an e^* singular module and $W \subseteq H \subseteq C$, then the following are equivalent.

- 1) W \subseteq_{e*S} ce H in C;
- 2) For any submodule $X \subseteq C$, H + X = C implies that W + X = C.

Proof:

$$(1)\Rightarrow(2) \text{ Let } C = H + X, \text{ then } \frac{C}{W} = \frac{H}{W} + \frac{X+W}{W}. \text{ Since } Z_{e*}(\frac{C}{W}) = \frac{C}{W}, \text{ then by Lemma 2.2, } Z_{e*}(\frac{C}{X+W}) = \frac{C}{X+W}. \text{ But } \frac{H}{W} \ll_{e*S} \frac{C}{W}, \text{ therefore } \frac{C}{W} = \frac{X+W}{W}. \text{ Thus } C = X+W.$$

$$(2)\Rightarrow(1) \text{ Let } \frac{C}{W} = \frac{H}{W} + \frac{A}{W}, \text{ where } W \subseteq A \text{ with } Z_{e*}(\frac{C}{A}) = \frac{C}{A}. \text{ Then } C = H+A, \text{ by } (2) \text{ we get } C = \frac{C}{W} = \frac{C}{W}.$$

W + A. But W \subseteq A, therefore C = A. And hence W \subseteq_{e*S} ce H in C.

The following proposition give some properties of e*S-coessential submodule which are needed later.

Proposition 3.4: Let C be an R-module and $L \subseteq K \subseteq N \subseteq C$. Then $K \subseteq_{e*S_ce} N$ in C if and only if $\frac{K}{L} \subseteq_{e*S_ce} \frac{N}{L}$ in $\frac{C}{L}$.

Proof:

- $\Rightarrow) \text{ Assume that } K \subseteq_{e*S_ce} N \text{ in } C, \text{ since } \frac{\frac{N}{L}}{\frac{K}{L}} \cong \frac{N}{K} \text{ and } \frac{\frac{C}{L}}{\frac{K}{L}} \cong \frac{C}{K}, \text{ by the (Third Isomorphism Theorem) and } \frac{N}{K} \ll_{e*S} \frac{C}{K}, \text{ we have } \frac{\frac{N}{L}}{\frac{K}{L}} \ll_{e*S} \frac{\frac{C}{L}}{\frac{K}{L}}, \text{ thus } \frac{K}{L} \subseteq_{e*S_ce} \frac{N}{L} \text{ in } \frac{C}{L}.$

Proposition 3.5: For any R-module C, let $L \subseteq D \subseteq H \subseteq C$. Then $L \subseteq_{e*S_ce} H$ in C if and only if $L \subseteq_{e*S_ce} D$ in C and $D \subseteq_{e*S_ce} H$ in C.

Proof:

- \Rightarrow) Suppose that $L \subseteq_{e*S_ce} H$ in C. Since $\frac{D}{L} \subseteq \frac{H}{L} \subseteq \frac{C}{L}$, and $\frac{H}{L} \ll_{e*S} \frac{C}{L}$, then $\frac{D}{L} \ll_{e*S} \frac{C}{L}$, by Lemma 2.1. So, $L \subseteq_{e*S_ce} D$ in C. Now, define $f: \frac{C}{L} \to \frac{C}{D}$ by f(m+L) = m+D for all $m \in C$. Clearly f is an epimorphosis. Since $\frac{H}{L} \ll_{e*S} \frac{C}{L}$, hence $f(\frac{H}{L}) = \frac{H}{D} \ll_{e*S} \frac{C}{D}$, by Lemma 2.1. Thus $D \subseteq_{e*S_ce} H$ in C.

Proposition 3.6: For any R-module C. If $W \subseteq_{e*S_ce} H$ in C and $L \subseteq C$, then $W + L \subseteq_{e*S_ce} H + L$ in C. The converse is true if $L \ll_{e*S} C$.

Proof:

Assume that $W \subseteq_{e*S_ce} H$ in C and $L \subseteq C$. To show that $W + L \subseteq_{e*S_ce} H + L$ in C, let $\frac{H+L}{W+L} + \frac{Y}{W+L} = \frac{C}{W+L}$ with $Z_{e*}(\frac{C}{Y}) = \frac{C}{Y}$, then C = H + L + Y since $L \subseteq W + L \subseteq Y$, then C = H + Y, $\frac{C}{W} = \frac{H+Y}{W} = \frac{H}{W} + \frac{Y}{W}$ and $Z_{e*}(\frac{C}{Y}) = \frac{C}{Y}$, and $\frac{H}{W} \ll_{e*S} \frac{C}{W}$, hence $\frac{C}{W} = \frac{Y}{W}$ and $\frac{Y}{W+L} = \frac{C}{W+L}$. Conversely, suppose that $W + L \subseteq_{e*S_ce} H + L$ in C and $L \ll_{e*S} C$. To show that $W \subseteq_{e*S_ce} H$ in C. Let $\frac{C}{W} = \frac{H}{W} + \frac{Y}{W}$, with $Z_{e*}(\frac{C}{Y}) = \frac{C}{Y}$. Now, C = H + Y, hence $\frac{C}{W+L} = \frac{H+L}{W+L} + \frac{Y+L}{W+L}$. Since $Z_{e*}(\frac{C}{Y}) = \frac{C}{Y}$, then by Lemma 2.2, $Z_{e*}(\frac{C}{Y+L}) = \frac{C}{Y+L}$. But $\frac{H+L}{W+L} \ll_{e*S} \frac{C}{W+L}$, therefore $\frac{C}{W+L} = \frac{Y+L}{W+L}$ and hence C = Y + L. Since $L \ll_{e*S} C$ and $Z_{e*}(\frac{C}{Y}) = \frac{C}{Y}$, then C = Y. Therefore, $\frac{C}{W} = \frac{Y}{W}$ and $W \subseteq_{e*S_ce} H$ in C.

Proposition 3.7: For any R-module C, let $W \ll_{e*S} C$. If $Y \subseteq_{e*S_ce} H$ in C, then $Y \subseteq_{e*S_ce} H + W$ in C.

Proof:

Suppose that $Y \subseteq_{e*S_ce} H$ in C and $W \ll_{e*S} C$. To show that $Y \subseteq_{e*S_ce} H + W$ in C. Let $\frac{C}{Y} = \frac{H+W}{Y} + \frac{X}{Y}$, with $Z_{e*}(\frac{C}{X}) = \frac{C}{X}$. Hence, C = H + W + X, since $Z_{e*}(\frac{C}{X}) = \frac{C}{X}$, then by Lemma 2.2, $Z_{e*}(\frac{C}{X+H}) = \frac{C}{X+H}$ and $W \ll_{e*S} C$, then C = H + X, and $\frac{C}{Y} = \frac{H}{Y} + \frac{X}{Y}$. But $\frac{H}{Y} \ll_{e*S} \frac{C}{Y}$ and $Z_{e*}(\frac{C}{X}) = \frac{C}{X}$, therefore $\frac{C}{Y} = \frac{X}{Y}$. Thus, $Y \subseteq_{e*S_ce} H + W$ in C.

Proposition 3.8: Let C and W be an R-modules, let $f: C \to W$ be an homomorphism if D $\subseteq_{e*S ce} H$ in C, then $f(D) \subseteq_{e*S ce} f(H)$ in f(C).

Proof:

Suppose that $D \subseteq_{e*S_ce} H$ in C. To show that $f(D) \subseteq_{e*S_ce} f(H)$ in f(C). Define $\varphi : \frac{C}{D} \longrightarrow \frac{f(C)}{f(D)}$ by $\varphi(m+D) = f(m) + f(D)$, for each $m \in C$, since $\frac{H}{D} \ll_{e*S} \frac{C}{D}$, then by Lemma 2.1. $\varphi(\frac{H}{D}) = \frac{f(H)}{f(D)} \ll_{e*S} \varphi(\frac{C}{D}) = \frac{f(C)}{f(D)}$. Thus, we get the result.

Proposition 3.9: For any R-module C, let $L \subseteq H \subseteq C$. If H = L + W and $W \ll_{e*S} C$, then $L \subseteq_{e*S \ ce} H$ in C.

Proof:

Suppose that H = L + W and $W \ll_{e*S} C$. Let $\frac{C}{L} = \frac{H}{L} + \frac{S}{L}$ with $Z_{e*}(\frac{C}{S}) = \frac{C}{S}$, for some $S \subseteq C$, then C = H + S, and hence C = L + W + S = S + W, since $W \ll_{e*S} C$ and $Z_{e*}(\frac{C}{S}) = \frac{C}{S}$, therefore C = S, and $\frac{C}{L} = \frac{S}{L}$. Thus, $L \subseteq_{e*S_ce} H$ in C.

Proposition 3.10: For any R-module C, let $W \subseteq H \subseteq C$. If C = W + H, $W \subseteq X \subseteq C$ and $X \cap H \ll_{e*S} C$, then $W \subseteq_{e*S_{ce}} X$ in C.

Proof:

Suppose that C = W + H, $W \subseteq X \subseteq C$ and $X \cap H \ll_{e*S} C$. Let $\frac{C}{W} = \frac{X}{W} + \frac{D}{W}$ with $Z_{e*}(\frac{C}{D}) = \frac{C}{D}$, where $D \subseteq C$, then C = X + D and $X = X \cap C = X \cap (W + H) = W + (X \cap H)$, by (Modular Law). Then $C = X + D = W + (X \cap H) + D$. So, $C = (X \cap H) + D$. But $X \cap H \ll_{e*S} C$ and $Z_{e*}(\frac{C}{D}) = \frac{C}{D}$, therefore C = D and $\frac{C}{W} = \frac{D}{W}$. Thus $W \subseteq_{e*S_{Ce}} X$ in C.

Proposition 3.11: Let C be an R-module. If $L \subseteq_{e*S_ce} D$ in C and $X \subseteq_{e*S_ce} H$ in C, then L+X $\subseteq_{e*S_ce} D + H$ in C.

Proof:

Suppose that $L \subseteq_{e*S_ce} D$ in C and $X \subseteq_{e*S_ce} H$ in C. To show that $L + X \subseteq_{e*S_ce} D + H$ in C, let $f: \frac{C}{L} \longrightarrow \frac{C}{L+X}$ be a map defined by f(m+L) = m + (L+X) for each $m \in C$ and $g: \frac{C}{X} \longrightarrow \frac{C}{L+X}$ be a map defined by g(m+X) = m + (L+X) for each $m \in C$. Clearly, each f and g are epimorphosis. Since $\frac{D}{L} \ll_{e*S} \frac{C}{L}$ and $\frac{H}{X} \ll_{e*S} \frac{C}{X}$, then $f(\frac{D}{L}) = \frac{(D+X)}{(L+X)} \ll_{e*S} \frac{C}{L+X}$ and $g(\frac{H}{X}) = \frac{(H+X)}{(L+X)} \ll_{e*S} \frac{H}{L+X}$, by Lemma 2.1. And hence $\frac{D+X}{L+X} + \frac{H+X}{L+X} = \frac{D+H}{L+X} \ll_{e*S} \frac{C}{L+X}$, by Lemma 2.1. Thus $L + X \subseteq_{e*S_ce} D + H$ in C.

Proposition 3.12: Let B, D, H and X be submodules of an R-module C. The following statements are equivalent.

1) If $B \subseteq_{e*S_ce} B + D$ in C, then $B \cap D \subseteq_{e*S_ce} D$ in C;

- 2) If $B \subseteq_{e*S_ce} D$ in C and $Y \subseteq C$, then $B \cap Y \subseteq_{e*S_ce} D \cap Y$ in C;
- 3) If $B \subseteq_{e*S ce} D$ in C and $X \subseteq_{e*S ce} H$ in C, then $B \cap X \subseteq_{e*S ce} D \cap H$ in C;

Proof:

(1)⇒(2) Let B ⊆_{e*S_ce} D in C and Y ⊆ C. Since B + (D ∩ Y) ⊆ D, then B ⊆_{e*S_ce} B + (D ∩ Y) in C, by Proposition 3.5. Hence B ∩ (D ∩ Y) ⊆_{e*S_ce} (D ∩ Y) in C, by (1). This implies that B ∩ Y ⊆_{e*S_ce} D ∩ Y in C.

(2) \Rightarrow (3) Let B \subseteq_{e*S_ce} D in C and X \subseteq_{e*S_ce} H in C. By (2), B \cap X \subseteq_{e*S_ce} D \cap X in C. Also, X \subseteq_{e*S_ce} H in C and D \subseteq C, then D \cap X \subseteq_{e*S_ce} D \cap H in C. Thus B \cap X \subseteq_{e*S_ce} D \cap H in C, by Proposition 3.5.

(3)⇒(1) Let B \subseteq_{e*S_ce} B + D in C. Since D \subseteq_{e*S_ce} D in C, then by (3) B ∩ D \subseteq_{e*S_ce} (B + D) ∩ D in C. Thus B ∩ D \subseteq_{e*S_ce} D in C.

We use the following lemma in next theorem.

Lemma 3.13: Let C be a module such that C = H + D and $C = (H \cap D) + W$ for submodules H, D and W of C. Then $C = (D \cap W) + H = (H \cap W) + D$. **Proof:** See [20], Lemma 1.2.

Theorem 3.14: Let C = W + X be an e^* _singular module. Let $X \subseteq H$ and $X \subseteq_{e*S_ce} H$ in C. Then $W \cap X \subseteq_{e*S_ce} W \cap H$ in C.

Proof:

 $\begin{array}{l} \operatorname{Let} \frac{C}{(W \cap X)} = \frac{(W \cap H)}{(W \cap X)} + \frac{L}{(W \cap X)} \, \text{with} \, Z_{e*}(\frac{C}{L}) = \frac{C}{L}, \text{ to prove} \, \frac{C}{(W \cap X)} = \frac{L}{(W \cap X)}, \, C = (W \cap H) + L, \\ \operatorname{implies that} \, C = H + L. \, \text{By Lemma 3.13, } \, C = (W \cap L) + H, \, \frac{C}{X} = \frac{(W \cap L) + X}{X} + \frac{H}{X} \, . \, \text{Since} \, Z_{e*}(\frac{C}{X}) \\ = \frac{C}{X} \, , \, \text{then} \, Z_{e*}(\frac{C}{(W \cap L) + X}) = \frac{C}{(W \cap L) + X} \, , \, \text{by Lemma 2.2. But} \, \frac{H}{X} \ll_{e*S} \frac{C}{X} \, , \, \text{therefore} \, C = (W \cap L) + X. \, \text{Again, by Lemma 3.13, } \, C = (W \cap X) + L = L. \, \text{Thus} \, \frac{C}{(W \cap X)} = \frac{L}{(W \cap X)} \, , \, \text{and} \, \frac{W \cap H}{W \cap X} \ll_{e*S} \frac{C}{W \cap X} \, . \end{array}$

4. e*Singular-coclosed submodules

Here we define an e*S-coclosed submodule and go over a few of its characteristics.

Definition 4.1: Let C be an R-module and D be submodule of C. We say that D is called e^* _Singular-coclosed submodule of C (used for brief e^* S-coclosed submodule, denoted by $D \subseteq_{e*S_cc} C$) if whenever $H \subseteq_{e*S_ce} D$, (i.e., $\frac{D}{H} \ll_{e*S} \frac{C}{H}$) implies that D = H.

Examples and remarks 4.2:

1) Every e*S-coclosed submodule is coclosed submodule.

Let C be a module, let W be an e*S-coclosed submodule of C, and let A be submodule of W such that $\frac{W}{A} \ll \frac{C}{A}$. By (Example and remark. 2) [6], $\frac{W}{A} \ll_{e*S} \frac{C}{A}$, because W is e*S-coclosed in C. Thus, W = A and hence W is a coclosed submodule of C.

2) The convers of (1) need not be accurate in general for example, let $M = Z_2 \oplus Z_2$ as Z_2 —module, $\{\overline{0}\} \subseteq Z_2 \oplus \{\overline{0}\}$ and $\frac{Z_2 \oplus \{\overline{0}\}}{\{\overline{0}\}} = Z_2 \oplus \{\overline{0}\} \ll_{e*S} \frac{M}{\{\overline{0}\}} = M$, but $\{\overline{0}\} \neq Z_2 \oplus \{\overline{0}\}$. So $Z_2 \oplus \{\overline{0}\}$ is not e*S—coclosed, but is coclosed, since $Z_2 \oplus \{\overline{0}\}$ not small in M.

- 3) Let $C=Z\oplus Z_{p^\infty}$ as Z-module. It is clear that $\langle \overline{0} \rangle$ is proper submodule of Z_{p^∞} in C, but $\frac{Z_{p^\infty}}{\langle \overline{0} \rangle} \cong Z_{p^\infty}$, $\frac{C}{\langle \overline{0} \rangle} \cong C$. So, Z_{p^∞} dose not e*S-small submodule of C. Also, $Z_{p^\infty} \neq \langle \overline{0} \rangle$. Therefore, Z_{p^∞} is e*S-coclosed.
- 4) In Z as Z-module. A 2Z dose not an e*S-coclosed submodule of Z. Since 4Z is proper submodule of 2Z, $\frac{2Z}{4Z} \cong \langle \overline{2} \rangle$ and $\frac{Z}{4Z} \cong Z_4$. By (Example and remark. 2) [6]. $\langle \overline{2} \rangle \ll_{e*S} Z_4$ and 2Z \neq 4Z.
- 5) Let W be an e*S-hollow module. Then W has only one proper e*S-coclosed, which is the zero submodule. Let D be a proper submodule of W. Then D \ll_{e*S} W and so $\frac{D}{\{0\}} \ll_{e*S} \frac{W}{\{0\}}$. Thus, if D is an e*S-coclosed in W, then D = $\{0\}$.

The following gives some basic properties of an e*S-coclosed submodules.

Proposition 4.3: Let C be an R-module and let $W \subseteq B \subseteq M$. Then:

- 1) If B is an e*S-coclosed in C, then $\frac{B}{W}$ is an e*S-coclosed in $\frac{C}{W}$.
- 2) If W \ll_{e*S} B and $\frac{B}{W}$ is an e*S-coclosed in $\frac{C}{W}$, then B is an e*S-coclosed in C (provided C is an e* singular module).
- 3) If W is an e*S-coclosed in C, then W is an e*S-coclosed in B.

Proof:

- 1) Assume that B is an e*S-coclosed in C, let $\frac{X}{W} \subsetneq \frac{B}{W}$, such that $\frac{\frac{B}{W}}{\frac{X}{W}} \ll_{e*S} \frac{\frac{C}{W}}{\frac{X}{W}}$ by (The Third Isomorphism Theorem), $\frac{\frac{B}{W}}{\frac{X}{W}} \cong \frac{B}{X}$ and $\frac{\frac{C}{W}}{\frac{X}{W}} \cong \frac{C}{X}$. As a result, $\frac{B}{X} \ll_{e*S} \frac{C}{X}$, since B is e*S-coclosed in C. Thus, B = X and $\frac{X}{W} = \frac{B}{W}$, therefore $\frac{B}{W}$ is an e*S-coclosed in $\frac{C}{W}$.
- 2) Suppose that $L \subseteq B$, such that $L \subseteq_{e*S_ce} B$ (i.e., $\frac{B^{vv}}{L} \ll_{e*S} \frac{C}{L}$). Let $\pi: C \to \frac{w}{C}$ be the natural epimorphism, so by Proposition 3.4, $\frac{L+W}{W} \subseteq_{e*S_ce} \frac{B}{W}$ (i.e., $\frac{B}{W} \ll_{e*S} \frac{C}{W}$). Since $\frac{B}{W}$ is an e*S—coclosed in $\frac{C}{W}$, so $\frac{L+W}{W} = \frac{B}{W}$ and B = L + W. Since $W \ll_{e*S} B$, thus B = L. Therefore, B is an e*S—coclosed in C.
- 3) Let $L \subseteq W$ such that $\frac{W}{L} \ll_{e*S} \frac{B}{L} \subseteq \frac{C}{L}$. So, by Lemma 2.1, $\frac{W}{L} \ll_{e*S} \frac{C}{L}$. Since W is an e*S-coclosed in C, so L = W. Therefore, W is an e*S-coclosed in B.

Proposition 4.4: Let $C = M_1 \oplus M_2$ be a module, and $L \subseteq_{e*S_cc} M_1$. Then $L \subseteq_{e*S_cc} C$. **Proof:**

Let $W \subseteq L$ such that $\frac{L}{W} \ll_{e*S} \frac{C}{W} = \frac{M_1 \oplus M_2}{W}$. Hence, $\frac{L}{W} \ll_{e*S} \frac{M_1}{W} \oplus \frac{W \oplus M_2}{W}$. So, $\frac{L}{W} \ll_{e*S} \frac{M_1}{W}$, by Lemma 2.1. Since $L \subseteq_{e*S_cc} M_1$, therefore W = L and $L \subseteq_{e*S_cc} C$.

Proposition 4.5: Let C be a module and K be a non-zero submodule of C. If $K \subseteq_{e*S_cc} C$, then K is not an e*S-small in C.

Proof:

Assume K is an e*S-small in C and K \subseteq_{e*S_cc} C. Because $\{0\} \subseteq K$ and $K \cong \frac{K}{\{0\}} \ll_{e*S} \frac{M}{\{0\}} \cong$ C. Then $K = \{0\}$ which is a contradiction. Therefore, K is not an e*S-small in C.

The following proposition shows that the e*S-coclosed submodule is a condition to be the submodule of an e*S-hollow module is an e*S-hollow.

Proposition 4.6: Every non-zero e*S-coclosed submodule of an e*S-hollow module is an e*S-hollow

Proof:

Suppose that C is an e*S-hollow module and W is e*S-coclosed in C. Let A be a proper submodule of W, such that W = A + H with $Z_{e*}(\frac{W}{H}) = \frac{W}{H}$. Since C is e*S-hollow by Corollary 2.7, $\frac{C}{H}$ is e*S-hollow. Now, if $\frac{W}{H}$ is a proper submodule of $\frac{C}{H}$, then $\frac{W}{H}$ is an e*S-small submodule of $\frac{C}{H}$, since W is e*S-coclosed. Thus, W = H and A is an e*S-small submodule of W. Hence, W is e*S-hollow.

Proposition 4.7: Le C be an R-module, and let K be a non-zero e*S-hollow submodule of C, then either $K \ll_{e*S} C$ or K is e*S-coclosed submodule of C but not both.

Proof:

Let K is a non-zero e*S-hollow submodule of C and K is not an e*S-coclosed. We have to show that $K \ll_{e*S} C$. Since K is not an e*S-coclosed in C, then there exists $L \subsetneq K$ such that $\frac{K}{L} \ll_{e*S} \frac{C}{L}$. To prove that $K \ll_{e*S} C$, let C = K + A with $Z_{e*}(\frac{C}{A}) = \frac{C}{A}$, then $\frac{C}{L} = \frac{K}{L} + \frac{L+A}{L}$ by Lemma 2.2. $Z_{e*}(\frac{C}{L+A}) = \frac{C}{L+A}$, but $\frac{K}{L} \ll_{e*S} \frac{C}{L}$, therefore C = L + A. Now, $K = K \cap C = K \cap (L+A) = L + (K \cap A)$, by (Modular Law). Note that by (Second Isomorphism Theorem) $\frac{K}{K \cap A} \cong \frac{K+A}{A} = \frac{C}{A}$, which is $Z_{e*}(\frac{K}{K \cap A}) = \frac{K}{K \cap A}$. But K is an e*S-hollow and L is a proper submodule of K, therefore $L \ll_{e*S} K$, hence $K = K \cap A$, $K \subseteq A$, then C = A. Thus, $K \ll_{e*S} C$. If $K \ll_{e*S} C$ and K is an e*S-coclosed, then $\frac{K}{\{0\}} \ll_{e*S} \frac{C}{\{0\}}$ by Lemma 2.1. Implies that K = 0, which is a contradiction.

References:

- [1] P. Flury, "Hollow modules and local endomorphism rings," *Pac. J. Math,* vol. 53, pp. 379-385, 1974
- [2] F. Kasch, Modules and Rings, London: Acad. Press., 1982.
- [3] D. X. Zhou, X. R. Zhang, "Small–Essential Submodule and Morita Duality," *Southeast Asian Bulletin of Mathematic*, vol. 35, pp. 1051-1062, 2011.
- [4] K. R. Goodearl, Ring theory: Nonsingular rings and modules, vol. 33, Newyork: Marcel Dekker, 1976.
- [5] A. A. Abduljaleel, S. M. Yaseen. "Large-Coessential and Large-Coclosed submodules," *Iraqi Journal of Science*, vol. 62, no. 11, pp. 4065-4070, 2021.
- [6] A. Kabban, W. Khalid. "On e*_Singular Small Submodule," *Acceptable for publication in a journal AIP Conference Proceeding*, 2024.
- [7] M. S. Abbas, F. H. Mohammed. "Small-Singular Submodules and SY-Extending Modules," *International Journal of Advanced Scientific and Technical Research*, vol. 2, no. 6, pp. 42-53, 2016
- [8] T. Inoue, "Sum of hollow modules," *Osaka J. Math.*, pp. 331-336, 1983.
- [9] R. S. Wadbude, M. R. Aloney, S. Tiwari. "Characterization of δ-small submodule," *Mathematical Theory and Modeling*, vol. 5, no. 7, pp. 18-21, 2015.
- [10] A. Abduljaleel, S. M. Yaseen. "On Large-Small Submodule and Large-Hollow Module," *Journal of Physics*, vol. 1818, pp. 1-7, 2021.

- [11] A. T. Hamad, A. A. Elewi. "Z-Small Submodules and Z-Hollow Modules," *Iraqi Journal of Science*, vol. 62, no. 8, pp. 2708-2713, 2021.
- [12] I. M. A. Hadi, S. H. Aidi. "On e-Small Submodules," *Ibn Al- Haitham Jour. For Pure & Appl. Sci*, vol. 28, no. 3, pp. 214-222, 2015.
- [13] A. Ahmmed, N. S. AL. Mothafar. "Pr-Small R-submodules of modules and Pr-radicals," *Journal of Interdisciplinary Mathematics*, vol. 26, no.7, pp. 1511, 2023.
- [14] L. Ganesan, N. Vanaja. "Modules for which every submodul has a unique coclosure," *Comm. Algebra*, vol. 30, no. 5, pp. 2355-2377, 2002.
- [15] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer. Lifting Modules, Supplements and Projectivity in Module Theory, Boston: Birkhäuse: Frontiers in Math, 2006.
- [16] Y. Talebi, B. Talaee. "On δ-Coclosed Submodules," *Far East Journal of Mathematical Sciences*, vol. 35, no. 1, pp. 19-31, 2009.
- [17] S. Crivei, H. Inankil. "Correspondences of Coclosed Submodules," *Communications in Algebra*, vol. 41, pp. 3635-3647, 2013.
- [18] V. Erdogdu, "Distributive Modules," Can. Math. Bull, vol. 30, pp. 248-254, 1987.
- [19] N. Orhan, D. K. Tütüncü and R. Tribak,"On Hollow-Lifting Modules," *Taiwanese J. Math*, vol. 11, no. 2, pp. 545-568, 2007.
- [20] D. Keskin, "On Lifting Modules," Comm. Algebra, vol. 28, no. 7, pp. 3427-3440, 2000.