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Abstract  

     The mixing problem is one of the most important problem in optimization 

strategies that falls within a wide range of applications, especially productivity ones, 

which makes it face many challenges. The problem is to determine how much of each 

item should be obtained and mixed with others so that the properties of the mixture 

fall within specified parameters and the total cost is minimized and the total profit is 

maximized. In this paper, we presented the problem modelling according to the linear 

optimization technique to obtain optimal results, which was implemented using the 

Python Pulp library. The proposed approach shows its effectiveness through 

advanced computational analysis in achieving compliance with the specified 

standards and obtaining maximum profit margins. 

 

Keywords: Mathematical modelling, Optimization technique, mixing (blending) 
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  الخلاصة 
تعد مشكلة الخلط من أهم المشكلات في استراتيجيات التحسين والتي تقع ضمن نطاق واسع من التطبيقات       

التي يجب    ات . تكمن المشكلة في تحديد الكميوخاصة الإنتاجية منها مما يجعلها تواجه العديد من التحديات
الحصول عليها من كل عنصر وخلطها مع العناصر الأخرى بحيث تقع خصائص الخليط ضمن معايير محددة  
تقنية   وفق  المشكلة  نمذجة  بعرض  قمنا  البحث،  هذا  في  الربح.  إجمالي  وتعظيم  الإجمالية  التكلفة  تقليل  ويتم 

.  يظهر النهج Python Pulpستخدام مكتبة التحسين الخطي للحصول على النتائج المثلى، والتي تم تنفيذها با
المتقدم في تحقيق الالتزام بالمعايير المحددة والحصول على الحد    المقترح فعاليته من خلال التحليل الحسابي

 الأقصى من هوامش الربح.
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1. Introduction 

     The mixing problem has been and continues to be a fundamental challenge in various fields 

of the real world, especially manufacturing fields, where it requires the wise distribution of raw 

materials to obtain formulations to produce optimal products. Mixed Integer Linear 

Programming was commonly used to solve mixing difficulties (MILP). It entails combining 

numerous resources or commodities to make one or more goods that meet demand [1-4]. It is 

critical in nearly every industry, particularly natural resources, to make the best judgments 

feasible in order to maximize the value of each project by optimizing the revenue created by 

the required resources being expended. Operations research is a discipline in which real-world 

problems are quantitatively characterized and optimized in order to improve decision-making 

[5-7]. Linear programming (LP) is a must-have tool for dealing with optimization difficulties,  

[8]. This technique is a mathematical process for evaluating linear models under particular 

limitations, and in this case, to discover optimal mining production results, [9-14]. Many 

scholars employed various algorithms to define and solve the problem in order to get the best 

solution. They also presented algorithms for identifying the essential constraints for LP models. 

LP problems with practical applications in a wide variety of fields are identified. Several 

researchers have updated their findings in recent years. LP optimization is used by many 

algorithms in various fields, particularly mining and production engineering, to cut costs and 

boost revenues in mining operations. In view of the importance of what was previously 

mentioned, it is clear to think about using the optimization technique to obtain the desired 

results with the least amount of error. To achieve this end, programming languages that have 

amazing capabilities in calculating parameters must be used and avoid values that do not give 

optimal results, [15-18]. So, from this concept, the Python programming language was used to 

solve the mixing problem to extract the quantities accurately and give the amount of profit 

according to the planned production quantity. Therefore, this paper seeks to provide a precedent 

for future endeavour's that could be similar to it in revealing unexplored avenues that fall within 

important areas, including optimizing manufacturing, paving the way for entry into enhancing 

efficiency and achieving profitability. 

 

2. Problem statement  

Blending (Mixing) several components (or commodities or materials) to create one or more 

products corresponding to a demand, [19-23], for example: 

1. A metal blending (mixing some metals to form an Alloy). 

2. A set of oil blending (combining different types of crude oil to form a gasoline). 

3. A food blending (mixing different kinds of oil to make final product).  

  

     The Problem is to determine how much of each commodity should be purchased and 

blended with the rest so that the characteristics of the mixture lie within specified bounds and 

the total cost (total profit) is minimized (maximized), see Fig.1. Mathematically, the 

optimization problem can be expressed as follows: 

Let 𝑛, 𝑚 represented as types of raw materials and products respectively. Also, the types of 

raw materials are indicated as 𝑖 where 𝑖 = 1,2, . . , 𝑛 and the products as 𝑗 where 𝑗 = 1,2, . . , 𝑚. 

While the variables will be of two types, 𝑥𝑖𝑗 and  𝑦𝑖, where 𝑥𝑖𝑗 denotes the quantity of raw 

material 𝑖 used in product 𝑗 and 𝑦𝑖 denotes to the quantity of product 𝑗 generated.  As for the 

parameters, there will be two types in the confrontation: 𝑐𝑖 which is the cost per unit of raw 

material 𝑖 and ℎ𝑖 which is hardness of raw material 𝑖. Therefore, the optimization problem will 

be formulated according to the following model: 

 

Maximize ∑ 𝑓𝑗

𝑚

j=1
𝑦𝑗− ∑ 𝑐𝑗

𝑛

i=1
∑ 𝑥𝑖𝑗

𝑚

j=1
. 
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Subject to: 
∑ 𝑥𝑖𝑗 ≤ 𝑉𝑖

𝑚
j=1    (Raw material). 

𝑦𝑖 ≤ 𝐸𝑖   (Product demand). 
∑ ℎ𝑖𝑥𝑖𝑗 ≤ 𝑄𝑖

𝑛
i=1    (Quality). 

𝑥𝑖𝑗 , 𝑦𝑗 ≥ 0, where 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑚. 

And 𝑓𝑗 denote as the profit per unit of product 𝑗. 

 

 
Figure 1: From raw materials, blending (mixing) to final product. 

 

3. Methodology 

     According to the concept of linear programming, it is possible to formulate a model of the 

problem so that it can meet all the requirements within the scope of the required conditions as 

follows: 

Index: 

▪ 𝑖 = Raw material (i.e. Raw oil types) 

▪ 𝑗 = Production lines 

Model Parameters: 

▪ 𝐶𝑎𝑝𝑗 = The refining capacity of the 𝑗𝑡ℎ production line  

▪ 𝑐𝑖 = The raw material's unit 𝑖𝑡ℎ price 

▪ 𝑝 = Unit price of the final product 

▪ 𝑎𝑖 = The amount of hardness 𝑖𝑡ℎ of a raw material 

▪ 𝑎 = Minimum final product hardness required 

▪ 𝑎 ̅ = Maximum final product hardness required 

 

Decision variables: 

𝑥𝑖 = The quantity of the 𝑖𝑡ℎ raw ingredient. 

𝑦 = The quantity of the final product. 

 

The optimization problem: 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆: 𝑝𝑦 − ∑𝑖 𝑐𝑖 𝑥𝑖. 
Subject to: 

∑𝑖 𝑥𝑖 ≤ 𝐶𝑎𝑝𝑗 ∀ 𝑗 (Capacity constraint). 

∑𝑖 𝑎𝑖𝑥𝑖 − 𝑎 𝑦 ≥ 0 (Hardness constraint–1). 

∑𝑖 𝑎𝑖𝑥𝑖 − 𝑎̅ 𝑦 ≤ 0 (Hardness constraint–2). 

∑𝑖 𝑥𝑖 = 𝑦 (Equality constraint) 

𝑥𝑖 ≥ 0 ∀ 𝑖, 𝑦 ≥ 0 
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4. From manufacturing to the linear programming 

     Using mathematical optimization methods to maximize profit and optimize resource use in 

manufacturing industries is a very important and mathematically valid goal. The model is 

formulated to maximize efficiency by using mixing five types of raw materials to produce a 

single product according to specific costs and hardness values. In this paper, manufacturing a 

type of fuel requires the refining and merging of crude oil bearing in mind that crude oil here 

is divided into two categories (Brent crude and West Texas crude) as follows: 

 

Table 1: Components of the fuel to be manufactured. 

Brent crude West Texas crude 

BRE 1 WES 1 

BRE 2 WES 2 

 WES 3 

 

Brent crude and West Texas crude require distinct refining lines. Assuming It is not possible 

to refine more than 400 barrels of Brent crude and 500 barrels of West Texas crude in any one 

day. The final product has a technological hardness limitation. This must be between 3 and 6 

in the units used to assess hardness. Hardness is supposed to blend linearly. The required fuel 

cost (per barrel) is calculated according to the data shown in the following table: 

 

Table 2: The cost and Hardness of each components. 

Types Cost Hardness 

BRE 1 110$ 8.8 

BRE 2 120$ 6.1 

WES 1 130$ 2.0 

WES 2 110$ 4.2 

WES 3 115$ 5.0 

 

     The finished product costs 120$ a barrel. The goal is to maximize the net profit of the fuel 

production company. Therefore, the role of the improvement approach to achieve the desired 

goal based on the proposed formulation. 

 

4.1 The linear model: 

Maximize: Z = 120y − 85x1 − 91x2 − 95x3 − 85x4 − 90x5 

Subject to: 

𝑥1 + 𝑥2 ≤ 400 "Capacity for Refining "Constraint 1" 

𝑥3 + 𝑥4 + 𝑥5 ≤ 500 "Capacity for Refining "Constraint 2" 

7.8𝑥1 + 5.1𝑥2 + 1.5𝑥3 + 3.5𝑥4 + 4.0𝑥5 − 2𝑦 ≥ 0 "Determine the hardness of the final 

product Constraint-1" 

7.8𝑥1 + 5.1𝑥2 + 1.5𝑥3 + 3.5𝑥4 + 4.0𝑥5 − 5𝑦 ≤ 0 "Determine the hardness of the final 

product Constraint-2"  

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 − 𝑦 = 0 "The amount of the final product should be equal to the 

amount of ingredients." 

𝑥𝑖 ≥ 0 ∀𝑖, 𝑦 ≥ 0.   
 

4.2 Solving the problem by python with pulp functions: 

     In order to start the blending problem model with python, we will import all of the pulp 

module's classes and functions to construct a new model object with the Model class and then 

identify the raw of material types: 
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from pulp import * 

# List (Type of Rawmaterials) 

Rawmaterialtypes = ["BRE1", "BRE2", "WES1", "WES2", "WES3"] 

Products = "Y" 

# Paramters and Data 

cost = {"BRE1":85,"BRE2":91,"WES1":95, "WES2":85, "WES3":90} 

Hardness = {"BRE1":7.8,"BRE2":5.1,"WES1":1.5, "WES2":3.5, "WES3":4.0} 

# Setting the Problem 

prob = LpProblem("Blending Problem", LpMaximize) 

 

Decision variables:  According to the optimization strategy, the technology must be of two 

parts, the first is to identify the decision variables and then formulate the model  as follows: 

1. xj = Quantities (barrels) of BRE1, BRE2, WES1, WES2, WES3 (i.e. raw material) that 

must be purchased, refined, and blended in a single day 

2. y = The amount of product to be made 

 

In this step, we will define the decision variables. In our problem, we have two variables 

ingredient-1 and ingredient-2. Let’s create them using LpVariable.dicts.   

 

# Desicion Variables 

x_var = LpVariable.dicts("RawMaterial", Rawmaterialtypes, 0, None) 

y_var = LpVariable.dicts("Product", Products, 0, None) 

# Objective Function 

prob += lpSum(120*y_var[i] for i in Products) - lpSum(cost[i]*x_var[i] for i in 

Rawmaterialtypes) 

 

Define the constraints and solving the model: The term constraint refers to the restriction on 

the values of the decision variables. A linear constraint, for example, stipulates that a linear 

expression on a set of variables must have a value that is less-than-or-equal, greater-than-or-

equal, or equal to another linear expression. Finally, solving the model by call the optimize 

method to address the LP problem. Using the for loop below, we can output the final value. 

# Constraints 

prob += lpSum(x_var[i] for i in Rawmaterialtypes[:2])<=400 

prob += lpSum(x_var[i] for i in Rawmaterialtypes[2:])<=500 

prob += lpSum(Hardness[i]*x_var[i] for i in Rawmaterialtypes) - lpSum(2*y_var[i] for i in 

Products) >= 0 

prob += lpSum(Hardness[i]*x_var[i] for i in Rawmaterialtypes) - lpSum(5*y_var[i] for i in 

Products) <= 0 

prob += lpSum(x_var[i] for i in Rawmaterialtypes) - lpSum(y_var[i] for i in Products) == 0 

prob.solve() 

print("Solution Status = ", LpStatus[prob.status]) 

# Print the solution of the Decision Variables 

for v in prob.variables(): 

    if v.varValue>0: 

        print(v.name, "=", v.varValue) 

# Print Optimal 

print("Total Profit = ", value(prob.objective)) 
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5. Results and discussion 

     The current optimization model has proven effective in maximizing profits according to the 

objective function and meeting potential constraints by mixing different raw materials. After 

running the optimization strategy using the Python language, the results shown in Table 3 were 

obtained. the optimal objective value with time is 30677.77778 - 4 iterations time 0.002 and 

the state of the solution according to what has been prepared is optimal. In addition, the quantity 

of production Y is 900 barrels and the amount of raw materials to be used (RawMaterial_BRE1, 

RawMaterial_BRE2, RawMaterial_WES2) are (262.96296, 137.03704, 500.0) barrels 

respectively so we can get the total profit 30677.77776000001. 

 

Table 3: Optimal Production Quantities. 

Target Result 

Optimal - objective value 30677.778 

Optimal objective with time 30677.77778 - 4 iterations time 0.002 

Solution Status Optimal 

Product_Y 900 

RawMaterial_BRE1 262.96296 

RawMaterial_BRE2 137.03704 

RawMaterial_WES2 500.0 

Total Profit 30677.77776000001 

 

Figure 2 shows the distribution of raw materials, including the required optimal limits, in 

addition to the target product. The colored bars depict the allocations of raw materials required 

to produce the targeted product, showing the dominance of some raw materials over others in 

the production process. We also imagine the main substance that had a significant impact on 

the production of product Y, which was represented by substance WES2, while the role of the 

other substances BRE1 and BRE2 comes as complementary  roles in achieving the optimal mix 

for production. 

 
Figure 2: Optimal Production Quantities. 

 

Figure. 3 provides compelling evidence in verifying the feasibility of the solution, as it shows 

compliance with the required hardness restrictions according to the target product. It shows the 

hardness values calculated for the assumptions of the final quantities of optimal raw materials 

and how these hardness restrictions are met within the specified range. 
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Figure 3: Hardness Constraint. 

 

Finally, the results obtained mathematically confirm that the optimal solution not only 

increases profitability, but that the methodology also demonstrates strict adherence and 

compliance with the basic constraints, and thus we have achieved the desired goals of the 

optimization process. 

 

6. Conclusions 

     The mixing problem has been investigated in detail, starting with the formulation of the 

problem and ending with the implementation using the Python pulp’s library. Actually, by 

harnessing the computational power of the Python language, the effective capabilities of linear 

programming methodologies in facing complex challenges have been proven, making many 

leaps forward in the field of manufacturing improvement. In addition, the mixing problem was 

employed according to our approach, which is related to obtaining a total net profit without 

dispersion according to the requirements, which in our research was related to mixing raw 

materials from oil to obtain our product. The amount that must be obtained from each element 

and mixed with other elements has been determined so that the properties of the mixture fall 

within the required standards according to the objective function. Finally, we solved the mixing 

problem in Python using linear programming as we reached the optimal results in the least time 

and the highest possible value. Future work could include several directions in exploring the 

optimization process. For example, we mention the constraints of sustainability and dynamic 

cost, in addition to the supply chain. Implementing an improvement approach in these areas 

leads to the possibility of obtaining a more robust, adaptable and efficient improvement model, 

which results in achieving the desired goals of maximizing profit while ensuring quality and 

sustainability of production processes. 
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