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Abstract  

     This paper discussed fear and predator-dependent refuges in a harvested prey-

predator model with disease in predator with using the relationship between a 

predator's consumption of prey and the presence of fear in the prey in the existence 

of an infected predator  in the environment. The solution was consistently limited in 

order to assure the availability of a solution due to the availability of conditions. The 

solution points for the system were also found, and the conditions for the approach 

of estimating the solution has been studied stability. We studied the bifurcation of the 

system and illustrate that it works. This research examined the effect of harvest factor 

on prey impact, as well as the combined influence of death in the unwell predator and 

the harvest of its available resources. It makes a major effect on the outcome of the 

system. The outcomes obtained by varying the parameters are displayed in numerical 

work. And theoretical solution was confirmed using Mathematica graphing. 
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المفترسة مع المرض  -المفترس المعتمد على ديناميكيات حصاد نموذج الفريسة  وملجأتأثير الخوف 
 في المفترس 

 

 *  داليا خالد بهلولحسين صباح عبدالله , 
 كلية العلوم، جامعة بغداد، بغداد، العراق  قسم الرياضيات، 

 
                                                                                                        الخلاصة   

ناقش هذا البحث الخوف والملاجئ المعتمدة على المفترس في نموذج الفريسة المفترسة المصابة بالمرض مع  
استخدام العلاقة بين استهلاك المفترس للفريسة ومدى توفر الخوف لدى الفريسة في وجود مفترس مصاب في  

وضع قيد للنظام لضمان الحل بشكل مستمر للتأكد من توفر الحل نظرا لتوفر الشروط، كما تم العثور    . تمالبيئة
وضحنا    التشعب للنظام. قمنا دراسة  استقرارية الحل على نقاط الحل للنظام، وتمت دراسة شروط منهج تقدير  

هذا البحث تأثير عامل الحصاد على تأثير الفريسة، بالإضافة إلى تأثير المشترك للموت    وتناول .عملهطريقة  
وارد المتاحة له لما له تأثير كبير على نتيجة النظام. تم عرض النتائج التي تم  في المفترس المريض وحصاد الم

الحصول عليها عن طريق تغيير المعلمات في الشغل العددي. وتم تأكيد الحل النظري باستخدام الرسم البياني  
 ماثيماتيكا.
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1. Introduction  

     Predator-prey relationships can be affected by many factors, such as supply of resources, 

infectious diseases, refuge and harvesting. These factors have a substantial impact on the 

dynamics of prey-predator interactions in the real world. In order to understand the prey-

predator system, mathematical equations must be formulated for them and these factors must 

consider since they have a significant role in the system. One of the basic factors is the presence 

of the refuge. It is a place that gives prey safety from predators, and when it is added to the 

mathematical model, we will study its effect on the system, as increasing refuges lead to the 

prey growing more and more, for example the authors in [1] examined the food chain model 

that provides a prey refuge and an additional source of food to investigate the stability of the 

system. It is necessary to take into account the consequences of the presence of a refuge, and 

this is what has been seen in studies [2 - 5]. Also, other studies, in addition to the presence of 

the shelter, studied the effect of the harvested with it [6 - 10]. In addition, another study was 

conducted to find out the probability of local bifurcation happening near the equilibrium points 

[11]. 

 

     In order to understand predator-prey dynamics, it is essential to recognize that the fear 

factor, which has a major impact on the system, is one of the most important factors. A number 

of researchers have investigated the influence of fear on the prey-predator system. For instance, 

see [12 - 15]. It can be seen from the studies in [16 - 18] that different functional responses 

were discussed in predator-prey models where the Alee effect is present. In [19 - 21], authors 

talked about Leslie-Gower predator–prey models using a different functional response 

incorporating refuges into the models. 

 

     Relationships between predators and prey can also be influenced by infectious diseases. 

Disease outbreaks can cause a rapid decline in the populations of prey species. Consequently, 

this may result in a decrease in predator numbers, as they depend on the prey for survival. This 

is what has been discussed and studied in  [22-26]. Keeping the limitation of infectious diseases 

is necessary for keeping predator-prey dynamics. This can be achieved by carefully tracking 

and quickly noticing diseases in both the animals that are hunted and the animals that hunt 

them, adopting restrictions if necessary, and supporting healthy environments and ecosystems 

to reduce the propagation of diseases. 

 

     The rest of the arrangement of the research paper goes as follows: The next section relates 

to mathematical results relating to the model system (1) from Sections 1-4. We mainly 

investigate the importance of prey hunting and the cooperative fear factor. After that, we found 

the stability points and studied the conditions for their stability, existence, and globalization. 

After that, in Sections 5-6-7, we discussed the bifurcation and its  occurrence possibility. 

Numerical simulations are performed in Section 8 to confirm the existing analytical findings. 

At last, we complete the paper with a brief conclusion in Section 9.  

 

2. Model description 

     An ecological system consisting of three species is examined using a prey-predator model. 

A linear form of functional response is used by the prey to be consumed by the susceptible, 

infected predator. The modeling investigation intends to examine the dynamics of a prey-

predator model that is affected by harvesting and the existence of disease in the predator 

population. The impact caused by fear and predator-dependent refuge on the dynamics of a 

prey-predator model was focused on in the present investigation. The following nonlinear 

ordinary differential equations are required for the description of this ecological model's 
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𝑑𝒳

𝑑𝒯
=

𝑟𝒳

1+µ𝒴
(1 −

𝒳

𝑘
) − 𝛽(1 − 𝛼𝒴)𝒳𝒴 − 𝑞1𝘌1𝒳, 

     
𝑑𝒴

𝑑𝒯
= 𝑒𝛽(1 − 𝛼𝒴)𝒳𝒴 − 𝑆𝒴𝒵 − 𝑑1𝒴 − 𝑞2𝘌2𝒴,                                              (1) 

     
𝑑𝒵

𝑑𝒯
= 𝑆𝒴𝒵 − 𝑑2𝒵 − 𝑞3𝘌3𝒵. 

 

     The populations of prey, susceptible predator, and infected predator are denoted 

as 𝒳(𝒯), 𝒴(𝒯) and 𝒵(𝒯), respectively in the given equation. All the parameters in the system 

(1) are required to be non-negative. 

 

Table 1: Biological significance of each parameter. 

Parameter Description 

r Growth rate of the prey. 

µ Fear rate of prey species. 

𝛽 Attack rate of susceptible predator. 

𝑒 Conversion rate of prey biomass to predator biomass. 

(1 − 𝛼𝒴) 
Predator-dependent refuge rates, where 𝛼 denotes the coefficient of 

prey refuge in (0, 1) with 𝒴 <
1

𝛼
 . 

𝑘 Carrying capacity. 

𝑑1 , 𝑑2 The mortality rates of susceptible predator and infected predator, subsequently. 

𝑞1 , 𝑞2, 𝑞3 
The catchability constant of prey, susceptible predator and infected predator, 

subsequently. 

𝘌1 , 𝘌2, 𝘌3 Harvesting effort of prey, susceptible predator and infected predator, subsequently. 

𝑆 Infection rate of the predator. 

 

3. Dimensionless aspect of the model 

     To convert a model into a dimensionless form, dimensionless quantities must be used to 

express the system. This strategy has several benefits. First, it streamlines the analytical process 

by reducing the number of parameters. Second, it makes it possible to compare parameters 

more effectively in terms of their magnitudes, which facilitates deeper system insights. 

Furthermore, it makes comparing various systems easier. Therefore, the following formulation 

of equation (1) is possible: 

     
𝑑𝑥

𝑑𝑡
= 𝑥𝑓1(𝓍, 𝑦, 𝑧), 

     
𝑑𝑦

𝑑𝑡
= 𝑦𝑓2(𝑥, 𝑦, 𝑧),                                                                                                 (2) 

     
𝑑𝑧

𝑑𝑡
= 𝑧𝑓3(𝑥, 𝑦, 𝑧)                                                                      

where 

      𝑓1(𝑥, 𝑦, 𝑧) =
1

1+𝑤0𝑦
(1 − 𝑥) − (1 − 𝑤1𝑦)𝑦 − 𝑤2, 

      𝑓2(𝑥, 𝑦, 𝑧) = 𝑤3(1 − 𝑤1𝑦)𝑥 − 𝑤4𝑧 − (𝑤5 + 𝑤6), 
      𝑓3(𝑥, 𝑦, 𝑧) = 𝑤4𝑦 − (𝑤7 + 𝑤8). 
With the dimensionless variables and parameters given by: 

     𝑡 = 𝑟𝒯 , 𝑥 =
1

𝑘
𝒳, 𝑦 =

𝛽

𝑟
𝒴 , 𝑧 =

𝛽

𝑟
𝒵,  

     𝑤0 =
µ𝑟

𝛽
,  𝑤1 =

𝛼𝑟

𝛽
,  𝑤2 =

𝑞1𝘌1

𝑟
,  𝑤3 =

𝑒𝑘𝛽

𝑟
, 

     𝑤4 =
𝑆

𝛽
, 𝑤5 =

𝑑1

𝑟
, 𝑤6 =

𝑞2𝘌2

𝑟
, 𝑤7 =

𝑑2

𝑟
, 𝑤8 = 

𝑞3𝘌3

𝑟
. 

 

Theorem 3.1. The solutions for the model (2) for all positive initial conditions 𝑥(0), 𝑦(0), 𝑧(0) 
are uniformly bounded.  
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Proof. From the first equation of system (2) 

     
𝑑𝑥

𝑑𝑡
= 𝑥 (

(1−𝑥)

1+𝑤0𝑦
− 𝑦(1 − 𝑤1𝑦) − 𝑤2), 

     
𝑑𝑥

𝑑𝑡
≤ (

1

1+𝑤0𝑦
− 𝑥) 𝑥 ≤ 𝑥(1 − 𝑥). 

Then solving the above differential inequality gives that 𝑥(𝑡) ≤ 1 as 𝑡 → ∞.  

Now, we define 𝑁(𝑡) = 𝑥(𝑡) +
1

𝑤3
𝑦(𝑡) +

1

𝑤3
𝑧(𝑡) , then 

           
𝑑𝑁

𝑑𝑡
≤ 𝑥(1 − 𝑥) − 𝑤2𝑥 −

(𝑤5+𝑤6)

𝑤3
𝑦 −

(𝑤7+𝑤8)

𝑤3
𝑧. 

                   ≤ 2 − 𝜇 [𝑥 +
1

𝑤3
𝑦 +

1

𝑤3
𝑧]. 

Where 𝜇 = min {(1 + 𝑤2), (𝑤5 + 𝑤6), (𝑤7 + 𝑤8)}.  This implies tha  

                 
𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 ≤

1

4
 . 

Again, by solving the final differential inequality, we have 𝑁 ≤
1

4𝜇
, for  𝑡 → ∞. 

Hence, the uniformly boundedness of system (2) confirms that it is valid.                              □ 

 

4. The equilibrium points 

By setting all the equations in the system (2) equal to zero and solving for the variables 

𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), we can determine the equilibrium points.  

       

𝑥𝑓1(𝑥, 𝑦, 𝑧) = 0,

𝑦𝑓2(𝑥, 𝑦, 𝑧) =  0

𝑧𝑓3(𝑥, 𝑦, 𝑧) = 0.

,                                                                      (3) 

Consequently, the following solutions equilibrium points are obtained: 

The evanescence equilibrium point, 𝑄0 = (0,0,0), always exists.  

The axial equilibrium point, 𝑄𝑥 = (𝑥̂, 0,0), where: 

 

     𝑥̂ = 1 − 𝑤2.                                                                                                      (4)  

 

Direct computation shows that the positive root exists uniquely, and hence there is a unique 

point, say 𝑄𝑥 inside the first quadrant of 𝑥 − 𝑝𝑙𝑎𝑛𝑒, if sufficient condition is fulfilled 

     1 > 𝑤2,                                                                                                    (5) 

 

the infected predator -free equilibrium point, 𝑄𝑥𝑦 = (𝑥̆, 𝑦̆, 0), where 

     𝑥̆ =
𝑤5+𝑤6

𝑤3(1−𝑤1𝑦̆)
 .                                                                                                 (6)  

While 𝑦̆  is a solution with a positive value for the 4𝑡ℎ degree equation, 

        𝜍1𝑦
4 + 𝜍2𝑦

3 + 𝜍3𝑦
2 + 𝜍4𝑦

1 + 𝜍5 = 0, 

where 

     𝜍1 = −(𝑤0𝑤1
2𝑤3), 

     𝜍2 = 2𝑤0𝑤1𝑤3 − 𝑤1
2𝑤3 = 𝑤1𝑤3(2𝑤0 − 𝑤1), 

     𝜍3 = 𝑤0𝑤1𝑤2𝑤3 + 2𝑤1𝑤3 − 𝑤0𝑤3, 

     𝜍4 = 𝑤1𝑤2𝑤3 − 𝑤0𝑤2𝑤3 − 𝑤1𝑤3 − 𝑤3, 

     𝜍5 = 𝑤3 −𝑤2𝑤3 − 𝑤5 − 𝑤6. 

Calculation explicitly finds that there are either three or one positive roots of the above fourth-

order polynomial equation, depending on the given conditions. Therefore, there exist three or 

one equilibrium point within the first quadrant of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 given that: 

      𝑦̆ <
1

𝑤1
,                                                                              (7a)  

      𝑤0 <
𝑤1

2
 ,                                                                       (7b) 

      0 <
𝑤5+𝑤6

1−𝑤2
< 𝑤3.                                                                      (7c) 
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     It is important to observe that condition (7a) ensures that 𝑥̆ is positive, while condition (7b) 

leads to 𝜍2 < 0 and 𝜍3 > 0. Finally, condition (7c) guarantees that 𝜍4 < 0 and 𝜍5 > 0 at the 

same time. 

 

The coexistence (positive) equilibrium point, 𝑄𝑥𝑦𝑧 = (𝑥̅, 𝑦̅, 𝑧̅), where 

      

𝑥̅ = 1 − 𝑤2 −
𝑤7+𝑤8

𝑤4
−
𝑤0𝑤2(𝑤7+𝑤8)

𝑤4
−
𝑤0(𝑤7+𝑤8)

2

𝑤4
2

+
𝑤1(𝑤7+𝑤8)

2

𝑤4
2 +

𝑤0𝑤1(𝑤7+𝑤8)
3

𝑤4
3

𝑦̅ =
𝑤7+𝑤8

𝑤4
                                                                       

𝑧̅ =
1

𝑤4
(𝑤3 (1 −

𝑤1(𝑤7+𝑤8)

𝑤4
) 𝑥̅ − (𝑤5 + 𝑤6))       }

  
 

  
 

.                                               (8) 

Direct computation shows that the positive root exists uniquely, and hence there is a unique 

point, say 𝑄𝑥𝑦𝑧 inside the first quadrant of 𝑥𝑦𝑧 − 𝑝𝑙𝑎𝑛𝑒, if sufficient conditions are fulfilled 

     
𝑤7+𝑤8

𝑤4
+
𝑤0𝑤2(𝑤7+𝑤8)

𝑤4
+
𝑤0(𝑤7+𝑤8)

2

𝑤4
2 < 1 +

𝑤1(𝑤7+𝑤8)
2

𝑤4
2 +

𝑤0𝑤1(𝑤7+𝑤8)
3

𝑤4
3 ,       (9a) 

    (𝑤5 + 𝑤6) < 𝑤3 (1 −
𝑤1(𝑤7+𝑤8)

𝑤4
) 𝑥̅.                                     (9b)  

     

5. Local stability analysis 

     We examine the local stability of every equilibrium point by utilizing the Jacobian matrix 

and determining the eigenvalues near each point. The Jacobian matrix  𝐻 for three-dimensional 

systems can be determined by: 

                 𝐻(𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑓1 + 𝑥

𝜕𝑓1

𝜕𝑥
𝑥
𝜕𝑓1

𝜕𝑦
𝑥
𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑓2 + 𝑦

𝜕𝑓2

𝜕𝑦
𝑦
𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧
𝜕𝑓3

𝜕𝑦
𝑓3 + 𝑧

𝜕𝑓3

𝜕𝑧 ]
 
 
 
 

.                     (10) 

where 

      
𝜕𝑓1

𝜕𝑥
= −

1

1+𝑤0𝑦
, 
𝜕𝑓1

𝜕𝑦
= 2w1𝑦 − 1 −

𝑤0(1−𝑥)

(1+𝑤0𝑦)2
 , 

     
𝜕𝑓1

𝜕𝑧
= 0 , 

𝜕𝑓2

𝜕𝑥
= 𝑤3(1 − 𝑤1𝑦), 

𝜕𝑓2

𝜕𝑦
= −w1𝑤3𝑥, 

     
𝜕𝑓2

𝜕𝑧
= −𝑤4, 

𝜕𝑓3

𝜕𝑥
= 0, 

𝜕𝑓3

𝜕𝑦
= w4, 

𝜕𝑓3

𝜕𝑧
= 0. 

 

     By replacing the equilibrium points mentioned above individually in the Jacobian matrix 

𝐻(𝑥, 𝑦, 𝑧) and subsequently calculating their eigenvalues, it can be noted that: 

The eigenvalues of the Jacobian matrix (10) at the evanescence equilibrium point (𝑄0) are (1 −
𝑤2, −(𝑤5 + 𝑤6),−(𝑤7 + 𝑤8)), which means 𝑄0 will be local asymptotic stability if and only 

if the next condition is achieved: 

     1 < 𝑤2.                                                                         (11)  

The eigenvalues of the Jacobian matrix (10) at the axial equilibrium point (𝑄𝑥) are computed 

as: 

     𝜆11 = −𝑥̂ ,  𝜆12 = 𝑤3𝑥̂ − (𝑤5 + 𝑤6) ,  𝜆13 = −(𝑤7 + 𝑤8).                         (12)  

Therefore, 𝑄𝑥 is local asymptotic stability if and only if the following conditions is met: 

     𝑥̂ <
𝑤5+𝑤6

𝑤3
.                                                                    (13) 

The Jacobian matrix can be expressed in terms of the equilibrium point where infected 

predators are absent: 
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𝐻(𝑄𝑥𝑦) = [

−
𝑥̆

1+𝑤0𝑦̆
𝑥̆ (2𝑤1𝑦̆ − 1 −

𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)2
) 0

𝑤3𝑦̆(1 − 𝑤1𝑦̆) −𝑤1𝑤3𝑥̆𝑦̆ −𝑤4𝑦̆
0 0 𝑤4𝑦̆ − (𝑤7 + 𝑤8)

].                   (14) 

The equation that describes the characteristics equation of 𝐻(𝑄𝑥𝑦) can be represented in the 

following form: 

     (𝜆2 − 𝑇𝑥𝑦𝜆 + 𝐷𝑥𝑦)(𝑤4𝑦̆ − (𝑤7 + 𝑤8) − 𝜆) = 0,                               (15) 

 

where: 

           𝑇𝑥𝑦 = −
𝑥̆

1+𝑤0𝑦̆
− 𝑤1𝑤3𝑥̆𝑦̆ , 

     𝐷𝑥𝑦 =
𝑥̆

1+𝑤0𝑦̆
(𝑤1𝑤3𝑥̆𝑦̆) − 𝑤3𝑥̆𝑦̆ (2𝑤1𝑦̆ − 1 −

𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)2
) (1 − 𝑤1𝑦̆).  

Consequently, the eigenvalues of the matrix 𝐻(𝑄𝑥𝑦) are identified as 𝜆2𝑖 =
𝑇𝑥𝑦

2
±

1

2
√𝑇𝑥𝑦

2 − 4𝐷𝑥𝑦, for 𝑖 = 1,2 and 𝜆23 = 𝑤4𝑦̆ − (𝑤7 + 𝑤8). Hence, if the following conditions 

are met, all eigenvalues will possess negative real parts, indicating that 𝑄𝑥𝑦 is locally 

asymptotically stable. 

     𝑦̆ <
(𝑤7+𝑤8)

𝑤4
.                                                             (16a) 

     𝑦̆ <
1

2𝑤1
(1 +

𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)2
).             (16b) 

 

Theorem 5.1. The coexistence equilibrium point of system (2) will be locally asymptotically 

stable if the conditions listed below are satisfied. 

     𝑦̅ <
1

2𝑤1
(1 +

𝑤0(1−𝑥̅)

(1+𝑤0𝑦̅)2
).              (17) 

Proof. The Јacobian matrix of the system (2) for 𝑄𝑥𝑦𝑧 = (𝑥̅, 𝑦̅, 𝑧̅), can be written as: 

     𝐻(𝑄𝑥𝑦𝑧) = [𝑎𝑖𝑗]3×3,                                                                 (18) 

where:  

     𝑎11 = −
𝑥̅

1+𝑤0𝑦̅
, 𝑎12 = 𝑥̅ (2𝑤1𝑦̅ − 1 −

𝑤0(1−𝑥̅)

(1+𝑤0𝑦̅)2
),  

     𝑎13 = 0 ,  𝑎21 = 𝑤3𝑦̅(1 − 𝑤1𝑦̅) ,  𝑎22 = −𝑤1𝑤3𝑥̅𝑦̅, 

     𝑎23 = −𝑤4𝑦̅ ,  𝑎31 = 0 ,  𝑎32 = 𝑤4𝑧 ,  𝑎33 = 0. 

Hence, the characteristic equation of 𝐻(𝑄𝑥𝑦𝑧) can be expressed as: 

     𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0,                                                                   (19) 

where 

     𝐴 = −(𝑎11 + 𝑎22) , 
     𝐵 = 𝑎11𝑎22 − 𝑎12𝑎21 − 𝑎23𝑎32, 

     𝐶 = 𝑎32𝑎11𝑎23. 

with 

                 ∆= 𝐴𝐵 − 𝐶 = −(𝑎11 + 𝑎22)(𝑎11𝑎22 − 𝑎12𝑎21) + 𝑎22𝑎23 𝑎32 . 
 

     It should be noted that applying the Routh-Hurwitz criterion [27] requires satisfying the 

conditions 𝐶 > 0, 𝐴 > 0 with ∆> 0,  which guarantees all the solutions to the equation (19) 

contain real that are negative parts. By performing direct calculations, it can be shown that 

condition (17) is sufficient to satisfy the conditions needed for the Routh-Hurwitz criterion. 

Consequently, 𝑄𝑥𝑦𝑧 achieves local asymptotic stability.                                                  □ 
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6. Global stability  

     In this section, the method of the Lyapunov function is employed to determine the basin of 

attraction associated with each locally asymptotically stable point in the domain ℝ+
3 . If the 

basin of attraction for an equilibrium point encompasses the whole domain ℝ+
3 , it is considered 

globally asymptotically stable. As given in the following theorems. 

Theorem 6.1. The local asymptotic stability of 𝑄0 implies its global asymptotic stability if the 

condition (11) is satisfied.                                                                                                   

Proof. The real-valued function  W1 = k1x + k2y + k3z is defined. By performing direct 

calculations, it can be shown that W1:𝑀1 → ℝ,  when 𝑀1 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥

0}. 
Consequently, this implies W1(𝑄0) = 0, and  W1(𝑥, 𝑦, 𝑧) > 0, for every (𝑥, 𝑦, 𝑧) ∈ 𝑀1 − 𝑄0. 

Furthermore, simple calculations yield that: 

          
𝑑W1

𝑑𝑡
= k1

𝑑𝑥 

𝑑𝑡
+ k2

𝑑𝑦 

𝑑𝑡
+ k3

𝑑𝑧 

𝑑𝑡
, 

          
𝑑𝑊1

𝑑𝑡
≤ −𝑘1(𝑤2 − 1)𝑥 −

𝑘1𝑥
2

1+𝑤0𝑦
− (𝑘1 − 𝑘2𝑤3)(1 − 𝑤1𝑦)𝑥𝑦 

                     − 𝑘2(𝑤5 + 𝑤6)𝑦 − 𝑘3(𝑤7 + 𝑤8)𝑧.           

By choosing positive constant values as k1 = 1 , and k2 = 𝑘3 = 
1

 𝑤3
,   the following results are 

obtained: 

         
𝑑W1

𝑑𝑡
≤ −(𝑤2 − 1)𝑥 − (

𝑤5+𝑤6

𝑤3
) 𝑦 − (

𝑤7+𝑤8

𝑤3
) 𝑧. 

Therefore, from condition (5) imply that 
𝑑W1

𝑑𝑡
< 0. As a result, 𝑄0 exhibits global asymptotic 

stability.                                                                                                                                 □                                                               

 

Theorem 6.2. The local asymptotic stability of 𝑄𝑥 implies its global asymptotic stability if the 

condition outlined below is satisfied. 

          𝑥̂ <
𝑤5+𝑤6

𝑤3(2𝑤0+1)
.                                                                          (20) 

 

Proof. The real-valued function W2 = q1 ∫
𝑢−𝑥̂

𝑢

𝑥

𝑥̂
𝑑𝑢 + q2𝑦 + q3𝑧 is defined. By performing 

direct calculations, it can be shown that W2:𝑀2 → ℝ, when 𝑀2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 ≥

0, 𝑧 ≥ 0}. Consequently, this implies W2(𝑄𝑥) = 0, and W2(𝑥, 𝑦, 𝑧) > 0 for every (𝑥, 𝑦, 𝑧) ∈
𝑀2 − 𝑄𝑥. Furthermore, simple calculations yield that: 

        
𝑑W2

𝑑𝑡
= q1 (

𝑥−𝑥̂

𝑥
)
𝑑𝑥 

𝑑𝑡
+ q2

𝑑𝑦 

𝑑𝑡
+ q3

𝑑𝑧 

𝑑𝑡
. 

Employing direct computation leads to the following outcome: 

                    
𝑑𝑤2

𝑑𝑡
≤ −𝑞1

(𝑥−𝑥̂)2

1+𝑤0𝑦
− 𝑞1

𝑤0(1−𝑥̂)𝑦(𝑥−𝑥̂)

1+𝑤0𝑦
− 𝑞1(1 − 𝑤1𝑦)𝑥𝑦 + 𝑞1(1 − 𝑤1𝑦)𝑥̂𝑦 

                               +𝑞2𝑤3(1 − 𝑤1𝑦)𝑥𝑦 − 𝑞2𝑤4𝑦𝑧 − 𝑞2(𝑤5 + 𝑤6)𝑦 + 𝑞3𝑤4𝑦𝑧 

                               −𝑞3(𝑤7 + 𝑤8)𝑧. 

Now, by choosing positive constant values as 𝑞1 = 1  and 𝑞2 = 𝑞3 =
1

 𝑤3
, the following results 

are obtained  

         
𝑑𝑊2

𝑑𝑡
≤ −

(𝑥−𝑥̂)2

1+𝑤0𝑦
− (

(𝑤5+𝑤6)

𝑤3
− (2𝑤0 + 1)𝑥̂) 𝑦 −

(𝑤7+𝑤8)

𝑤3
. 

Note that, 
𝑑𝑊2

𝑑𝑡
 is a negative definite function, and hence the proof is complete.              □             

 

Theorem 6.3. Assume that there is only one equilibrium point 𝑄𝑥𝑦 that is locally stable, then 

it has a basin of attraction that satisfies the following conditions. 

          
1

1+𝑤0𝑦
+
𝐿

2
> 0,            (21a) 
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         𝑤1𝑥̆ +
𝐿

2
> 0.                  (21b) 

 

Proof. The real-valued function W3 = m1 ∫
𝑢−𝑥̆

𝑢

𝑥

𝑥̆
𝑑𝑢 +m2 ∫

𝑣−𝑦̆

𝑣

𝑦

𝑦̆
𝑑𝑣 + m3𝑧 is defined. By 

performing direct calculations, it can be shown that W3:𝑀3 → ℝ, when 𝑀3 = {(𝑥, 𝑦, 𝑧) ∈

ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0}. Consequently, this implies W3(𝑄𝑥𝑦) = 0, and W3(𝑥, 𝑦, 𝑧) > 0 for 

every (𝑥, 𝑦, 𝑧) ∈ 𝑀3 − 𝑄𝑥𝑦. Furthermore, simple calculations yield that: 

                    
𝑑W3

𝑑𝑡
= m1 (

𝑥−𝑥̆

𝑥
)
𝑑𝑥 

𝑑𝑡
+m2 (

𝑦−𝑦̆

𝑦
)
𝑑𝑦 

𝑑𝑡
+m3

𝑑𝑧 

𝑑𝑡
. 

By employing direct computation incorporating the principle of maximizing, and using the 

upper bound constant of the variables 𝑥 and 𝑦 leads to the following outcome: 

        
𝑑𝑊3

𝑑𝑡
= m1(𝑥 − 𝑥̆) (

(1−𝑥)(1+𝑤0𝑦̆)−(1−𝑥̆)(1+𝑤0𝑦)

(1+𝑤0𝑦̆)(1+𝑤0𝑦)
− (1 − 𝑤1(𝑦 − 𝑦̆))(𝑦 − 𝑦̆)) 

                   +m2(𝑦 − 𝑦̆)( 𝑤3(1 − 𝑤1𝑦)(𝑥 − 𝑥̆) − 𝑤1𝑤3𝑥̆(𝑦 − 𝑦̆)  − 𝑤4𝑧) 
                   +𝑚3𝑤4𝑦𝑧 − 𝑚3(𝑤7 + 𝑤8)𝑧. 

Now, by choosing positive constant values as 𝑚1 = 1  and 𝑚2 = m3 =
1

 w3
 , the following 

results are obtained  

                    
𝑑𝑊3

𝑑𝑡
= −

(𝑥−𝑥̆)2

1+𝑤0𝑦
− 𝑤1𝑥̆(𝑦 − 𝑦̆)

2 − (
𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)(1+𝑤0𝑦)
− 𝑤1𝑦̆) (𝑥 − 𝑥̆)(𝑦 − 𝑦̆) 

                               −(
(𝑤7+𝑤8)

𝑤3
−
𝑤4

𝑤3
𝑦̆) 𝑧. 

Let  𝐿 =
𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)(1+𝑤0𝑦)
− 𝑤1𝑦̆ 

        ≤ −
(𝑥−𝑥̆)2

1+𝑤0𝑦
− 𝑤1𝑥̆(𝑦 − 𝑦̆)

2 −
𝐿

2
(𝑥 − 𝑥̆)2 −

𝐿

2
(𝑦 − 𝑦̆)2 − (

(𝑤7+𝑤8)

𝑤3
−
𝑤4

𝑤3
𝑦̆) 𝑧 

         ≤ −(
1

1+𝑤0𝑦
+
𝐿

2
) (𝑥 − 𝑥̆)2 − (𝑤1𝑥̆ +

𝐿

2
) (𝑦 − 𝑦̆)2 − (

(𝑤7+𝑤8)

𝑤3
−
𝑤4

𝑤3
𝑦̆) 𝑧. 

 

Note that, 
𝑑𝑊3

𝑑𝑡
 is a negative definite function in the region that satisfies the given conditions, 

and hence the proof is complete.                                                                                         □                                                                         

                                                                                            
Theorem 6.4. If the conditions outlined below are satisfied, the local asymptotic stable point 

𝑄𝑥𝑦𝑧 has the basin of attraction satisfies the following conditions.  

        
1

1+𝑤0𝑦
+
𝑀

2
> 0.                (22a) 

        𝑤1𝑥̅ +
𝑀

2
> 0.             (22b) 

 

Proof. The real-valued function  W4 = p1 ∫
𝑢−𝑥̅

𝑢

𝑥

𝑥̅
𝑑𝑢 + p2 ∫

𝑣−𝑦̅

𝑣

𝑦

𝑦̅
𝑑𝑣 + p3 ∫

𝑐−𝑧̅

𝑐

𝑧

𝑧̅
𝑑𝑐 is defined. 

By performing direct calculations, it can be shown that W4:𝑀4 → ℝ, when 𝑀4 =
{(𝑥, 𝑦, 𝑧) ∈ ℝ+

3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}, holds. Consequently, this implies W4(𝑄𝑥𝑦𝑧) = 0, and  

W4(𝑥, 𝑦, 𝑧) > 0, for every (𝑥, 𝑦, 𝑧) ∈ 𝑀4 − 𝑄𝑥𝑦𝑧. Furthermore, simple calculations yield that: 

      
𝑑𝑊4

𝑑𝑡
= p1 (

𝑥−𝑥̅

𝑥
)
𝑑𝑥 

𝑑𝑡
+ p2(

𝑦−𝑦̅

𝑦
)
𝑑𝑦 

𝑑𝑡
+ p3 (

𝑧−𝑧̅

𝑧
)
𝑑𝑧 

𝑑𝑡
. 

Likewise, a direct calculation that results in: 

      
𝑑𝑊4

𝑑𝑡
= p1(𝑥 − 𝑥̅) (

(1−𝑥)(1+𝑤0𝑦̅)−(1−𝑥̅)(1+𝑤0𝑦)

(1+𝑤0𝑦̅)(1+𝑤0𝑦)
− (1 − 𝑤1(𝑦 − 𝑦̅))(𝑦 − 𝑦̅)) 

                 +p2(𝑦 − 𝑦̅)(( 𝑤3(1 − 𝑤1𝑦)(𝑥 − 𝑥̅) − 𝑤1𝑤3𝑥̅(𝑦 − 𝑦̅)  − 𝑤4(𝑧 − 𝑧̅)) 
                 +p3𝑤4(𝑧 − 𝑧̅) (𝑦 − 𝑦̅). 
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By choosing positive constant values as 𝑝1 = 1,  and 𝑝2 = p3 =
1

 𝑤3
 , the following results are 

obtained: 

      
𝑑𝑊4

𝑑𝑡
= −

(𝑥−𝑥̅)2

1+𝑤0𝑦
− 𝑤1𝑥̅(𝑦 − 𝑦̅)

2 − (
𝑤0(1−𝑥̅)

(1+𝑤0𝑦̅)(1+𝑤0𝑦)
− 𝑤1𝑦̅) (𝑥 − 𝑥̅)(𝑦 − 𝑦̅). 

 Let  𝑀 =
𝑤0(1−𝑥̅)

(1+𝑤0𝑦̅)(1+𝑤0𝑦)
− 𝑤1𝑦̅. 

           ≤ −
(𝑥−𝑥̅)2

1+𝑤0𝑦
− 𝑤1𝑥̅(𝑦 − 𝑦̅)

2 −
𝑀

2
(𝑥 − 𝑥̅)2 −

𝑀

2
(𝑦 − 𝑦̅)2. 

           ≤ −(
1

1+𝑤0𝑦
+
𝑀

2
) (𝑥 − 𝑥̅)2 − (𝑤1𝑥̅ +

𝑀

2
) (𝑦 − 𝑦̅)2. 

Note that the derivative 
𝑑𝑊4

𝑑𝑡
 is a negative semi-definite. Since the equilibrium point 𝑄𝑥𝑦𝑧 is a 

unique invariant set within the set of point that satisfies 
𝑑𝑊4

𝑑𝑡
= 0, hence, with the help of 

LaSalle's invariant set theorem [28] the proof is complete.             □ 

 

7. Local bifurcation 

System (2) can be reformulated using Sotomayor's theorem [27] to examine the local 

bifurcation that may arise near the non-hyperbolic equilibrium point. The objective is to 

understand the impact of variable variations on the dynamic behavior of the system. Now, let's 

rephrase system (2) in the following manner. 

To rewrite System (2), it is necessary to express it as the derivative of 𝑋 concerning 𝑡, denoted 

as 
ⅆX

ⅆt
, which is equal to the function 𝐺(𝑋). Here, 𝑋 is a column vector (𝑥, 𝑦, 𝑧)𝑇, and 𝐺(𝑋) 

represents the column vector (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)
𝑇. Consequently, the second derivative of the 

Jacobian matrix can be expressed likewise with the following generic vector 𝑆 = (𝑠1, 𝑠2, 𝑠3)
𝑇: 

         𝐷2𝐺(𝑋). (𝑆, 𝑆) = [𝑒𝑖1]3×1 ,                                     (23) 

where 

         𝑒11 = −
2𝑠1
2

1+𝑦𝑤0
+ 2𝑥𝑠2

2(−
(−1+𝑥)𝑤0

2

(1+𝑦𝑤0)3
+ 𝑤1) + 2𝑠1𝑠2(−1 +

(−1+2𝑥)𝑤0

(1+𝑦𝑤0)2
+ 2𝑦𝑤1), 

                    𝑒21 = −2𝑠2(𝑥𝑠2𝑤1𝑤3 + 𝑠1(−1 + 2𝑦𝑤1)𝑤3 + 𝑠3𝑤4), 
                    𝑒31 = 2𝑠2𝑠3𝑤4. 

 

Theorem 7.1. The system (2) will exhibit a Transcritical bifurcation near the 𝑄0 if  𝑤2 passes 

the value 𝑤̌2 = 1. 

Proof. The form of the Jacobian matrix for system (2) at 𝑄0, when 𝑤2 = 𝑤̌2, can be represented 

as: 

        𝐻(𝑄0, 𝑤̌2) = [

0 0 0
0 −(𝑤5 + 𝑤6) 0
0 0 −(𝑤7 + 𝑤8)

]. 

 

Therefore, the eigenvalues of 𝐻(𝑄0, 𝑤̌2), can be expressed as 𝜆32 = −(𝑤5 + 𝑤6) < 0, 𝜆33 =
−(𝑤7 + 𝑤8) < 0 subject to condition (11), and 𝜆31 = 0. 

If we consider 𝑆̌ = (𝑠31, 𝑠32, 𝑠33)
𝑇 as the eigenvector of 𝐻(𝑄0, 𝑤̌2) corresponding to    𝜆̌31 =

0 , we can derive that 𝑆̌ = (𝑠31, 0,0)
𝑇, where 𝑠31 ≠ 0, 𝑠31 ∈ ℝ. 

If we consider 𝛹̌ = (𝛹31, 𝛹32, 𝛹33)
𝑇, to be the eigenvector of 𝐻(𝑄0, 𝑤̌2)

𝑇 related to  𝜆̌31 = 0, 

we can deduce that 𝛹̌ = (𝛹31, 0,0), is obtained, where 𝛹31 ≠ 0 and 𝛹31 ∈ ℝ. 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤2
= 𝐺𝑤2 = (−𝑥, 0,0)

𝑇 , we find that  𝐺𝑤2(𝑄0, 𝑤̌2) = (0,0,0)
𝑇. 

Consequently, when evaluating 𝛹̌𝑇[𝐺𝑤2(𝑄0, 𝑤̌2)] = 0. Additionally, direct computation 

demonstrates that: 
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          𝐷𝐺𝑤2(𝑄0, 𝑤̌2) = (
−1 0 0
0 0 0
0 0 0

) ⟹  𝐷𝐺𝑤5(𝑄0, 𝑤̌2)𝑆̌ = (−𝑠31, 0,0)
𝑇, 

Subsequently 𝛹̌𝑇[ 𝐷𝐺𝑤2(𝑄0, 𝑤̌2)𝑆̌] = −𝛹31𝑠31 ≠ 0. 

Upon examining equation (23), it can be noted that 

          [𝐷2𝐺(𝑄0, 𝑤̌2)( 𝑆̌, 𝑆̌)] = (
−2𝑠31

2

0
0

). 

thus 

          𝛹̌𝑇[𝐷2𝐺(𝑄0, 𝑤̌2)( 𝑆̌, 𝑆̌)] = −2𝛹31𝑠31
2 ≠ 0. 

Therefore, it can be concluded that a Transcritical bifurcation takes place as per Sotomayor's 

theorem, so the proof has been completed. 

 

Theorem 7.2. If the condition (13) is satisfied, the system (2) will exhibit a Transcritical 

bifurcation near the 𝑄𝑥 = (𝑥̂, 0,0) if  𝑤5 passes the value 𝑤̂5 = 𝑤3𝑥̂ − 𝑤6. 
 

Proof. The form of the Jacobian matrix for system (2) at 𝑄𝑥, when 𝑤5 = 𝑤̂5, can be represented 

as: 

        𝐻(𝑄𝑥, 𝑤̂5) = [
−𝑥̂ 𝑥̂(−1 − 𝑤0(1 − 𝑥̂)) 0
0 0 0
0 0 −𝑤7 − 𝑤8

] = (𝑑𝑖𝑗). 

 

Therefore, the eigenvalues of 𝐻(𝑄𝑥, 𝑤̂5), can be expressed as 𝜆11 = −𝑥̂, 𝜆13 = −(𝑤7 + 𝑤8) <
0 subject to condition (13), and 𝜆12 = 0. 

If we consider 𝑆̂ = (𝑠11, 𝑠12, 𝑠13)
𝑇 as the eigenvector of 𝐻(𝑄𝑥, 𝑤̂5) corresponding to    𝜆̂12 =

0 , we can derive that 𝑆̂ = (𝛿11𝑠12, 𝑠12, 0)
𝑇, where 𝑠12 ≠ 0, 𝑠12 ∈ ℝ, and 𝛿11 = −

𝑐12

𝑐11
< 0 , 

where 𝑐𝑖𝑗 are the elements of 𝐻(𝑄𝑥, 𝑤̂5). 

If we consider 𝛹̂ = (𝛹11, 𝛹12, 𝛹13)
𝑇, to be the eigenvector of 𝐻(𝑄𝑥, 𝑤̂5) 

𝑇 related to 

 𝜆̂12 = 0, we can deduce that 𝛹̂ = (0,𝛹12, 0), is obtained, where 𝛹12 ≠ 0 and 𝛹12 ∈ ℝ. 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤5
= 𝐺𝑤5 = (0,−𝑦, 0)

𝑇 , we find that 𝐺𝑤5(𝑄𝑥, 𝑤̂5) = (0,0,0)
𝑇. 

Consequently, when evaluating 𝛹̂𝑇[𝐺𝑤5(𝑄𝑥, 𝑤̂5)] = 0. Additionally, direct computation 

demonstrates that: 

          𝐷𝐺𝑤5(𝑄𝑥, 𝑤̂5) = (
0 0 0
0 −1 0
0 0 0

) ⟹  𝐷𝐺𝑤5(𝑄𝑥, 𝑤̂5)𝑆̂ = (0,−𝑠12, 0)
𝑇, 

Subsequently 𝛹̂𝑇[ 𝐷𝐺𝑤5(𝑄𝑥, 𝑤̂5)𝑆̂] = −𝛹13𝑠13 ≠ 0. 

Upon examining equation (23), it can be noted that 

          [𝐷2𝐺(𝑄𝑥, 𝑤̂5)( 𝑆̂, 𝑆̂)] = 

          (
−2𝑠12

2 (𝛿11 + 𝛿11
2 + (𝛿11 − 2𝛿11𝑥̂)𝑤0 + (−1 + 𝑥̂)𝑥̂𝑤0

2 − 𝑥̂𝑤1)

𝑠12
2 (2𝛿11𝑤3 − 2𝑥̂𝑤1𝑤3)

0

). 

thus 

          𝛹̂𝑇[𝐷2𝐺(𝑄𝑥, 𝑤̂5)( 𝑆̂, 𝑆̂)] = 𝛹12𝑠12
2 (2𝛿11𝑤3 − 2𝑥̂𝑤1𝑤3) ≠ 0. 

Therefore, it can be concluded that a Transcritical bifurcation takes place as per Sotomayor's 

theorem, so the proof has been completed. 

                                                                   □ 

Theorem 7.3. In the system (2) will demonstrate a Transcritical bifurcation near the 𝑄𝑥𝑦 =

(𝑥̆, 𝑦̆, 0), if 𝑤7 passes the value 𝑤̆7 = 𝑤4𝑦̆ − 𝑤8. 
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Proof. The form of the Jacobian matrix for system (2) at 𝑄𝑥𝑦, when 𝑤7 = 𝑤̆7, can be 

represented as: 

                     𝐻(𝑄𝑥𝑦, 𝑤̆7) = [
−

𝑥̆

1+𝑤0𝑦̆
𝑥̆ (2𝑤1𝑦̆ − 1 −

𝑤0(1−𝑥̆)

(1+𝑤0𝑦̆)2
) 0

𝑤3𝑦̆(1 − 𝑤1𝑦̆) −𝑤1𝑤3𝑥̆𝑦̆ −𝑤4𝑦̆
0 0 0

]. 

 

Therefore, the eigenvalues of 𝐻(𝑄𝑥𝑦, 𝑤̆7),  can be expressed as  𝜆2𝑖 =
𝑇𝑥𝑦

2
±
1

2
√𝑇𝑥𝑦

2 − 4𝐷𝑥𝑦, 

for 𝑖 = 1,2, while the third eigenvalue is given by 𝜆̆23 = 0.  

If we consider 𝑆̆ = (𝑠21, 𝑠22, 𝑠23)
𝑇 as the eigenvector of 𝐻(𝑄𝑥𝑦, 𝑤̆7) corresponding to    𝜆̆23 =

0 , we can derive that 𝑆̆ = (𝛿21𝑠23, 𝛿22𝑠23, 𝑠23)
𝑇, where 𝑠23 ≠ 0, 𝑠23 ∈ ℝ, and 𝛿21 =

𝑏23𝑏12

𝑏11𝑏22−𝑏12𝑏21
, 𝛿22 =

−𝑏23𝑏11

𝑏11𝑏22−𝑏12𝑏21
. 

If we consider 𝛹̆ = (𝛹21, 𝛹22, 𝛹23)
𝑇, to be the eigenvector of 𝐻(𝑄𝑥𝑦, 𝑤̆7) 

𝑇 associated 

with 𝜆̆23 = 0, we can deduce that 𝛹̆ = (0,0, 𝛹23), is obtained, where 𝛹23 ≠ 0 and 𝛹23 ∈ ℝ. 

Furthermore, by calculating 
𝜕𝐺

𝜕𝑤8
= 𝐺𝑤8 = (0,0, −𝑧)

𝑇 , we find that  𝐺𝑤7(𝑄𝑥𝑦, 𝑤̆7) =

(0,0,0)𝑇.Consequently, when evaluating 𝛹̆𝑇[𝐺𝑤7(𝑄𝑥, 𝑤̆7)] = 0. Additionally, direct 

computation demonstrates that: 

          𝐷𝐺𝑤7(𝑄𝑥𝑦, 𝑤̆7) = (
0 0 0
0 0 0
0 0 −1

) ⟹  𝐷𝐺𝑤7(𝑄𝑥𝑦, 𝑤̆7) 𝑆̆ = (0,0, −𝑠23)
𝑇, 

subsequently, 𝛹̆𝑇[ 𝐷𝐺𝑤7(𝑄𝑥𝑦, 𝑤̆7) 𝑆̆] = −𝛹23𝑠23 ≠ 0. 

Upon examining equation (23), it can be noted that 

          [𝐷2𝐺(𝑄𝑥𝑦, 𝑤̆7)( 𝑆̆, 𝑆̆)] = [𝑒𝑖1]3×1 , 

where 

 

                        𝑒11 = −
2(𝛿21𝑠23)

2

1+𝑤0𝑦̆
+ 2𝑥̆(𝛿22𝑠23)

2 (−
(−1+𝑥̆)𝑤0

2

(1+𝑤0𝑦̆)3
+ 𝑤1) 

                                    +2𝛿21𝛿22𝑠23
2 (−1 +

(−1+2𝑥̆)𝑤0

(1+𝑤0𝑦̆)2
+ 2𝑤1𝑦̆), 

                     𝑒21 = −2𝛿22𝑠23(𝑥̆𝛿22𝑠23𝑤1𝑤3 + 𝛿21𝑠23(−1 + 2𝑤1𝑦̆)𝑤3 + 𝑠23𝑤4), 
                     𝑒31 = 2𝛿22𝑠23

2𝑤4. 

Thus              𝛹̆𝑇[𝐷2𝐺(𝑄𝑥𝑦, 𝑤̆7)( 𝑆̆, 𝑆̆)] = 𝛹23(2𝛿22𝑠23
2𝑤4) ≠ 0, 

 

Therefore, it can be concluded that a Transcritical bifurcation occurs near 𝑄𝑥𝑦 when 𝑤7 =

𝑤̆7. According to the determinant of the positive point, its sign is always positive and 

unconditionally. Therefore, there is no zero eigenvalue, meaning that the system does not 

contain a bifurcation at the positive point.                                             □ 

 

8. Numerical simulation  

Now we have come to prove the validity of the theories that were discussed previously, to prove 

the existence of points of stability for system (2) and to study the stability of the points or not, 

and to ensure this by setting special conditions to guarantee what we want to obtain. Therefore, 

we will use Mathematica 13.2 for carefully selected data to obtain the influence of every 

variable on the system that we studied, and the data are shown in a Table 2. 

 

Table 2: Data of parameter values. 

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 

0.9 0.9 0.25 0.9 0.4 0.09 0.08 0.08 0.04 
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     By replacing the data in Table 2, which consists of nine parameters in system (2), we 

obtained globally asymptotically stable positive points 𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.239). Each of 

the cases was drawn individually in Figure 1, once for the prey, the other for susceptible 

predator, and the infected predator from several initial point. Here, for example, we chose five 

initial points and noted it reached an approximate solution in a stable state for each of the three 

species, and then we drew a combination of these three species together, and after that we drew 

a three-dimensional drawing to see it with better accuracy and clarification to reach the point 

𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.239). As for Figure 2, it is a drawing of the positive point with one 

condition, and it is also shown in two drawings of the 2𝒟 and 3𝒟. 

  

  

      
  

 
      

     
  

Figure 1: The trajectories of the system (2) by utilizing Table (2) and beginning from various 
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initial points. (a) The trajectories show case the motion exhibited by the prey with time.  (b) 

The trajectories showcase the motion exhibited by a predator with time. (c) The trajectories 

show case the motion exhibited by scavengers versus time. (d) 3𝒟 -Phase portrait of system 

(2).  (e) Time series for the trajectories prey, susceptible predator, and infected of the system 

(2). 

      
Figure 2: (a) 3𝒟-Phase portrait of the system (2). (b)The time series exhibits the trajectories 

of the system (2) by utilizing Table (2), the trajectories of three species demonstrate an 

asymptotic positive convergence towards 𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.239).  

 

Now, we will begin to discuss each parameter and its impact on the system (2), as we noticed 

that there is only a quantitative effect on the second parameter 𝑤1. As for parameter 𝑤0, we 

notice two cases, the first is a case of approaching a globally asymptotically stable positive 

points 𝑄𝑥𝑦𝑧  =  (0.489, 0.3, 0.378), in the range (0 , 2.093) and the other is approaching a 

point where the extinction of the infected predator appears 𝑄𝑥𝑦  = (0.253, 0.282, 0), in the 

interval [2.093 , 5) , which is shown in Figure 3. 

.       

 

            
 

Figure 3: The trajectories of the system (2) by utilizing Table (2) with values of 𝑤0.  (a) 3𝒟-

Phase portrait when 𝑤0 = 0.3. (b) Time series for the trajectories when 𝑤0 = 0.3. (c) 3𝒟-Phase 

portrait when 𝑤0 = 2.2. (d) Time series for the trajectories when 𝑤0 = 2.2. 
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When a parameter 𝑤2 was substituted into multiple periods of range taken, we obtained three 

different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.341, 0.3, 0.135) in the period  (0 , 0.376) , 𝑄𝑥𝑦  =  (0.228, 0.191, 0),   in 

the interval  (0.376 , 0.811] , and   𝑄𝑥  =  (0.1, 0, 0) in the range [0.811 , 1) which is  shown 

respectively in the Figure (4), and  parameters are given by Table (2). 

 

 

          

     
 
 

     
      

Figure 4: The trajectories of the system (2) by utilizing Table (2) with different values of 𝑤1. 

(a) 3𝒟-Phase portrait when 𝑤2 = 0.3. (b) Time series for the trajectories when 𝑤2 = 0.3.  (c) 

3𝒟-Phase portrait when 𝑤2 = 0.5. (d) Time series for the trajectories when 𝑤2 = 0.50. (e) 3𝒟-

Phase portrait at 𝑤2 = 0.9. (f) Time series for the trajectories when 𝑤2 = 0.9. 
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Whenever a parameter 𝑤3 was substituted into multiple periods of range taken, we obtained 

three different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.128) in the period  (0.558 , 1) , 𝑄𝑥𝑦  =  (0.477, 0.231, 0),   in 

the interval  (0.224 , 0.558] , and   𝑄𝑥  =  (0.75, 0, 0) in the range (0 , 0.224] which is  shown 

respectively in the Figure (5), and  parameters are given by Table (2). 

 

     
 

     
 
 

     
 
 

Figure 5: The trajectories of the system (2) by utilizing Table (2) with different values of 𝑤3. 

(a) 3𝒟-Phase portrait when 𝑤3 = 0.75. (b) The trajectories of the time series at 𝑤3 = 0.75.    

(c) 3𝒟-Phase portrait when 𝑤3 = 0.45. (d) The trajectories of the time series at 𝑤3 = 0.45. (e) 

3𝒟-Phase portrait when 𝑤3 = 0.15. (f) The trajectories of the time series when 𝑤3 = 0.15. 
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Furthermore, a parameter 𝑤4 was substituted into multiple periods of range taken, we obtained 

two different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.573, 0.146, 0.339) in the period  (0.279 , 1) and 𝑄𝑥𝑦  =

 (0.301, 0.413, 0), in the interval  (0 , 0.279], which is  shown respectively in the Figure (6), 

and  parameters are given by Table (2) . 
 

       
         

     
   

Figure 6: The trajectories of the system (2) by utilizing Table (2) with various values of 𝑤4. 

(a) 3𝒟-Phase portrait when 𝑤4 = 0.82 . (b) The trajectories of the time series at 𝑤4 = 0.82. 

(c) 3𝒟-Phase portrait when 𝑤4 = 0.22 . (d) The trajectories of the time series at 𝑤3 = 0.22. 

 

Alternatively a parameter 𝑤5 was substituted into multiple periods of range taken, we obtained 

three different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.139) in the period  (0 , 0.196) , 𝑄𝑥𝑦  =  (0.54, 0.175, 0),   in 

the interval  [0.196 , 0.595) , and   𝑄𝑥  =  (0.75, 0, 0) in the range [0.595 , 1) which is  shown 

respectively in the Figure (7),  and  parameters are given by Table (2) . 
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Figure 7: The trajectories of the system (2) by utilizing Table (2) with various values of 𝑤5. 

(a) 3𝒟-Phase portrait when 𝑤5 = 0.13 . (b) The time series of the trajectories when 𝑤5 = 0.13. 

(c) 3𝒟-Phase portrait when 𝑤5 = 0.33 . (d) The trajectories of the time series at 𝑤5 = 0.33. 

(e) 3𝒟-Phase portrait when 𝑤5 = 0.73 . (f) The trajectories of the time series at 𝑤5 = 0.73. 

 

     However, a parameter 𝑤6 was substituted into multiple periods of range taken, we obtained 

three different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.404, 0.3, 0.089) in the period  (0 , 0.186) , 𝑄𝑥𝑦  = (0.641, 0.09, 0),   in 

the interval  [0.186 , 0.585) , and   𝑄𝑥  =  (0.75, 0, 0) in the range [0.585 , 1) which is  shown 

respectively in the Figure (8), and  parameters are given by Table (2). 
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Figure 8: The trajectories of the system (2) by utilizing Table (2) with various values of 𝑤6. 

(a) 3𝒟-Phase portrait when 𝑤6 = 0.14 . (b) The trajectories of the time series at 𝑤6 = 0.14.  

(c) 3𝒟-Phase portrait when 𝑤6 = 0.44. (d) The trajectories of the time series at 𝑤6 = 0.44. (e) 

3𝒟-Phase portrait when 𝑤6 = 0.64. (f) The trajectories of the time series at 𝑤6 = 0.64. 

 

When a parameter 𝑤7 was substituted into multiple periods of range taken, we obtained two 

different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.569, 0.15, 0.682) in the period  (0 , 0.129) and 𝑄𝑥𝑦  =

 (0.301, 0.413, 0), in the interval  [0.129 , 1), which is  shown respectively in the Figure (9), 

and  parameters are given by Table (2). 
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Figure 9: The trajectories of the system (2) by utilizing Table (2) with different values of 𝑤7. 

(a) 3𝒟-Phase portrait when 𝑤7 = 0.02. (b) The trajectories of the time series at 𝑤7 = 0.02.  (c) 

3𝒟-Phase portrait when 𝑤7 = 0.86. (d) The trajectories of the time series at 𝑤7 = 0.86.  

 

Finally, a parameter 𝑤8 was substituted into multiple periods of range taken, we obtained two 

different approaches to globally asymptotically stable points of system (2), which are as 

follows, 𝑄𝑥𝑦𝑧  =  (0.363, 0.343, 0.14) in the period  (0 , 0.089) and 𝑄𝑥𝑦  =

 (0.301, 0.413, 0), in the interval  [0.089 ,1), which is  shown respectively in the Figure (10), 

and  parameters are given by Table (2) . 
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Figure 10: The trajectories of the system (2) by utilizing Table (2) with various values of 𝑤8. 

(a) 3𝒟-Phase portrait when 𝑤8 = 0.057. (b) The trajectories of the time series at 𝑤8 = 0.057.  

(c) 3𝒟-Phase portrait when 𝑤8 = 0.77. (d) The trajectories of the time series at 𝑤8 = 0.77.  

 

Through our investigation of the system (2), we have found that at one of its points, which is 

the point 𝑄𝑥𝑦 = (𝑥̆, 𝑦̆, 0), when applying the conditions (7a,7b,7c) a bi-statble case appeared 

at the value of 𝑤3 = 0.9. This outcome proves there is no unique global point. In order to 

confirm the theoretical findings, a numerical representation has been shown in the Figure (11) 

 
Figure 11:  3𝒟-Phase portrait when 𝑤3 = 0.9 

 

9. Conclusions 

     Relationships between predators and their prey are an important aspect of the natural world, 

having consequences for the equilibrium of ecosystems and the survival of species. These 

interactions are intricate and can be affected by different factors like existence of refuge and 
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the prevalence of infectious diseases. A model was taken for the prey and the predator, and 

there was a presence of an infected predator in one of the predators. The existence which has 

four solution points has been proven, and stability conditions were set for them. During the 

investigation of solution points in a bi-stable, it has been discovered that there is no unique 

global point at the value of 𝑄𝑥𝑧.  
 

     After that, each point was created for its local stability. Each of these was done by 

developing theories to prove them theoretically, as well as their numerical analysis has been 

studied to confirm their validity. The results reached were consistent, as we noticed that when 

changing the parameters in Table 2, the effect of some parameters become more than others, 

and only one parameter had a quantitative effect. Fear of the prey was one of the parameters 

that had a clear effect on changing the behavior of the system. The presence of the harvest in 

the system in the three equations had a great impact, and this is what we saw through the 

drawing, as well as the effect of both death and births was clear. 

 
References 

[1] Z. M. Hadi and D. K. Bahlool, “The Effect of Alternative Resource and Refuge on the Dynamical 

Behavior of Food Chain Model,” Malaysian Journal of Mathematical Sciences, vol. 17, no. 4, pp. 

731–754, 2023. 

[2] A. L. OLUTIMO, O. M. Akinmoladun, and O. Omoko, “Stability and Boundedness Analysis of 

Lotka-Volterra Prey-Predator Model with Prey Refuge and Predator Cannibalism,” Journal of 

Computations & Modelling, pp. 5–18, 2022. 

[3] T. Sagamiko, V. Kozlov and U. Wennergren, “Predator survival analysis of a Prey-Predator system 

with prey species pool,”Scientific African, vol. 14, pp. e00982, 2021. 

[4] S. Chakraborty, P. K. Tiwari, S. K. Sasmal, S. Biswas, S. Bhattacharya, and J. Chattopadhyay, 

“Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey 

system,” Applied Mathematical Modelling, vol. 47, pp. 128–140, 2017. 

[5] Q. Wang, Z. Liu, X. Zhang, and R. A. Cheke, “Incorporating prey refuge into a predator–prey 

system with imprecise parameter estimates,” Computational and Applied Mathematics, vol. 36, 

no. 2, pp. 1067–1084, 2015. 

[6] Y. Tao, X. Wang, and X. Song, “Effect of prey refuge on a harvested predator–prey model with 

generalized functional response,” Communications in Nonlinear Science and Numerical 

Simulation, vol. 16, no. 2, pp. 1052–1059, 2011.   

[7] A. Mapunda and T. Sagamiko, “Mathematical analysis of harvested predator-prey system with 

prey refuge and intraspecific competition,” Tanzania Journal of Science, vol. 47, no. 2, pp. 728–

737, 2021. 

[8] T. K. Kar, “Modelling and analysis of a harvested prey–predator system incorporating a prey 

refuge,” Journal of Computational and Applied Mathematics, vol. 185, no. 1, pp. 19–33, 2006. 

[9] L. Chen and F. Chen, “GLOBAL ANALYSIS OF A HARVESTED PREDATOR–PREY MODEL 

INCORPORATING A CONSTANT PREY REFUGE,” International Journal of Biomathematics, 

vol. 03, no. 02, pp. 205–223, 2010.  

[10] J. Wang and L. Pan, “Qualitative analysis of a harvested predator-prey system with Holling-type 

III functional response incorporating a prey refuge,” Advances in Difference Equations, vol. 2012, 

no. 1, 2012. 

[11] H.A. Satar and R.K. Naji, “Stability and Bifurcation in a Prey–Predator–Scavenger System with 

Michaelis–Menten Type of Harvesting Function,” Differential Equations and Dynamical Systems, 

vol. 30, pp. 933–956, 2022.  

[12] C. Maji, “Impact of fear effect in a fractional-order predator–prey system incorporating constant 

prey refuge,” Nonlinear Dynamics, vol. 107, no. 1, pp. 1329–1342, 2021.  

[13] A. S. Abdul Ghafour and R. K. Naji, “Modeling and Analysis of a Prey-Predator System 

Incorporating Fear, Predator-Dependent Refuge, with Cannibalism In Prey,” Iraqi Journal of 

Science, pp. 297–319, 2024.  

[14] S. Saha and G. Samanta, “Impact of fear in a prey-predator system with herd behavior,” 

Computational and Mathematical Biophysics, vol. 9, no. 1, pp. 175–197, 2021. 



Abdullah and Bahiool                              Iraqi Journal of Science, 2025, Vol. 66, No. 6, pp: 2455-2476 
 

2476 
 

[15] S. Mondal and G. P. Samanta, “Impact of fear on a predator–prey system with prey-dependent 

search rate in deterministic and stochastic environment,” Nonlinear Dynamics, vol. 104, no. 3, pp. 

2931–2959, 2021.  

[16] Y. Huang, Z. Zhu, and Z. Li, “Modeling the Allee effect and fear effect in predator–prey system 

incorporating a prey refuge,” Advances in Difference Equations, vol. 2020, no. 1, 2020.  

[17] B. Xie and Z. Zhang, “Impact of Allee and fear effects in a fractional order prey–predator system 

incorporating prey refuge,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 

1, 2023.  

[18] R. N. Fan, “A Predator-Prey Model Incorporating Prey Refuge and Allee Effect,” Applied 

Mechanics and Materials, vol. 713–715, pp. 1534–1539, 2015.  

[19] F. Chen, L. Chen, and X. Xie, “On a Leslie–Gower predator–prey model incorporating a prey 

refuge,” Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp. 2905–2908, 2009. 

[20] S. Al-Momen  and R.K. Naji, “The Dynamics of Modified Leslie-Gower Predator-Prey Model 

under the Influence of Nonlinear Harvesting and Fear Effect,” Iraqi Journal of Science, vol. 63, 

no. 1 (2022), pp. 259-282, 2022.  

[21] C. Shiliang, L. Weide, and M. Zhihui, “Analysis on a modified Leslie Gower and Holling-type II 

predator-prey system incorporating a prey refuge and time delay,” Dynamic Systems and 

Applications, vol. 27, no. 1, 2018.  

[22] H.A. Satar and R.K. Naji, “Stability and Bifurcation of a Prey-Predator-Scavenger Model in the 

Existence of Toxicant and Harvesting,” International Journal of Mathematics and Mathematical 

Sciences, vol. 2019, 2019.  

[23] H. A. Ibrahim and R. K. Naji, “The Impact of Fear on a Harvested Prey–Predator System with 

Disease in a Prey,” Mathematics, vol. 11, no. 13, p. 2909, 2023.  

[24] S. Chakraborty, B. W. Kooi, B. Biswas, and J. Chattopadhyay, “Revealing the role of predator 

interference in a predator–prey system with disease in prey population,” Ecological Complexity, 

vol. 21, pp. 100–111, 2015.  

[25] K. Singh and K. Kolla, “Population dynamic study of two prey one predator system with disease 

in first prey using fuzzy impulsive control,” Epidemiologic Methods, vol. 13, no. 1, 2024.  

[26] H. Singh, J. Dhar and H. S. Bhatti, “Dynamics of a prey-generalized predator system with disease 

in prey and gestation delay for predator,” Modeling Earth Systems and Environment, vol. 2, no. 2, 

2016. 

[27] L. Perko, “Differential equations and dynamical systems,” Springer Science & Business Media, 

vol. 7, 2013. 

[28] H. K. Khalil, “Nonlinear Systems 3rd Edition,” Upper Saddle River, NJ, USA: Prentice Hall, pp. 

124-126, 2002. 

 

 

 

 

 

 

 


