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Abstract

This paper discussed fear and predator-dependent refuges in a harvested prey-
predator model with disease in predator with using the relationship between a
predator's consumption of prey and the presence of fear in the prey in the existence
of an infected predator in the environment. The solution was consistently limited in
order to assure the availability of a solution due to the availability of conditions. The
solution points for the system were also found, and the conditions for the approach
of estimating the solution has been studied stability. We studied the bifurcation of the
system and illustrate that it works. This research examined the effect of harvest factor
on prey impact, as well as the combined influence of death in the unwell predator and
the harvest of its available resources. It makes a major effect on the outcome of the
system. The outcomes obtained by varying the parameters are displayed in numerical
work. And theoretical solution was confirmed using Mathematica graphing.
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1. Introduction

Predator-prey relationships can be affected by many factors, such as supply of resources,
infectious diseases, refuge and harvesting. These factors have a substantial impact on the
dynamics of prey-predator interactions in the real world. In order to understand the prey-
predator system, mathematical equations must be formulated for them and these factors must
consider since they have a significant role in the system. One of the basic factors is the presence
of the refuge. It is a place that gives prey safety from predators, and when it is added to the
mathematical model, we will study its effect on the system, as increasing refuges lead to the
prey growing more and more, for example the authors in [1] examined the food chain model
that provides a prey refuge and an additional source of food to investigate the stability of the
system. It is necessary to take into account the consequences of the presence of a refuge, and
this is what has been seen in studies [2 - 5]. Also, other studies, in addition to the presence of
the shelter, studied the effect of the harvested with it [6 - 10]. In addition, another study was
conducted to find out the probability of local bifurcation happening near the equilibrium points

[11].

In order to understand predator-prey dynamics, it is essential to recognize that the fear
factor, which has a major impact on the system, is one of the most important factors. A number
of researchers have investigated the influence of fear on the prey-predator system. For instance,
see [12 - 15]. It can be seen from the studies in [16 - 18] that different functional responses
were discussed in predator-prey models where the Alee effect is present. In [19 - 21], authors
talked about Leslie-Gower predator—prey models using a different functional response
incorporating refuges into the models.

Relationships between predators and prey can also be influenced by infectious diseases.
Disease outbreaks can cause a rapid decline in the populations of prey species. Consequently,
this may result in a decrease in predator numbers, as they depend on the prey for survival. This
1s what has been discussed and studied in [22-26]. Keeping the limitation of infectious diseases
is necessary for keeping predator-prey dynamics. This can be achieved by carefully tracking
and quickly noticing diseases in both the animals that are hunted and the animals that hunt
them, adopting restrictions if necessary, and supporting healthy environments and ecosystems
to reduce the propagation of diseases.

The rest of the arrangement of the research paper goes as follows: The next section relates
to mathematical results relating to the model system (1) from Sections 1-4. We mainly
investigate the importance of prey hunting and the cooperative fear factor. After that, we found
the stability points and studied the conditions for their stability, existence, and globalization.
After that, in Sections 5-6-7, we discussed the bifurcation and its occurrence possibility.
Numerical simulations are performed in Section 8 to confirm the existing analytical findings.
At last, we complete the paper with a brief conclusion in Section 9.

2. Model description

An ecological system consisting of three species is examined using a prey-predator model.
A linear form of functional response is used by the prey to be consumed by the susceptible,
infected predator. The modeling investigation intends to examine the dynamics of a prey-
predator model that is affected by harvesting and the existence of disease in the predator
population. The impact caused by fear and predator-dependent refuge on the dynamics of a
prey-predator model was focused on in the present investigation. The following nonlinear
ordinary differential equations are required for the description of this ecological model's
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ax rX X
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D ep(1 - )XY - SYZ — &Y — 46,7, M
2 = 5YZ - d,Z - ;E,2.

The populations of prey, susceptible predator, and infected predator are denoted
as X (T),Y(T) and Z(T), respectively in the given equation. All the parameters in the system
(1) are required to be non-negative.

Table 1: Biological significance of each parameter.

Parameter Description
r Growth rate of the prey.
i Fear rate of prey species.
B Attack rate of susceptible predator.
e Conversion rate of prey biomass to predator biomass.
Predator-dependent refuge rates, where @ denotes the coefficient of
1 -ay) prey refuge in (0, 1) with Y < % .
k Carrying capacity.
d,,d, The mortality rates of susceptible predator and infected predator, subsequently.
The catchability constant of prey, susceptible predator and infected predator,
41,92 93 subsequently.
E,,E, E; Harvesting effort of prey, susceptible predator and infected predator, subsequently.
S Infection rate of the predator.

3. Dimensionless aspect of the model

To convert a model into a dimensionless form, dimensionless quantities must be used to
express the system. This strategy has several benefits. First, it streamlines the analytical process
by reducing the number of parameters. Second, it makes it possible to compare parameters
more effectively in terms of their magnitudes, which facilitates deeper system insights.
Furthermore, it makes comparing various systems easier. Therefore, the following formulation

of equation (1) is possible:
dx

E:xfl(x!ylz)a

d

= Yh0(,2), @)
d
= = 2/:(6y.2)

where
1
fl(x:.')’;z)= (1_x)_(1_wly)y_W2a

1+woy
f2(6,y,2) = ws(1 —wyy)x — wuz — (ws + wg),
f3(x,y,2) = wyy — (W7 + wg).

With the dimensionless variables and parameters given by:

_ _1 _k )
t—rT,x—kX,y—r’y,Z—rZ,

_pr _ar _ qq1Eq __ekp
WO_anl_FaWZ_ r9W3_ r
S dq qzE> d qskE3
Wy == W =— Wg=—", W, = —, Wg = .
4 ﬁ’ 5 r’ 6 r 7 r’ 8 r

Theorem 3.1. The solutions for the model (2) for all positive initial conditions x(0), y(0), z(0)
are uniformly bounded.
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Proof. From the first equation of system (2)
d (1-x)
(50 ) w,),

dat 7 \1+wey

d
—xS( . —x)xSx(l—x).
dt 1+woy

Then solving the above differential inequality gives that x(t) < 1ast — .
Now, we define N(t) = x(t) + Wiy(t) + Wiz(t) , then
3 3

dN (ws+wg) (w7 +wg)
—_—< — — — —
T = x(1—x) —wyx " y " Z.

1 1
< 2—u[x+w—3y+w—32].
Where 4 = min {(1 + wy), (Ws + wg), (W, + wg)}. This implies tha
w4 uN < 2,
dt ~ 4
Again, by solving the final differential inequality, we have N < ﬁ, for t — oo.

Hence, the uniformly boundedness of system (2) confirms that it is valid. O

4. The equilibrium points
By setting all the equations in the system (2) equal to zero and solving for the variables
x(t),y(t),and z(t), we can determine the equilibrium points.

xfi(x,y,2z) =0,
ny(ny!Z) = 01 (3)
zfs(x,y,z) = 0.

Consequently, the following solutions equilibrium points are obtained:
The evanescence equilibrium point, @, = (0,0,0), always exists.
The axial equilibrium point, Q, = (%, 0,0), where:

£=1-w,. 4)

Direct computation shows that the positive root exists uniquely, and hence there is a unique
point, say Q, inside the first quadrant of x — plane, if sufficient condition is fulfilled

1> w,, %)
the infected predator -free equilibrium point, @y, = (X, ¥, 0), where
=~ Ws+Wg (6)
T wa(l-wiy)

While y is a solution with a positive value for the 4th degree equation,
Gy +6y* + e3y* gyt + 65 =0,

where

¢1 = —(W0W12W3),

¢ = 2Wow w3 — W12W3 = wiw3(2wy — wy),

C3 = WoWiW,oW3 + 2wy w3 — Wows,

G4 = WiWoW3 — WoWoW3 — Wi W3 — W3,

Cs = W3 — WoW3 — Wg — Wg.
Calculation explicitly finds that there are either three or one positive roots of the above fourth-
order polynomial equation, depending on the given conditions. Therefore, there exist three or
one equilibrium point within the first quadrant of xy — plane given that:

C 1

< W_1’ (7a)

wo < %, (7b)
+

0< Mf_‘:;é < ws. (7¢)
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It is important to observe that condition (7a) ensures that X is positive, while condition (7b)
leads to ¢, < 0 and ¢3 > 0. Finally, condition (7c¢) guarantees that ¢, < 0 and ¢5 > 0 at the
same time.

The coexistence (positive) equilibrium point, Qy,, = (X, ¥, Z), where

wrtwg  Wowa(Wy+wg)  wo(wy+wg)?)

Xx=1—-w,— e e W7
+ W1(W7‘:W8)2 + W0W1(W;+W8)3
Wa Wa 3 (8)
- _ W7+W8
y= Wa
_ 1 wy (W +wg)\ —
Z=W—4(W3(1—+48)X_(W5+W6)) )

Direct computation shows that the positive root exists uniquely, and hence there is a unique
point, say Qy,, inside the first quadrant of xyz — plane, if sufficient conditions are fulfilled

W7V:'W3 + WoW2$V7+W8) + WO(W‘Z}:WS)Z <1+ Wl(W‘:’:WB)Z + WOWI(VM;;+W8)3= (93)

4 4 4 * !

(s 00 < s (1 -2 (%)
4

5. Local stability analysis

We examine the local stability of every equilibrium point by utilizing the Jacobian matrix
and determining the eigenvalues near each point. The Jacobian matrix H for three-dimensional
systems can be determined by:

6f1 afl afl
[f1+xax X3y X 5z ]|
af- af af
H(x,y,z) = ya—x2 fo +ya—; ya—z2 ) (10)
ofs df3 JE
z ox z ady f3 tz 0z
where
afl - 1 % _ _ _ Wo(l—x)
ax 14wy’ dy 2wy =1 (1+woy)?’
of of: of
a—zl =0, a_xz = w3(1 —wyy), a—; = —W1W3X,
0 _ ., s _ (g 0fs _ ofs _
9z 4’6x_0’6y_w4’62_0'

By replacing the equilibrium points mentioned above individually in the Jacobian matrix
H(x,y, z) and subsequently calculating their eigenvalues, it can be noted that:
The eigenvalues of the Jacobian matrix (10) at the evanescence equilibrium point (Q,) are (1 —
wy, —(Ws + wg), — (W, + wg)), which means Q, will be local asymptotic stability if and only
if the next condition is achieved:

1<w,. (11)

The eigenvalues of the Jacobian matrix (10) at the axial equilibrium point (Q,) are computed
as:

My =%, Az =wsk — (W5 +we), Az = —(w7 + wpg). (12)
Therefore, Q, is local asymptotic stability if and only if the following conditions is met:
A W5+W6
x < R (13)
3

The Jacobian matrix can be expressed in terms of the equilibrium point where infected
predators are absent:
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X - - Wo(l—f)
_ B 1+Woj7 x (2W1y o 1 o (1+W0]7)2) 0
H(Qx) = |w,5(1 — wiy) Wiy —wy | (14)
0 0 Wy — (Wy + wg)

The equation that describes the characteristics equation of H (Qxy) can be represented in the
following form:

(22 = Tyyd + Dyy ) (WY — (W7 + wg) — 2) = 0, (15)
where:
Txy = - T+woy — WiW3Xy ,
X — - - wo(1-%) o
Dyy = Ttwey (Wyw3Xy) — w3 Xy (2W1y -1- (11%37)2) (1 —wyy).

Consequently, the eigenvalues of the matrix H (Qxy) are identified as A,; = T;‘—yi

% /Txyz — 4Dy, fori = 1,2 and 4,3 = w,y — (w7 + wg). Hence, if the following conditions

are met, all eigenvalues will possess negative real parts, indicating that Q,, is locally
asymptotically stable.

(w7+wg)

y < WrtWs) (16a)

Wy
- 1 wo(1-X)
y < 2W1 (1 + (1+W057)2). (16b)

Theorem 5.1. The coexistence equilibrium point of system (2) will be locally asymptotically
stable if the conditions listed below are satisfied.

_ 1 wo(1-x)
y < M(l + (1+wa>2)' (17)
Proof. The Jacobian matrix of the system (2) for Q,,, = (X,¥, 2), can be written as:
H(QxyZ) = [aij]gxg’ (18)
where:
a;3 =0, az; = w3y(1 —w1y), az = —w;wzxy,
A3 = —W4Y, az1 =0, az; =w,z, azz = 0.
Hence, the characteristic equation of H (Qxyz) can be expressed as:
A3+ A2 +BA+C =0, (19)
where
A=—(a11 +az),
B = ay10a;5; — a12051 — G303,
C = az;a110a,3.
with
A= AB — C = —(ay1 + a32)(a11a32 — a12a51) + 2023 35 .

It should be noted that applying the Routh-Hurwitz criterion [27] requires satisfying the
conditions C > 0, A > 0 with A> 0, which guarantees all the solutions to the equation (19)
contain real that are negative parts. By performing direct calculations, it can be shown that
condition (17) is sufficient to satisfy the conditions needed for the Routh-Hurwitz criterion.
Consequently, @y, achieves local asymptotic stability. O
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6. Global stability

In this section, the method of the Lyapunov function is employed to determine the basin of
attraction associated with each locally asymptotically stable point in the domain R3. If the
basin of attraction for an equilibrium point encompasses the whole domain R3, it is considered
globally asymptotically stable. As given in the following theorems.
Theorem 6.1. The local asymptotic stability of Q, implies its global asymptotic stability if the
condition (11) is satisfied.
Proof. The real-valued function W; = k;x + k,y + kzz is defined. By performing direct
calculations, it can be shown that W;: M; —» R, when M; = {(x,y,z) E R3:x >0,y >0,z >
0}.
Consequently, this implies W; (Q,) = 0, and W, (x,y,z) > 0, for every (x,y,z) € M; — Q,.
Furthermore, simple calculations yield that:

aw, 'y odx oy ) odz
dt =k dt +k; dt +Kks dtz’

dw. kqx

dtl < —ky(w, —1)x — 1+1W0y — (k1 — kow3)(1 — wyy)xy

—ko(ws + we)y — kz(w; + wg)z.
By choosing positive constant valuesas k; = 1,and k, = k3 = WL, the following results are
3

obtained:
dW1 Ws5+Wg w7+wg
<y, e (B22) - (22),
Therefore, from condition (5) imply that drt’l < 0. As a result, Q, exhibits global asymptotic

stability. O

Theorem 6.2. The local asymptotic stability of Q, implies its global asymptotic stability if the
condition outlined below is satisfied.

A W5+W6
x < W3(2W0+1). (20)
Proof. The real-valued function W, = q4 f;%fdu + q2y + q3z is defined. By performing

direct calculations, it can be shown that W,: M, — R, when M, = {(x,y,z) € R3:x > 0,y >
0,z = 0}. Consequently, this implies W, (Q,) = 0, and W, (x,y,z) > 0 for every (x,y,2) €
M, — Q... Furthermore, simple calculations yield that:

aw, _ XX\ dx ay. az
_ql( )dt+q2dt+q3dt'

dt x
Employing direct computation leads to the following outcome:
d (x—%)? (1-2)y(x—%) -
W ST g, — G = wiy)xy + (1 - wyy)Ry

+q,w3 (1 —wyy)xy — qawayz — qa(Ws + We)y + qzwayz
—q3(w; + wg)z.

Now, by choosing positive constant values as q; = 1 and g, = g3 = Wi, the following results
3

are obtained

aw, (x=%)? ((W5+W6) ,\) (w7+wg)
=72 = — — — 7T el
dt —  1+wgyy w3 (Zwo + DX)y wg
aw, . . . ) .
Note that, ;:2 is a negative definite function, and hence the proof is complete. O

Theorem 6.3. Assume that there is only one equilibrium point Q,,, that is locally stable, then
it has a basin of attraction that satisfies the following conditions.

L 4+is, (21a)
1+W0y 2
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WX + g > 0. (21b)

Proof. The real-valued function W; = m; f;%fdu + m, f;%ydv + msz is defined. By
performing direct calculations, it can be shown that W5: M3 —» R, when M; = {(x,y,z) €
R}:x >0,y > 0,z > 0}. Consequently, this implies W5(Qy,) = 0, and W5(x,y,z) > 0 for
every (x,y,z) € M3 — Q. Furthermore, simple calculations yield that:

aWs _ XX\ dx Y\ az

dt _ml( x )dt+m2( y )dt tmg

By employing direct computation incorporating the principle of maximizing, and using the
upper bound constant of the variables x and y leads to the following outcome:

dws _ _ ooy [ @=0A+wep)-A-0)Atwoy) 4 _ _ % — ¥
dt = m1 (x x) < (1+W0)7)(1+W0y) (1 W1 (y Y))(y y))

+my(y — P (wz(1 —wiy)(x = X) — wywsX(y — §) — wyz)
+maw,yz — mg(w, + wg)z.
Now, by choosing positive constant values as my =1 and m, = m3z = wi , the following
3

results are obtained

aws (=% o wo(1-%) .  N(
= Tiwey wiX(y — ¥) (—(1+w037)(1+w0y) wly) x=—X)Q—¥)
_ (w7 +wg) _Wa
( w3 w3 y) Z.
_ Wo(l—f) _ -
Let L = onGewey ~ WY

_Gem®? 2L o2 Lo oo ((Wrtwe)  wa o
rwey wiX(y =y —s(x =0 -2 -7 ( " " )Z

S—( : +§) (x—f)z—(W1f+§)(y—37)2—(w—&37)z.

1+woy w3 w3

aws . . . L . . . ..
Note that, % is a negative definite function in the region that satisfies the given conditions,
and hence the proof is complete. O

Theorem 6.4. If the conditions outlined below are satisfied, the local asymptotic stable point
Qxy has the basin of attraction satisfies the following conditions.

L 1850, (22a)
1+W0y 2
wz+ >0 (22b)

Proof. The real-valued function W, = p; f;% du + p, f;% dv + p; f;%dc is defined.
By performing direct calculations, it can be shown that W,:M, - R, when M, =
{(x,y,z) € R3:x > 0,y > 0,z > 0}, holds. Consequently, this implies W4(Qxyz) = 0, and
W, (x,y,2) > 0, for every (x,y,z) € My — Qy,,. Furthermore, simple calculations yield that:

dt x z
Likewise, a direct calculation that results in:

aw, _ A (@0 Atwen) - (-8 +wey)

at pl(x %) ( (1+wed) (1+woy)
+p2(y = P ((ws(1 —wiy)(x = ) = wyws(y = 7) —wy(z - 2))
+pawa(z — 2) (y — ¥).

—(1-wm-»)y- y))
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. o 1 .
By choosing positive constant values as p; = 1, and p, = p3; = —, the following results are
3

obtained:
aw, _ (x—x)? _ S N2 wo(1-%) _ _ = =
dt ~ 1+wgy Wlx(y }/) ((1+W037)(1+W0y) le) (x x) (y }’)-
_ wo(1-%) _ _
Let M = von Geweyy ~ W17

-x)? = _ M _ M _
— i;jy —wix(y =) - (x -0 - (-
1 M — _ M _
< - (1+wa + ;) (x — %)% — (wlx + ;) v =)=

L. AW, . . . : . I . :
Note that the derivative d—t“ is a negative semi-definite. Since the equilibrium point @y, is a

. . . s . . d .
unique invariant set within the set of point that satisfies % = 0, hence, with the help of
LaSalle's invariant set theorem [28] the proof is complete. O

7. Local bifurcation

System (2) can be reformulated using Sotomayor's theorem [27] to examine the local
bifurcation that may arise near the non-hyperbolic equilibrium point. The objective is to
understand the impact of variable variations on the dynamic behavior of the system. Now, let's
rephrase system (2) in the following manner.

To rewrite System (2), it is necessary to express it as the derivative of X concerning t, denoted

as Ccll—, which is equal to the function G(X). Here, X is a column vector (x,y,z)7, and G(X)
represents the column vector (xf,yfs,zf3)T. Consequently, the second derivative of the
Jacobian matrix can be expressed likewise with the following generic vector S = (sy, S5, 53)7:

D*G(X).(S,S) = [ei1]sx1, (23)
where

_ 252 (- 1+x)w0
= - xs5(—

Trywe Tiyw? T wy) + 2515,(—1+

€1 = —258, (XSZW1W3 + 5,(—1 + 2ywq )Wz + S3wy),
e31 = 25253W4.

(=14+2x)wy
(1+ywg)?

€11 + 2ywy),

Theorem 7.1. The system (2) will exhibit a Transcritical bifurcation near the Q, if w, passes
the value w, = 1.
Proof. The form of the Jacobian matrix for system (2) at Q,, when w, = W, can be represented

as:
0 0 0
H(Qo,Wy) = [0 —(ws + we) 0
0 0 _(W7 + Wg)
Therefore, the eigenvalues of H(Q,, W), can be expressed as A3, = —(Ws + wg) < 0, A35 =

—(wy + wg) < 0 subject to condition (11), and 13; = 0.

If we consider S = (531, S35, S33)7 as the eigenvector of H(Q,, W,) corresponding to A3 =
0, we can derive that S = (s34,0,0)7, where s3; # 0, s3; € R.

If we consider ¥ = (W3, W35, P33)7, to be the eigenvector of H(Q,, W) related to 13; = 0,
we can deduce that ¥ = (W34, 0,0), is obtained, where ¥3; # 0 and ¥3; € R.

Furthermore, by calculating ;TGZ = Gy, = (—x,0,0)", we find that G,,,(Qo, W) = (0,0,0)".

Consequently, when evaluating ’T’T[GW2 (QO,W/Z)] = 0. Additionally, direct computation
demonstrates that:
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-1 0 O
DG,,(Qo, W,) = < 0 O 0) = DGWS(QOﬂWZ)SV = (—s31,0,0)7,
0 0 O

Subsequently l\[,T[ DGWZ (Qo, Wz)Sv] = _lll31531 * 0.
Upon examining equation (23), it can be noted that

L —2s%,
[DZG(QO,WZ)(S,S)]=< 0 )
0
thus

PT[D?6(Qo, w,)($,5)] = —2¥a155, # 0.
Therefore, it can be concluded that a Transcritical bifurcation takes place as per Sotomayor's
theorem, so the proof has been completed.

Theorem 7.2. If the condition (13) is satisfied, the system (2) will exhibit a Transcritical
bifurcation near the Q,, = (X, 0,0) if ws passes the value Ws = w3X — wy.

Proof. The form of the Jacobian matrix for system (2) at Q,., when ws = W5, can be represented

as:
—x X(-1-we(1—-%)) 0
H(QuWs) =| 0 0 0 |=(dy).
0 0 —W; — Wg
Therefore, the eigenvalues of H(Q,, W), can be expressed as 1;; = —X, 4,3 = —(wy; + wg) <

0 subject to condition (13), and 4;, = 0.
If we consider § = (514,512, 513)7 as the eigenvector of H(Q,, Ws) corresponding to  A;, =
C12

0, we can derive that S = (811512, S12,0)7, where s;, # 0, 51, € R, and 8,1 = ——=< 0,
11

where ¢;; are the elements of H(Q,, Ws).

If we consider ¥ = (¥4, W15, ¥13)7, to be the eigenvector of H(Q,, Ws) T related to

A1, = 0, we can deduce that @ = (0, ¥;,, 0), is obtained, where ¥;, # 0 and ¥;, € R.
Furthermore, by calculating ;TGS = Gy, = (0,—y,0)", we find that G, (Q,, Ws) = (0,0,0)".
Consequently, when evaluating ‘IA'T[GWS (Qx,Wws)] = 0. Additionally, direct computation
demonstrates that:

0 0 O
DGW5 (er WS) = (0 -1 O) = DGW5 (Qx' WS)S = (0' —S12, O)Ta
0 0 O

Subsequently 7| DG, (Qx, W5)S] = —¥13513 # 0.
Upon examining equation (23), it can be noted that
[D?G(Q., ws)($,S)] =
_2852(611 + 5112 + (611 - 2611£)W0 + (_1 + f)fwg - 5C\W1)
$12(2811w3 — 28wy w3)
0
thus

PT[D2G(Qx, Ws)( S, 5)] = Wi25%,(261,w3 — 28wyw3) # 0.
Therefore, it can be concluded that a Transcritical bifurcation takes place as per Sotomayor's
theorem, so the proof has been completed.
m|
Theorem 7.3. In the system (2) will demonstrate a Transcritical bifurcation near the Q,, =

(%, ¥,0), if w, passes the value W, = w,y — wyg.
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Proof. The form of the Jacobian matrix for system (2) at Q,,, when w; = w;, can be

represented as:
X

< - wo(1-%)
w3 (1 —wyy) —WiW3Xy —wuy |
0 0 0

H(Qxy' VT’7) =

Therefore, the eigenvalues of H(Qy,, W), can be expressed as A,; = T;—y i% Txy2 —4D,,,

for i = 1,2, while the third eigenvalue is given by 1,3 = 0.
If we consider § = (5,1, S22, S23)7 as the eigenvector of H (Qxy, Wy) corresponding to A3 =

O, we can derive that §= (621523,622523,523)T, where So3 * O, So3 € R, and 621 =
ba3biz —ba3biy

by1baz—b1zbyr’ 2% bigbya—byzbay

If we consider ¥ = (Wyq, W2, W23)7, to be the eigenvector of H(Qy,, W;) T associated
with 1,3 = 0, we can deduce that ¥ = (0,0, ¥,5), is obtained, where ¥,; # 0 and ¥,; € R.
Furthermore, by calculating 96 _ Gy, = (0,0,—2)", we find that Gy, (Qxy, W;) =

aW8
(0,0,0)7.Consequently, when evaluating WT[GW7 (Qx,w7)] = 0. Additionally, direct
computation demonstrates that:

0 0 O
DGW7(Qxy:W7) = (O 0 0 ) = DGW7 (Qxy'w7) §=1(0,0, _523)T:
0 0 -1

subsequently, ZT[ DG, (Qyxy, W) S| = —=¥,35,3 # 0.
Upon examining equation (23), it can be noted that
[DZG(Qxy' W7)( S; S)] = [ei1]3><1 s

where
2(8 )? < (-1+X0)w§
e11 = —%‘Z; + 2X%(822523)* (_GT:;;; + Wl)
2(_q 4 120w | o
+26510225,3 ( 1+ Tiwey)? + 2W1y),

€1 = —25225223(f522523W1W3 + 621523(—1+ 2w Y)ws + Sp3wy),

eil = 2622523 W4. oL
Thus PT[D2G(Qry, W7)(S,5)] = Wu3(26,2523%w,) # 0,

Therefore, it can be concluded that a Transcritical bifurcation occurs near Qy, when w; =
w;. According to the determinant of the positive point, its sign is always positive and
unconditionally. Therefore, there is no zero eigenvalue, meaning that the system does not
contain a bifurcation at the positive point. O

8. Numerical simulation

Now we have come to prove the validity of the theories that were discussed previously, to prove
the existence of points of stability for system (2) and to study the stability of the points or not,
and to ensure this by setting special conditions to guarantee what we want to obtain. Therefore,
we will use Mathematica 13.2 for carefully selected data to obtain the influence of every
variable on the system that we studied, and the data are shown in a Table 2.

Table 2: Data of parameter values.

Wy w;y w, Ws Wy Ws We w, Wg

0.9 0.9 0.25 0.9 0.4 0.09 0.08 0.08 0.04
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By replacing the data in Table 2, which consists of nine parameters in system (2), we
obtained globally asymptotically stable positive points Q,, = (0.404,0.3,0.239). Each of
the cases was drawn individually in Figure 1, once for the prey, the other for susceptible
predator, and the infected predator from several initial point. Here, for example, we chose five
initial points and noted it reached an approximate solution in a stable state for each of the three
species, and then we drew a combination of these three species together, and after that we drew
a three-dimensional drawing to see it with better accuracy and clarification to reach the point
Qxyz = (0.404,0.3,0.239). As for Figure 2, it is a drawing of the positive point with one

condition, and it is also shown in two drawings of the 2D and 3D.
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Q
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g
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Time Time
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Figure 1: The trajectories of the system (2) by utilizing Table (2) and beginning from various
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initial points. (a) The trajectories show case the motion exhibited by the prey with time. (b)
The trajectories showcase the motion exhibited by a predator with time. (¢) The trajectories
show case the motion exhibited by scavengers versus time. (d) 3D -Phase portrait of system
(2). (e) Time series for the trajectories prey, susceptible predator, and infected of the system

).

) , (b)

0.8
Susceptible predator | 1 .0 T T T
o.6 | M x[t]=prey: 0.404
0.4 | { [ y[t]=Susceptible predator: 0.3
0.2 oo, 07_4;) 0.8+ I z[t]=Infected predator: 0.239
c
el
5 0.6
g- | L
0.8
o
& 04l
0.6
Infected predator ¥
\ 404, 0.3, 0.239)) 0.2
o4
0z 4 | 0 200 400 600 800 1000
D"‘B,dﬁ 5 |
800 Time
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Figure 2: (a) 3D-Phase portrait of the system (2). (b)The time series exhibits the trajectories
of the system (2) by utilizing Table (2), the trajectories of three species demonstrate an
asymptotic positive convergence towards Qy,, = (0.404,0.3,0.239).

Now, we will begin to discuss each parameter and its impact on the system (2), as we noticed
that there is only a quantitative effect on the second parameter w;. As for parameter w,, we
notice two cases, the first is a case of approaching a globally asymptotically stable positive
points Qy,, = (0.489,0.3,0.378), in the range (0,2.093) and the other is approaching a
point where the extinction of the infected predator appears Q,, = (0.253,0.282,0), in the

interval [2.093,5), which is shown in Figure 3.
(b)

= 1.0F T T
o.8 y .
eeeeeeeeeeeeeeeeeee : 1 M x[t]=prey: 0.489
el | | I y[t]=Susceptible predator: 0.3
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Figure 3: The trajectories of the system (2) by utilizing Table (2) with values of w,. (a) 3D-
Phase portrait when wy = 0.3. (b) Time series for the trajectories when w, = 0.3. (¢) 3D-Phase
portrait when w, = 2.2. (d) Time series for the trajectories when wy = 2.2.
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When a parameter w, was substituted into multiple periods of range taken, we obtained three
different approaches to globally asymptotically stable points of system (2), which are as
follows, Qyy, = (0.341,0.3,0.135) in the period (0,0.376) , @y, = (0.228,0.191,0), in
the interval (0.376,0.811],and Q, = (0.1,0,0) in the range [0.811,1) which is shown
respectively in the Figure (4), and parameters are given by Table (2).

= o5 (b)
Susceptible predator T | . . . . . .
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Figure 4: The trajectories of the system (2) by utilizing Table (2) with different values of w;.
(a) 3D-Phase portrait when w, = 0.3. (b) Time series for the trajectories when w, = 0.3. (c)
3D-Phase portrait when w, = 0.5. (d) Time series for the trajectories when w, = 0.50. (e) 3D-
Phase portrait at w, = 0.9. (f) Time series for the trajectories when w, = 0.9.
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Whenever a parameter w3 was substituted into multiple periods of range taken, we obtained
three different approaches to globally asymptotically stable points of system (2), which are as
follows, Qyy, = (0.404,0.3,0.128) in the period (0.558,1),Q,, = (0.477,0.231,0), in
the interval (0.224,0.558],and Q, = (0.75,0,0) in the range (0, 0.224] which is shown
respectively in the Figure (5), and parameters are given by Table (2).
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Figure 5: The trajectories of the system (2) by utilizing Table (2) with different values of ws.
(a) 3D-Phase portrait when w3 = 0.75. (b) The trajectories of the time series at w3 = 0.75.
(¢) 3D-Phase portrait when w3 = 0.45. (d) The trajectories of the time series at w3 = 0.45. (e)
3D-Phase portrait when wz = 0.15. (f) The trajectories of the time series when w3 = 0.15.
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Furthermore, a parameter w, was substituted into multiple periods of range taken, we obtained
two different approaches to globally asymptotically stable points of system (2), which are as
follows, Qyy, = (0.573,0.146,0.339) in the period (0.279,1) and Qyy =
(0.301,0.413,0), in the interval (0,0.279], which is shown respectively in the Figure (6),
and parameters are given by Table (2) .
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Figure 6: The trajectories of the system (2) by utilizing Table (2) with various values of w,.
(a) 3D-Phase portrait when w, = 0.82 . (b) The trajectories of the time series at w, = 0.82.
(c) 3D-Phase portrait when w, = 0.22 . (d) The trajectories of the time series at w3 = 0.22.

Alternatively a parameter ws was substituted into multiple periods of range taken, we obtained
three different approaches to globally asymptotically stable points of system (2), which are as
follows, Qy,, = (0.404,0.3,0.139) in the period (0,0.196) , Q,, = (0.54,0.175,0), in
the interval [0.196,0.595) ,and Q, = (0.75,0,0) in the range [0.595, 1) which is shown
respectively in the Figure (7), and parameters are given by Table (2) .
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Figure 7: The trajectories of the system (2) by utilizing Table (2) with various values of ws.
(a) 3D-Phase portrait when wg = 0.13 . (b) The time series of the trajectories when wg = 0.13.
(c) 3D-Phase portrait when wg = 0.33 . (d) The trajectories of the time series at wg = 0.33.
(e) 3D-Phase portrait when wg = 0.73 . (f) The trajectories of the time series at wg = 0.73.

However, a parameter wg was substituted into multiple periods of range taken, we obtained
three different approaches to globally asymptotically stable points of system (2), which are as
follows, Qy,, = (0.404,0.3,0.089) in the period (0,0.186) , Q,, = (0.641,0.09,0), in
the interval [0.186,0.585) ,and Q, = (0.75,0,0) in the range [0.585, 1) which is shown
respectively in the Figure (8), and parameters are given by Table (2).
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Figure 8: The trajectories of the system (2) by utilizing Table (2) with various values of wg.
(a) 3D-Phase portrait when wg = 0.14 . (b) The trajectories of the time series at wg = 0.14.
(c) 3D-Phase portrait when wg = 0.44. (d) The trajectories of the time series at wg = 0.44. (e)
3D-Phase portrait when wg = 0.64. (f) The trajectories of the time series at wg = 0.64.

When a parameter w, was substituted into multiple periods of range taken, we obtained two
different approaches to globally asymptotically stable points of system (2), which are as
follows, Qy,, = (0.569,0.15,0.682) in the period (0,0.129) and Qy, =
(0.301,0.413,0), in the interval [0.129,1), which is shown respectively in the Figure (9),
and parameters are given by Table (2).
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Figure 9: The trajectories of the system (2) by utilizing Table (2) with different values of w.
(a) 3D-Phase portrait when w, = 0.02. (b) The trajectories of the time series at w;, = 0.02. (¢)
3D-Phase portrait when w, = 0.86. (d) The trajectories of the time series at w, = 0.86.

Finally, a parameter wg was substituted into multiple periods of range taken, we obtained two
different approaches to globally asymptotically stable points of system (2), which are as
follows, Qy,, = (0.363,0.343,0.14) in the period (0,0.089) and Qyy =
(0.301,0.413,0), in the interval [0.089,1), which is shown respectively in the Figure (10),
and parameters are given by Table (2) .
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Figure 10: The trajectories of the system (2) by utilizing Table (2) with various values of wg.
(a) 3D-Phase portrait when wg = 0.057. (b) The trajectories of the time series at wg = 0.057.
(c) 3D-Phase portrait when wg = 0.77. (d) The trajectories of the time series at wg = 0.77.

Through our investigation of the system (2), we have found that at one of its points, which is
the point Q,, = (X,¥,0), when applying the conditions (7a,7b,7¢) a bi-statble case appeared
at the value of w3 = 0.9. This outcome proves there is no unique global point. In order to
confirm the theoretical findings, a numerical rep{%sentation has been shown in the Figure (11)
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Figure 11: 3D-Phase portrait when w3 = 0.9

9. Conclusions

Relationships between predators and their prey are an important aspect of the natural world,
having consequences for the equilibrium of ecosystems and the survival of species. These
interactions are intricate and can be affected by different factors like existence of refuge and
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the prevalence of infectious diseases. A model was taken for the prey and the predator, and
there was a presence of an infected predator in one of the predators. The existence which has
four solution points has been proven, and stability conditions were set for them. During the
investigation of solution points in a bi-stable, it has been discovered that there is no unique
global point at the value of Q,,.

After that, each point was created for its local stability. Each of these was done by
developing theories to prove them theoretically, as well as their numerical analysis has been
studied to confirm their validity. The results reached were consistent, as we noticed that when
changing the parameters in Table 2, the effect of some parameters become more than others,
and only one parameter had a quantitative effect. Fear of the prey was one of the parameters
that had a clear effect on changing the behavior of the system. The presence of the harvest in
the system in the three equations had a great impact, and this is what we saw through the
drawing, as well as the effect of both death and births was clear.
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