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Abstract 

Delay differential equations (DDEs) are a class of differential equations that have 

received considerable recent attention and been shown to model many real life 

problems, traditionally formulated as systems of ordinary differential equations 

(ODEs), more naturally and more accurately. By the development and progress of 

science in the recent period another images emerged from these equations, such as: 

neutral delay differential equations (NDDEs), Volterra delay-integro-differential 

equations (VDIDEs), and neutral Volterra delay-integro-differential equations 

(NVDIDEs). As a result of the difficulty of finding analytical solutions to these 

equations we often resort to numerical methods to solve these problems. The spline 

collocation methods, that depend on the second and higher derivatives, for solving 

DDEs have been considered by several authors. These methods produce less 

accurate approximations when the solution of these equations has a discontinuity in 

the second and higher derivatives. 

The aim of this thesis is to present a class of spline collocation methods which are 

based on the first derivative for the numerical solution of DDEs, NDDEs and 

VDIDEs. When the solution of these equations has a discontinuity in the second 

and higher derivatives, the present methods produce numerical solutions better 

than those computed by the previous methods. We present a combination of these 

methods. 

Keywords: numerical analyses 
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 خلاصة

هي فئة من المعادلات التفاضلية التي حظيت باهتمام كبير مؤخرًا  (DDEs) المعادلات التفاضلية المؤجلة

كأنظمة للمعادلات التفاضلية وتبين أنها تمثل العديد من مشاكل الحياة الحقيقية، والتي تمت صياغتها تقليدياً 

، بشكل أكثر طبيعية وأكثر دقة. ومع تطور العلم وتقدمه في الفترة الأخيرة ظهرت صور (ODEs) العادية

، ومعادلات فولتيرا تفاضلية (NDDEs) معادلات تفاضلية تأخير تكاملية محايدة :أخرى لهذه المعادلات، مثل

ونتيجة لصعوبة  .(NVDIDEs) يرا تفاضلية تكاملية تأخيرية، ومعادلات فولت(VDIDEs) تأخيرية تكاملية

إيجاد الحلول التحليلية لهذه المعادلات فإننا كثيرا ما نلجأ إلى الطرق العددية لحل هذه المسائل. لقد تم دراسة 

من قبل العديد من المؤلفين.  DDEs طرق تجميع الشرائح، التي تعتمد على المشتقات الثانية والأعلى، لحل

نتج هذه الطرق تقديرات تقريبية أقل دقة عندما يكون حل هذه المعادلات به انقطاع في المشتقات الثانية ت

الهدف من هذه الأطروحة هو تقديم فئة من طرق تجميع الشرائح والتي تعتمد على المشتق الأول  .والأعلى
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انقطاع في المشتقات  عندما يكون حل هذه المعادلات به .VDIDEsو NDDEsو DDEs للحل العددي لـ

الثانية والمشتقات العليا فإن الطرق الحالية تنتج حلولا عددية أفضل من تلك المحسوبة بالطرق السابقة. نقدم 

 .مجموعة من هذه الأساليب

 : التحليلات العددية كلمات مفتاحية

1-Introduction 

Numerical analysis, area of mathematics and computer science that creates, 

analyzes, and implements algorithms for obtaining numerical solutions to problems 

involving continuous variables. Such problems arise throughout the natural 

sciences, social sciences, engineering, medicine, and business. Since the mid-20th 

century, the growth in power and availability of digital computers has led to an 

increasing use of realistic mathematical models in science and engineering, and 

numerical analysis of increasing sophistication is needed to solve these more 

detailed models of the world. The formal academic area of numerical analysis 

ranges from quite theoretical mathematical studies to computer science issues[1]. 

With the increasing availability of computers, the new discipline of scientific 

computing, or computational science, emerged during the 1980s and 1990s. The 

discipline combines numerical analysis, symbolic mathematical 

computations, computer graphics, and other areas of computer science to make it 

easier to set up, solve, and interpret complicated mathematical models of the real 

world[2]. 

2-Common perspectives in numerical analysis 

Numerical analysis is concerned with all aspects of the numerical solution of a 

problem, from the theoretical development and understanding of numerical 

methods to their practical implementation as reliable and efficient computer 

programs. Most numerical analysts specialize in small subfields, but they share 

some common concerns, perspectives, and mathematical methods of analysis. 

These include the following[3]: 

1. When presented with a problem that cannot be solved directly, they try to 

replace it with a “nearby problem” that can be solved more easily. Examples are 

the use of interpolation in developing numerical integration methods and root-

finding methods. 

2. There is widespread use of the language and results of linear algebra, real 

analysis, and functional analysis (with its simplifying notation of norms, vector 

spaces, and operators). 

https://www.britannica.com/science/mathematics
https://www.britannica.com/science/computer-science
https://www.merriam-webster.com/dictionary/implements
https://www.britannica.com/science/algorithm
https://www.britannica.com/technology/digital-computer
https://www.britannica.com/science/mathematical-model
https://www.britannica.com/science/science
https://www.merriam-webster.com/dictionary/discipline
https://www.britannica.com/topic/computer-graphics
https://www.britannica.com/topic/set-mathematics-and-logic
https://www.britannica.com/science/interpolation
https://www.britannica.com/science/integration-mathematics
https://www.britannica.com/science/linear-algebra
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/analysis-mathematics/Other-areas-of-analysis#ref218297
https://www.britannica.com/science/vector-space
https://www.britannica.com/science/vector-space
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3. There is a fundamental concern with error, its size, and its analytic form. When 

approximating a problem, it is prudent to understand the nature of the error in the 

computed solution. Moreover, understanding the form of the error allows creation 

of extrapolation processes to improve the convergence behaviour of the numerical 

method. 

4. Numerical analysts are concerned with stability, a concept referring to the 

sensitivity of the solution of a problem to small changes in the data or 

the parameters of the problem. Consider the following example. The polynomial 

p(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6)(x − 7), or expanded, p(x) = x7 − 

28x6 + 322x5 − 1,960x4 − 6,769x3 − 13,132x2 + 13,068x − 5,040has roots that are 

very sensitive to small changes in the coefficients. If the coefficient of x6 is 

changed to −28.002, then the original roots 5 and 6 are perturbed to the complex 

numbers 5.459 0.540i—a very significant change in values. Such a 

polynomial p(x) is called unstable or ill-conditioned with respect to the root-

finding problem. Numerical methods for solving problems should be no more 

sensitive to changes in the data than the original problem to be solved. Moreover, 

the formulation of the original problem should be stable or well-conditioned[4]. 

5. Numerical analysts are very interested in the effects of using finite precision 

computer arithmetic. This is especially important in numerical linear algebra, as 

large problems contain many rounding errors. 

6. Numerical analysts are generally interested in measuring the efficiency (or 

“cost”) of an algorithm. For example, the use of Gaussian elimination to solve a 

linear system Ax = b containing n equations will require 

approximately 2n3/3 arithmetic operations. Numerical analysts would want to 

know how this method compares with other methods for solving the problem[5]. 

3-Modern applications and computer software 

Numerical analysis and mathematical modeling are essential in many areas of 

modern life. Sophisticated numerical analysis software is commonly embedded in 

popular software packages (e.g., spreadsheet programs) and allows fairly detailed 

models to be evaluated, even when the user is unaware of the underlying 

mathematics. Attaining this level of user transparency requires reliable, efficient, 

and accurate numerical analysis software, and it requires problem-solving 

environments (PSE) in which it is relatively easy to model a given situation. PSEs 

are usually based on excellent theoretical mathematical models, made available to 

the user through a convenient graphical user interface[6]. 

4-Applications 

https://www.britannica.com/science/error-mathematics
https://www.merriam-webster.com/dictionary/analytic
https://www.britannica.com/science/convergence-mathematics
https://www.britannica.com/science/stability-solution-of-equations
https://www.merriam-webster.com/dictionary/parameters
https://www.britannica.com/science/polynomial
https://www.britannica.com/science/arithmetic
https://www.britannica.com/science/rounding-error
https://www.merriam-webster.com/dictionary/efficiency
https://www.britannica.com/science/algorithm
https://www.britannica.com/science/Gauss-elimination
https://www.britannica.com/technology/graphical-user-interface
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Computer-aided engineering (CAE) is an important subject within engineering, 

and some quite sophisticated PSEs have been developed for this field. A wide 

variety of numerical analysis techniques is involved in solving such mathematical 

models. The models follow the basic Newtonian laws of mechanics, but there is a 

variety of possible specific models, and research continues on their design. One 

important CAE topic is that of modeling the dynamics of moving mechanical 

systems, a technique that involves both ordinary differential equations and 

algebraic equations (generally nonlinear). The numerical analysis of these mixed 

systems, called differential-algebraic systems, is quite difficult but necessary in 

order to model moving mechanical systems. Building simulators for cars, planes, 

and other vehicles requires solving differential-algebraic systems in real time[7]. 

Another important application is atmospheric modeling. In addition to improving 

weather forecasts, such models are crucial for understanding the possible effects of 

human activities on the Earth’s climate. In order to create a useful model, many 

variables must be introduced. Fundamental among these are the 

velocity V(x, y, z, t), pressure P(x, y, z, t), and temperature T(x, y, z, t), all given at 

position (x, y, z) and time t. In addition, various chemicals exist in the atmosphere, 

including ozone, certain chemical pollutants, carbon dioxide, and other gases and 

particulates, and their interactions have to be considered. The underlying equations 

for studying V(x, y, z, t), P(x, y, z, t), and T(x, y, z, t) are partial differential 

equations; and the interactions of the various chemicals are described using some 

quite difficult ordinary differential equations. Many types of numerical analysis 

procedures are used in atmospheric modeling, including computational fluid 

mechanics and the numerical solution of differential equations. Researchers strive 

to include ever finer detail in atmospheric models, primarily by incorporating data 

over smaller and smaller local regions in the atmosphere and implementing their 

models on highly parallel supercomputers.Get a Britannica Premium subscription 

and gain access to exclusive content[8]. 

-Subscribe Now 

Modern businesses rely on optimization methods to decide how 

to allocate resources most efficiently. For example, optimization methods are used 

for inventory control, scheduling, determining the best location for manufacturing 

and storage facilities, and investment strategies[9]. 

-Computer software 

Software to implement common numerical analysis procedures must be reliable, 

accurate, and efficient. Moreover, it must be written so as to be easily portable 

between different computer systems. Since about 1970, a number of government-

https://www.britannica.com/technology/computer-aided-engineering
https://www.merriam-webster.com/dictionary/dynamics
https://www.britannica.com/science/differential-mathematics
https://www.britannica.com/science/carbon-dioxide
https://www.britannica.com/science/fluid-mechanics
https://www.britannica.com/science/fluid-mechanics
https://www.merriam-webster.com/dictionary/implementing
https://premium.britannica.com/premium-membership/?utm_source=inline&utm_medium=mendel&utm_campaign=evergreen
https://www.britannica.com/science/optimization
https://www.merriam-webster.com/dictionary/allocate
https://www.britannica.com/technology/computer-program
https://www.merriam-webster.com/dictionary/implement
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sponsored research efforts have produced specialized, high-quality numerical 

analysis software.The most popular programming language for implementing 

numerical analysis methods is Fortran, a language developed in the 1950s that 

continues to be updated to meet changing needs. Other languages, such as C, C++, 

and Java, are also used for numerical analysis. Another approach for basic 

problems involves creating higher level PSEs, which often contain quite 

sophisticated numerical analysis, programming, and graphical tools. Best known of 

these PSEs is MATLAB, a commercial package that is arguably the most popular 

way to do numerical computing. Two popular computer programs for handling 

algebraic-analytic mathematics (manipulating and displaying formulas) are Maple 

and Mathematica[10]. 

5-Historical background 

Numerical algorithms are at least as old as the Egyptian Rhind papyrus (c. 

1650 BC), which describes a root-finding method for solving a simple equation. 

Ancient Greek mathematicians made many further advancements in numerical 

methods. In particular, Eudoxus of Cnidus (c. 400–350 BC) created 

and Archimedes (c. 285–212/211 BC) perfected the method of exhaustion for 

calculating lengths, areas, and volumes of geometric figures. When used as a 

method to find approximations, it is in much the spirit of modern numerical 

integration; and it was an important precursor to the development 

of calculus by Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716)[11]. 

Calculus, in particular, led to accurate mathematical models for physical reality, 

first in the physical sciences and eventually in the other sciences, engineering, 

medicine, and business. These mathematical models are usually too complicated to 

be solved explicitly, and the effort to obtain approximate, but highly useful, 

solutions gave a major impetus to numerical analysis. Another important aspect of 

the development of numerical methods was the creation of logarithms about 1614 

by the Scottish mathematician John Napier and others. Logarithms replaced 

tedious multiplication and division (often involving many digits of accuracy) with 

simple addition and subtraction after converting the original values to their 

corresponding logarithms through special tables. (Mechanization of this process 

spurred the English inventor Charles Babbage (1791–1871) to build the first 

computer—see History of computers: The first computer.) 

Newton created a number of numerical methods for solving a variety of problems, 

and his name is still attached to many generalizations of his original ideas. Of 

particular note is his work on finding roots (solutions) for general functions and 

finding a polynomial equation that best fits a set of data (“polynomial 

https://www.britannica.com/technology/computer-programming-language
https://www.britannica.com/dictionary/programming
https://www.merriam-webster.com/dictionary/algorithms
https://www.britannica.com/topic/Rhind-papyrus
https://www.britannica.com/science/equation
https://www.britannica.com/biography/Eudoxus-of-Cnidus
https://www.britannica.com/biography/Archimedes
https://www.britannica.com/science/method-of-exhaustion
https://www.merriam-webster.com/dictionary/precursor
https://www.britannica.com/science/calculus-mathematics
https://www.britannica.com/biography/Isaac-Newton
https://www.britannica.com/biography/Gottfried-Wilhelm-Leibniz
https://www.merriam-webster.com/dictionary/impetus
https://www.britannica.com/science/analysis-mathematics
https://www.britannica.com/science/logarithm
https://www.britannica.com/biography/John-Napier
https://www.britannica.com/biography/Charles-Babbage
https://www.britannica.com/technology/computer/History-of-computing#ref235927
https://www.britannica.com/science/function-mathematics
https://www.britannica.com/topic/set-mathematics-and-logic
https://www.britannica.com/dictionary/data
https://www.britannica.com/science/polynomial-interpolation
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interpolation”). Following Newton, many of the mathematical giants of the 18th 

and 19th centuries made major contributions to numerical analysis. Foremost 

among these were the Swiss Leonhard Euler (1707–1783), the French Joseph-

Louis Lagrange (1736–1813), and the German Carl Friedrich Gauss (1777–1855). 

One of the most important and influential of the early mathematical models 

in science was that given by Newton to describe the effect of gravity. According to 

this model, the gravitational force exerted on a body of mass m by the Earth has 

magnitude F = Gmme/r
2, where me is the mass of the Earth, r is the distance 

between the centres of the two bodies, and G is the universal gravitational constant. 

The force on m is directed toward the centre of gravity of the Earth. Newton’s 

model has led to many problems that require solution by approximate means, 

usually involving ordinary differential equations[12]. 

Following the development by Newton of his basic laws of physics, many 

mathematicians and physicists applied these laws to obtain mathematical models 

for solid and fluid mechanics. Civil and mechanical engineers still base their 

models on this work, and numerical analysis is one of their basic tools. In the 19th 

century, phenomena involving heat, electricity, and magnetism were successfully 

modeled; and in the 20th century, relativistic mechanics, quantum mechanics, and 

other theoretical constructs were created to extend and improve the applicability of 

earlier ideas. One of the most widespread numerical analysis techniques for 

working with such models involves approximating a complex, continuous surface, 

structure, or process by a finite number of simple elements. Known as the finite 

element method (FEM), this technique was developed by the American engineer 

Harold Martin and others to help the Boeing Company analyze stress forces on 

new jet wing designs in the 1950s. FEM is widely used in stress analysis, heat 

transfer, fluid flow, and torsion analysis[13]. 

6-Theory of numerical analysis 

The following is a rough categorization of the mathematical theory underlying 

numerical analysis, keeping in mind that there is often a great deal of overlap 

between the listed areas. 

-Numerical linear and nonlinear algebra 

Many problems in applied mathematics involve solving systems of linear 

equations, with the linear system occurring naturally in some cases and as a part of 

the solution process in other cases. Linear systems are usually written using 

matrix-vector notation, Ax = b with A the matrix of coefficients for the 

system, x the column vector of the unknown variables x1,…, xn, and b a given 

https://www.britannica.com/science/polynomial-interpolation
https://www.britannica.com/biography/Leonhard-Euler
https://www.britannica.com/biography/Joseph-Louis-Lagrange-comte-de-lEmpire
https://www.britannica.com/biography/Joseph-Louis-Lagrange-comte-de-lEmpire
https://www.britannica.com/biography/Carl-Friedrich-Gauss
https://www.britannica.com/science/science
https://www.britannica.com/science/gravity-physics
https://www.britannica.com/science/gravitational-constant
https://www.britannica.com/science/centre-of-gravity
https://www.britannica.com/science/differential-equation
https://www.britannica.com/science/mechanics-of-solids
https://www.britannica.com/science/fluid-mechanics
https://www.britannica.com/science/heat
https://www.britannica.com/science/electricity
https://www.britannica.com/science/magnetism
https://www.britannica.com/science/relativistic-mechanics
https://www.britannica.com/science/quantum-mechanics-physics
https://www.britannica.com/dictionary/theoretical
https://www.britannica.com/science/surface-geometry
https://www.britannica.com/science/finite-element-method
https://www.britannica.com/science/finite-element-method
https://www.britannica.com/topic/Boeing-Company
https://www.britannica.com/science/heat-transfer
https://www.britannica.com/science/heat-transfer
https://www.britannica.com/science/nonlinear-equation
https://www.britannica.com/science/mathematics
https://www.britannica.com/science/matrix-mathematics
https://www.britannica.com/science/vector-mathematics
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column vector. Solving linear systems with up to 1,000 variables is now 

considered relatively straightforward in most cases. For small to moderately sized 

linear systems (say, n ≤ 1,000), the favoured numerical method is Gaussian 

elimination and its variants; this is simply a precisely stated algorithmic variant of 

the method of elimination of variables that is introduced in elementary algebra. For 

larger linear systems, there is a variety of approaches depending on the structure of 

the coefficient matrix A. Direct methods lead to a theoretically exact solution x in a 

finite number of steps, with Gaussian elimination the best-known example. In 

practice, there are errors in the computed value of x due to rounding errors in the 

computation, arising from the finite length of numbers in standard 

computer arithmetic. Iterative methods are approximate methods that create a 

sequence of approximating solutions of increasing accuracy[14]. 

Nonlinear problems are often treated numerically by reducing them to a sequence 

of linear problems. As a simple but important example, consider the problem of 

solving a nonlinear equation f(x) = 0. Approximate the graph of y = f(x) by the 

tangent line at a point x(0) near the desired root (use of parentheses is a common 

notational convention to distinguish successive iterations from exponentiation), 

and use the root of the tangent line to approximate the root of the original 

nonlinear function f(x). This leads to Newton’s iterative method for finding 

successively better approximations to the desired 

root:x(k +1) = x(k) − f(x(k))/f′(x(k)), k = 0, 1, 2, …,where f′(x) indicates the 

first derivative of the original function. 

This generalizes to handling systems of nonlinear equations. Let f(x) = 0 denote a 

system of n nonlinear equations in n unknowns x = (x1,…, xn). Newton’s 

method for solving this system is given byx(k + 1) = x(k) + δ(k)f′(x(k))δ(k) = −f(x(k)), k = 

0, 1, 2,… 

In this, f′(x) is a generalization of the derivative known as the Jacobian matrix 

of f(x), and the second equation is a linear system of order n. There are numerous 

other approaches to solving nonlinear systems, most based on using some type of 

approximation involving linear functions. 

An important related class of problems occurs under the heading of optimization. 

Given a real-valued function f(x) with x a vector of unknowns, a value of x that 

minimizes f(x) is sought. In some cases x is allowed to vary freely, and in other 

cases there are constraints on x. Such problems occur frequently in business 

applications. 

7-Approximation theory 

https://www.britannica.com/dictionary/vector
https://www.britannica.com/science/Gauss-elimination
https://www.britannica.com/science/Gauss-elimination
https://www.britannica.com/science/elementary-algebra
https://www.britannica.com/science/arithmetic
https://www.merriam-webster.com/dictionary/Iterative
https://www.britannica.com/science/graph-mathematics
https://www.britannica.com/science/line-mathematics
https://www.merriam-webster.com/dictionary/iterations
https://www.britannica.com/science/function-mathematics
https://www.britannica.com/science/Newtons-iterative-method
https://www.britannica.com/science/derivative-mathematics
https://www.britannica.com/science/Newtons-method
https://www.britannica.com/science/Newtons-method
https://www.britannica.com/dictionary/derivative
https://www.britannica.com/science/optimization
https://www.britannica.com/science/approximation
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This category includes the approximation of functions with simpler or more 

tractable functions and methods based on using such approximations. When 

evaluating a function f(x) with x a real or complex number, it must be kept in mind 

that a computer or calculator can only do a finite number of operations. Moreover, 

these operations are the basic arithmetic operations of addition, subtraction, 

multiplication, and division, together with comparison operations such as 

determining whether x > y is true or false. With the four basic arithmetic 

operations, it is possible to evaluate polynomialsp(x) = a0 + a1x + a2x
2 + ⋯ + anx

nas 

well as rational functions (polynomials divided by polynomials). By including the 

comparison operations, it is possible to evaluate different polynomials or rational 

functions on different sets of real numbers x. The evaluation of all other 

functions—e.g., f(x) = Square root of√x or 2x—must be reduced to the evaluation 

of a polynomial or rational function that approximates the given function 

with sufficient accuracy. All function evaluations on calculators and computers are 

accomplished in this manner[15]. 

One common method of approximation is known as interpolation. Consider a set of 

points (xi,yi) where i = 0, 1, …, n, and then find a polynomial that satisfies p(xi) 

= yi for all i = 0, 1, …, n. The polynomial p(x) is said to interpolate the given data 

points. Interpolation can be performed with functions other than polynomials 

(although these are most common), with important cases being rational functions, 

trigonometric polynomials, and spline functions (made by connecting several 

polynomial functions at their endpoints—they are commonly used in statistics and 

computer graphics). 

Interpolation has a number of applications. If a function f(x) is known only at a 

discrete set of data points x0, …, xn, with yi = f(xi), then interpolation can be used to 

extend the definition to nearby points x. If n is at all large, spline functions are 

generally preferable to simple polynomials[16]. 

Most numerical methods for the approximation of integrals and derivatives of a 

given function f(x) are based on interpolation. For example, begin by constructing 

an interpolating function p(x), often a polynomial, that approximates f(x), and 

then integrate or differentiate p(x) to approximate the 

corresponding integral or derivative of f(x). 

8-Solving differential and integral equations 

Most mathematical models used in the natural sciences and engineering are based 

on ordinary differential equations, partial differential equations, and integral 

equations. Numerical methods for solving these equations are primarily of two 

types. The first type approximates the unknown function in the equation by a 

https://www.britannica.com/science/function-mathematics
https://www.britannica.com/science/complex-number
https://www.britannica.com/dictionary/finite
https://www.britannica.com/science/arithmetic
https://www.britannica.com/science/polynomial
https://www.britannica.com/dictionary/sufficient
https://www.britannica.com/science/interpolation
https://www.britannica.com/topic/set-mathematics-and-logic
https://www.britannica.com/science/statistics
https://www.merriam-webster.com/dictionary/integrals
https://www.merriam-webster.com/dictionary/integrate
https://www.merriam-webster.com/dictionary/differentiate
https://www.britannica.com/science/integral-mathematics
https://www.britannica.com/science/derivative-mathematics
https://www.britannica.com/science/differential-equation
https://www.britannica.com/science/ordinary-differential-equation
https://www.britannica.com/science/partial-differential-equation
https://www.britannica.com/science/integral-equation
https://www.britannica.com/science/integral-equation
https://www.britannica.com/science/equation
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simpler function, often a polynomial or piecewise polynomial (spline) function, 

chosen to closely follow the original equation. The finite element method 

discussed above is the best known approach of this type. The second type of 

numerical method approximates the equation of interest, usually by approximating 

the derivatives or integrals in the equation. The approximating equation has a 

solution at a discrete set of points, and this solution approximates that of the 

original equation. Such numerical procedures are often called finite difference 

methods. Most initial value problems for ordinary differential equations and partial 

differential equations are solved in this way. Numerical methods for solving 

differential and integral equations often involve both approximation theory and the 

solution of quite large linear and nonlinear systems of equations[17]. 

9-Effects of computer hardware 

Almost all numerical computation is carried out on digital computers. The 

structure and properties of digital computers affect the structure of 

numerical algorithms, especially when solving large linear systems. First and 

foremost, the computer arithmetic must be understood. Historically, computer 

arithmetic varied greatly between different computer manufacturers, and this was a 

source of many problems when attempting to write software that could be easily 

ported between different computers. Variations were reduced significantly in 1985 

with the development of the Institute for Electrical and Electronic 

Engineering (IEEE) standard for computer floating-point arithmetic. The IEEE 

standard has been adopted by all personal computers and workstations as well as 

most mainframe computers.For large-scale problems, especially in 

numerical linear algebra, it is important to know how the elements of an array A or 

a vector x are stored in memory. Knowing this can lead to much faster transfer of 

numbers from the memory into the arithmetic registers of the computer, thus 

leading to faster programs. A somewhat related topic is that of “pipelining.” This is 

a widely used technique whereby the executions of computer operations are 

overlapped, leading to faster execution. Machines with the same basic clock speed 

can have very different program execution times due to differences in pipelining 

and differences in the way memory is accessed[18]. 

Most personal computers are sequential in their operation, but parallel 

computers are being used ever more widely in public and private research 

institutions. (See supercomputer.) Shared-memory parallel computers have several 

independent central processing units (CPUs) that all access the same computer 

memory, whereas distributed-memory parallel computers have separate memory 

for each CPU. Another form of parallelism is the use of pipelining 

of vector arithmetic operations. Numerical algorithms must be modified to run 

https://www.britannica.com/science/differential-mathematics
https://www.merriam-webster.com/dictionary/integral
https://www.britannica.com/technology/hardware-computing
https://www.merriam-webster.com/dictionary/algorithms
https://www.britannica.com/topic/Institute-of-Electrical-and-Electronics-Engineers
https://www.britannica.com/topic/Institute-of-Electrical-and-Electronics-Engineers
https://www.britannica.com/science/linear-algebra
https://www.britannica.com/dictionary/array
https://www.britannica.com/science/vector-mathematics
https://www.britannica.com/technology/parallel-processing
https://www.britannica.com/technology/parallel-processing
https://www.britannica.com/technology/supercomputer
https://www.britannica.com/technology/central-processing-unit
https://www.britannica.com/technology/computer-memory
https://www.britannica.com/technology/computer-memory
https://www.britannica.com/dictionary/vector
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most efficiently on whatever combination of methods a particular computer 

employs[19]. 

Conclusions  

We have presented a 2D accurate and efficient numerical analysis of the reflector 

beam waveguides made of several PEC elliptic mirrors. This has been achieved 

with the aid of the SIE-MDS approach. The main feature of a beam waveguide is 

an ability to focus the beam and reproduce the near-field pattern after each 

reflector. As a simple figure of merit, we have studied the field amplitudes in the 

consecutive focal points of confocal elliptic reflectors under the variation of 

various parameters. Our analysis has shown that the ability of the chain of 

reflectors to guide the wave radiated by an aperture source strongly depends on the 

edge illumination of the first reflector and on the proper placement of the source. 

For in-focus source, the edge illumination of a 20 reflector should not be higher 

than −12 dB. Numerical synthesis is a much more complicated endeavor than 

analysis. We have tested the SIE-MDS technique as a full-wave engine for 

building a synthesis code based on a seminumerical gradient method. As we have 

found, if the objective function is the deviation of the near field from a given 

function on a certain open or closed contour, it is possible to derive a separate SIE 

for the gradient of the objective function and to solve it with the MDS as well. This 

speeds up the synthesis process and guarantees accuracy. Example of the synthesis 

of a shaped reflector has been given to demonstrate the splitting of the incident 

Gaussian-like beam into two high-intensity spots at prescribed locations. 
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