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Abstract

Delay differential equations (DDEs) are a class of differential equations that have
received considerable recent attention and been shown to model many real life
problems, traditionally formulated as systems of ordinary differential equations
(ODEs), more naturally and more accurately. By the development and progress of
science in the recent period another images emerged from these equations, such as:
neutral delay differential equations (NDDESs), Volterra delay-integro-differential
equations (VDIDEs), and neutral Volterra delay-integro-differential equations
(NVDIDES). As a result of the difficulty of finding analytical solutions to these
equations we often resort to numerical methods to solve these problems. The spline
collocation methods, that depend on the second and higher derivatives, for solving
DDEs have been considered by several authors. These methods produce less
accurate approximations when the solution of these equations has a discontinuity in
the second and higher derivatives.
The aim of this thesis is to present a class of spline collocation methods which are
based on the first derivative for the numerical solution of DDEs, NDDEs and
VDIDEs. When the solution of these equations has a discontinuity in the second
and higher derivatives, the present methods produce numerical solutions better
than those computed by the previous methods. We present a combination of these
methods.
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1-Introduction

Numerical analysis, area of mathematics and computer science that creates,
analyzes, and implements algorithms for obtaining numerical solutions to problems
involving continuous variables. Such problems arise throughout the natural
sciences, social sciences, engineering, medicine, and business. Since the mid-20th
century, the growth in power and availability of digital computers has led to an
increasing use of realistic mathematical models in science and engineering, and
numerical analysis of increasing sophistication is needed to solve these more
detailed models of the world. The formal academic area of numerical analysis
ranges from quite theoretical mathematical studies to computer science issues[1].

With the increasing availability of computers, the new discipline of scientific
computing, or computational science, emerged during the 1980s and 1990s. The
discipline combines numerical analysis, symbolic mathematical
computations, computer graphics, and other areas of computer science to make it
easier to set up, solve, and interpret complicated mathematical models of the real
world[2].

2-Common perspectives in numerical analysis

Numerical analysis is concerned with all aspects of the numerical solution of a
problem, from the theoretical development and understanding of numerical
methods to their practical implementation as reliable and efficient computer
programs. Most numerical analysts specialize in small subfields, but they share
some common concerns, perspectives, and mathematical methods of analysis.
These include the following[3]:

1. When presented with a problem that cannot be solved directly, they try to
replace it with a “nearby problem” that can be solved more ecasily. Examples are
the use of interpolation in developing numerical integration methods and root-
finding methods.

2. There is widespread use of the language and results of linear algebra, real
analysis, and functional analysis (with its simplifying notation of norms, vector
spaces, and operators).
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3. There is a fundamental concern with error, its size, and its analytic form. When
approximating a problem, it is prudent to understand the nature of the error in the
computed solution. Moreover, understanding the form of the error allows creation
of extrapolation processes to improve the convergence behaviour of the numerical
method.

4. Numerical analysts are concerned with stability, a concept referring to the
sensitivity of the solution of a problem to small changes in the data or
the parameters of the problem. Consider the following example. The polynomial
p(X) = (X — 1)(x — 2)(Xx — 3)(X — H)(X — 5)(x — 6)(x — 7), or expanded, p(x) =X —
28x8 + 322x° — 1,960x* — 6,769x° — 13,132x% + 13,068x — 5,040has roots that are
very sensitive to small changes in the coefficients. If the coefficient of x®is
changed to —28.002, then the original roots 5 and 6 are perturbed to the complex
numbers 5.459 0.540i—a very significant change in values. Such a
polynomial p(x) is called unstable or ill-conditioned with respect to the root-
finding problem. Numerical methods for solving problems should be no more
sensitive to changes in the data than the original problem to be solved. Moreover,
the formulation of the original problem should be stable or well-conditioned[4].

5. Numerical analysts are very interested in the effects of using finite precision
computer arithmetic. This is especially important in numerical linear algebra, as
large problems contain many rounding errors.

6. Numerical analysts are generally interested in measuring the efficiency (or
“cost”) of an algorithm. For example, the use of Gaussian elimination to solve a
linear system Ax = b containing n equations will require
approximately 2n%/3 arithmetic operations. Numerical analysts would want to
know how this method compares with other methods for solving the problem[5].

3-Modern applications and computer software

Numerical analysis and mathematical modeling are essential in many areas of
modern life. Sophisticated numerical analysis software is commonly embedded in
popular software packages (e.g., spreadsheet programs) and allows fairly detailed
models to be evaluated, even when the user is unaware of the underlying
mathematics. Attaining this level of user transparency requires reliable, efficient,
and accurate numerical analysis software, and it requires problem-solving
environments (PSE) in which it is relatively easy to model a given situation. PSEs
are usually based on excellent theoretical mathematical models, made available to
the user through a convenient graphical user interface[6].

4-Applications
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Computer-aided engineering (CAE) is an important subject within engineering,
and some quite sophisticated PSEs have been developed for this field. A wide
variety of numerical analysis techniques is involved in solving such mathematical
models. The models follow the basic Newtonian laws of mechanics, but there is a
variety of possible specific models, and research continues on their design. One
important CAE topic is that of modeling the dynamics of moving mechanical
systems, a technique that involves both ordinary differential equations and
algebraic equations (generally nonlinear). The numerical analysis of these mixed
systems, called differential-algebraic systems, is quite difficult but necessary in
order to model moving mechanical systems. Building simulators for cars, planes,
and other vehicles requires solving differential-algebraic systems in real time[7].

Another important application is atmospheric modeling. In addition to improving
weather forecasts, such models are crucial for understanding the possible effects of
human activities on the Earth’s climate. In order to create a useful model, many
variables must be introduced. Fundamental among these are the
velocity V(X, y, z, t), pressure P(x, Y, z, t), and temperature T(X, y, z, t), all given at
position (X, y, z) and time t. In addition, various chemicals exist in the atmosphere,
including ozone, certain chemical pollutants, carbon dioxide, and other gases and
particulates, and their interactions have to be considered. The underlying equations
for studying V(x,vy, z,t), P(x,y,z 1), andT(x,y,zt) are partial differential
equations; and the interactions of the various chemicals are described using some
quite difficult ordinary differential equations. Many types of numerical analysis
procedures are used in atmospheric modeling, including computational fluid
mechanics and the numerical solution of differential equations. Researchers strive
to include ever finer detail in atmospheric models, primarily by incorporating data
over smaller and smaller local regions in the atmosphere and implementing their
models on highly parallel supercomputers.Get a Britannica Premium subscription
and gain access to exclusive content[8].

-Subscribe Now

Modern  businesses  rely  on optimization methods to  decide  how
to allocate resources most efficiently. For example, optimization methods are used
for inventory control, scheduling, determining the best location for manufacturing
and storage facilities, and investment strategies[9].

-Computer software

Software to implement common numerical analysis procedures must be reliable,
accurate, and efficient. Moreover, it must be written so as to be easily portable
between different computer systems. Since about 1970, a number of government-
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sponsored research efforts have produced specialized, high-quality numerical
analysis software.The most popular programming language for implementing
numerical analysis methods is Fortran, a language developed in the 1950s that
continues to be updated to meet changing needs. Other languages, such as C, C++,
and Java, are also used for numerical analysis. Another approach for basic
problems involves creating higher level PSEs, which often contain quite
sophisticated numerical analysis, programming, and graphical tools. Best known of
these PSEs is MATLAB, a commercial package that is arguably the most popular
way to do numerical computing. Two popular computer programs for handling
algebraic-analytic mathematics (manipulating and displaying formulas) are Maple
and Mathematica[10].

5-Historical background

Numerical algorithms are at least as old as the Egyptian Rhind papyrus (c.
1650 BC), which describes a root-finding method for solving a simple equation.
Ancient Greek mathematicians made many further advancements in numerical
methods. In particular, Eudoxus of Cnidus (c. 400-350 BC) created
and Archimedes (c. 285-212/211 BC) perfected the method of exhaustion for
calculating lengths, areas, and volumes of geometric figures. When used as a
method to find approximations, it is in much the spirit of modern numerical
integration; and it was an important precursorto the development
of calculus by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716)[11].

Calculus, in particular, led to accurate mathematical models for physical reality,
first in the physical sciences and eventually in the other sciences, engineering,
medicine, and business. These mathematical models are usually too complicated to
be solved explicitly, and the effort to obtain approximate, but highly useful,
solutions gave a major impetus to numerical analysis. Another important aspect of
the development of numerical methods was the creation of logarithms about 1614
by the Scottish mathematician John Napier and others. Logarithms replaced
tedious multiplication and division (often involving many digits of accuracy) with
simple addition and subtraction after converting the original values to their
corresponding logarithms through special tables. (Mechanization of this process
spurred the English inventor Charles Babbage (1791-1871) to build the first
computer—see History of computers: The first computer.)

Newton created a number of numerical methods for solving a variety of problems,
and his name is still attached to many generalizations of his original ideas. Of
particular note is his work on finding roots (solutions) for general functions and
finding a polynomial equation that best fits a setof data (“polynomial
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interpolation”). Following Newton, many of the mathematical giants of the 18th
and 19th centuries made major contributions to numerical analysis. Foremost
among these were the Swiss Leonhard Euler (1707-1783), the French Joseph-
Louis Lagrange (1736-1813), and the German Carl Friedrich Gauss (1777-1855).

One of the most important and influential of the early mathematical models
in science was that given by Newton to describe the effect of gravity. According to
this model, the gravitational force exerted on a body of mass m by the Earth has
magnitude F = Gmm,/r?, where m.is the mass of the Earth, ris the distance
between the centres of the two bodies, and G is the universal gravitational constant.
The force onmis directed toward the centre of gravity of the Earth. Newton’s
model has led to many problems that require solution by approximate means,
usually involving ordinary differential equations[12].

Following the development by Newton of his basic laws of physics, many
mathematicians and physicists applied these laws to obtain mathematical models
for solid and fluid mechanics. Civil and mechanical engineers still base their
models on this work, and numerical analysis is one of their basic tools. In the 19th
century, phenomena involving heat, electricity, and magnetism were successfully
modeled; and in the 20th century, relativistic mechanics, qguantum mechanics, and
other theoretical constructs were created to extend and improve the applicability of
earlier ideas. One of the most widespread numerical analysis techniques for
working with such models involves approximating a complex, continuous surface,
structure, or process by a finite number of simple elements. Known as the finite
element method (FEM), this technique was developed by the American engineer
Harold Martin and others to help the Boeing Company analyze stress forces on
new jet wing designs in the 1950s. FEM is widely used in stress analysis, heat
transfer, fluid flow, and torsion analysis[13].

6-Theory of numerical analysis

The following is a rough categorization of the mathematical theory underlying
numerical analysis, keeping in mind that there is often a great deal of overlap
between the listed areas.

-Numerical linear and nonlinear algebra

Many problems in applied mathematics involve solving systems of linear
equations, with the linear system occurring naturally in some cases and as a part of
the solution process in other cases. Linear systems are usually written using
matrix-vector  notation, Ax = b with A the matrix of  coefficients  for the
system, x the column vector of the unknown variables xi,..., X,, andba given
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column vector. Solving linear systems with up to 1,000 variables is now
considered relatively straightforward in most cases. For small to moderately sized
linear systems (say, n< 1,000), the favoured numerical method is Gaussian
elimination and its variants; this is simply a precisely stated algorithmic variant of
the method of elimination of variables that is introduced in elementary algebra. For
larger linear systems, there is a variety of approaches depending on the structure of
the coefficient matrix A. Direct methods lead to a theoretically exact solution x in a
finite number of steps, with Gaussian elimination the best-known example. In
practice, there are errors in the computed value of x due to rounding errors in the
computation, arising from the finite length of numbers in standard
computer arithmetic. Iterative methods are approximate methods that create a
sequence of approximating solutions of increasing accuracy[14].

Nonlinear problems are often treated numerically by reducing them to a sequence
of linear problems. As a simple but important example, consider the problem of
solving a nonlinear equation f(x) = 0. Approximate the graph of y = f(x) by the
tangent line at a point x© near the desired root (use of parentheses is a common
notational convention to distinguish successive iterations from exponentiation),
and use the root of the tangent line to approximate the root of the original
nonlinear function f(x). This leads to Newton’s iterative method for finding
successively better approximations to the desired
root:x®*D = x® — f(x@)/f(x®), k=0, 1, 2, ...wheref(x) indicates the
first derivative of the original function.

This generalizes to handling systems of nonlinear equations. Let f(x) = 0 denote a
system of nnonlinear equations innunknowns X = (Xu,..., Xn). Newton’s
method for solving this system is given byx®* 1 = x® + §0f (x("))és(") = —f(x®), k =
0,1,2,...

In this, f'(xX) is a generalization of the derivative known as the Jacobian matrix
of f(x), and the second equation is a linear system of order n. There are numerous
other approaches to solving nonlinear systems, most based on using some type of
approximation involving linear functions.

An important related class of problems occurs under the heading of optimization.
Given a real-valued function f(x) with x a vector of unknowns, a value of x that
minimizes f(x) is sought. In some cases x is allowed to vary freely, and in other
cases there are constraints on X. Such problems occur frequently in business
applications.

7-Approximation theory
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This category includes the approximation of functions with simpler or more
tractable functions and methods based on using such approximations. When
evaluating a function f(x) with x a real or complex number, it must be kept in mind
that a computer or calculator can only do a finite number of operations. Moreover,
these operations are the basic arithmetic operations of addition, subtraction,
multiplication, and division, together with comparison operations such as
determining whether x >y is true or false. With the four basic arithmetic
operations, it is possible to evaluate polynomialsp(x) = agp + aix + ax? + -+ + a,x"as
well as rational functions (polynomials divided by polynomials). By including the
comparison operations, it is possible to evaluate different polynomials or rational
functions on different sets of real numbers x. The evaluation of all other
functions—e.g., f(x) = Square root of\x or 2—must be reduced to the evaluation
of apolynomial or rational function that approximates the given function
with sufficient accuracy. All function evaluations on calculators and computers are
accomplished in this manner[15].

One common method of approximation is known as interpolation. Consider a set of
points (x;,yi) wherei= 0, 1, ..., n, and then find a polynomial that satisfies p(x;)
=yiforalli=0, 1, ..., n. The polynomial p(x) is said to interpolate the given data
points. Interpolation can be performed with functions other than polynomials
(although these are most common), with important cases being rational functions,
trigonometric polynomials, and spline functions (made by connecting several
polynomial functions at their endpoints—they are commonly used in statistics and
computer graphics).

Interpolation has a number of applications. If a function f(x) is known only at a
discrete set of data points xo, ..., Xn, With y; = f(x;), then interpolation can be used to
extend the definition to nearby points x. If nis at all large, spline functions are
generally preferable to simple polynomials[16].

Most numerical methods for the approximation of integrals and derivatives of a
given function f(x) are based on interpolation. For example, begin by constructing
an interpolating function p(x), often a polynomial, that approximates f(x), and
then integrate or differentiate p(x) to approximate the
corresponding integral or derivative of f(x).

8-Solving differential and integral equations

Most mathematical models used in the natural sciences and engineering are based
on ordinary differential equations, partial differential equations, and integral
equations. Numerical methods for solving these equations are primarily of two
types. The first type approximates the unknown function in the equation by a
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simpler function, often a polynomial or piecewise polynomial (spline) function,
chosen to closely follow the original equation. The finite element method
discussed above is the best known approach of this type. The second type of
numerical method approximates the equation of interest, usually by approximating
the derivatives or integrals in the equation. The approximating equation has a
solution at a discrete set of points, and this solution approximates that of the
original equation. Such numerical procedures are often called finite difference
methods. Most initial value problems for ordinary differential equations and partial
differential equations are solved in this way. Numerical methods for solving
differential and integral equations often involve both approximation theory and the
solution of quite large linear and nonlinear systems of equations[17].

9-Effects of computer hardware

Almost all numerical computation is carried out on digital computers. The
structure and properties of digital computers affect the structure of
numerical algorithms, especially when solving large linear systems. First and
foremost, the computer arithmetic must be understood. Historically, computer
arithmetic varied greatly between different computer manufacturers, and this was a
source of many problems when attempting to write software that could be easily
ported between different computers. Variations were reduced significantly in 1985
with the development of the Institute for Electrical and Electronic
Engineering (IEEE) standard for computer floating-point arithmetic. The IEEE
standard has been adopted by all personal computers and workstations as well as
most mainframe computers.For large-scale problems, especially in
numerical linear algebra, it is important to know how the elements of an array A or
a vector x are stored in memory. Knowing this can lead to much faster transfer of
numbers from the memory into the arithmetic registers of the computer, thus
leading to faster programs. A somewhat related topic is that of “pipelining.” This is
a widely used technique whereby the executions of computer operations are
overlapped, leading to faster execution. Machines with the same basic clock speed
can have very different program execution times due to differences in pipelining
and differences in the way memory is accessed[18].

Most personal computers are sequential in their operation, but parallel
computers are being used ever more widely in public and private research
institutions. (See supercomputer.) Shared-memory parallel computers have several
independent central processing units (CPUs) that all access the same computer
memory, whereas distributed-memory parallel computers have separate memory
for each CPU. Another form of parallelism is the use of pipelining
of vector arithmetic operations. Numerical algorithms must be modified to run
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most efficiently on whatever combination of methods a particular computer
employs[19].

Conclusions

We have presented a 2D accurate and efficient numerical analysis of the reflector
beam waveguides made of several PEC elliptic mirrors. This has been achieved
with the aid of the SIE-MDS approach. The main feature of a beam waveguide is
an ability to focus the beam and reproduce the near-field pattern after each
reflector. As a simple figure of merit, we have studied the field amplitudes in the
consecutive focal points of confocal elliptic reflectors under the variation of
various parameters. Our analysis has shown that the ability of the chain of
reflectors to guide the wave radiated by an aperture source strongly depends on the
edge illumination of the first reflector and on the proper placement of the source.
For in-focus source, the edge illumination of a 20 reflector should not be higher
than —12 dB. Numerical synthesis is a much more complicated endeavor than
analysis. We have tested the SIE-MDS technique as a full-wave engine for
building a synthesis code based on a seminumerical gradient method. As we have
found, if the objective function is the deviation of the near field from a given
function on a certain open or closed contour, it is possible to derive a separate SIE
for the gradient of the objective function and to solve it with the MDS as well. This
speeds up the synthesis process and guarantees accuracy. Example of the synthesis
of a shaped reflector has been given to demonstrate the splitting of the incident
Gaussian-like beam into two high-intensity spots at prescribed locations.

References

1. Feature issue, “Diffractive optics applications,” Appl. Opt. 34, 2399-2559
(1995).

2. J. M. Bendickson, E. M. Glytsis, and T. K. Gaylord, “Metallic surface-relief on-
axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16,
113-130 (1999).

3. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Focusing diffractive
cylindrical mirrors: rigorous evaluation of various design methods,” J. Opt. Soc.
Am. A 18, 1487-1494 (2001).

4. B. Z. Katsenelenbaum, “Transmission of millimetric waves by reflection from a
series of focusing mirrors (Approximate theory of millimetric wave transmission,
using reflections from row of focusing mirrors),” Radio Eng. Electron. Phys. 8,
1455-1460 (1963) [Radiotekh. Elektron. (Moscow) 8, 1516-1522 (1963)].

552



o

2024 ) 12 Aswh  dunlellg duclaisYlg auiluill Sgaull aublpcll dalaall 7 4 0

No.12A  March 2024 Traqi Journal of Humanitarian, Social and Scientific Research 1 &
Print ISSN 2710-0952 Electronic ISSN 2790-1254 .

5. J. E. Degenford, M. D. Sirkis, and W. H. Steier, “The reflecting beam
waveguide,” IEEE Trans. Microwave Theory Tech. 12, 445-453 (1964). 6. B. Z.
Katsenelenbaum, ‘“Quasioptical methods of generation and transmission of
millimeter waves,” Sov. Phys. Usp. 7, 385-400 (1964) [Usp. Fiz. Nauk 83, 31-105
(1964)].

7. V. S. Averbakh, S. N. Vlasov, and V. I. Talanov, “Methods of mode selection
In quasioptical systems,” Radiophys. Quantum Electron. 10, 747-760 (1967) [lzv.
Vyssh. Uchebn. Zaved. 10, 1333-1357 (1967)].

8. R. Tremblay and A. Boivin, “Concepts and techniques of microwave optics,”
Appl. Opt. 5, 249-278 (1966).

9. G. Goubau and P. D. Coleman, “Beam waveguides,” in E. C. Okress, ed.,
Microwave Power Engineering (Academic, 1968), Vol. 1, pp. 228-255 (1968).

10. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam, Quasioptical
Propagation and Applications (IEEE, 1998).

11. A. Fernandez, K. M. Likin, P. Turullols, J. Teniente, R. Gonzalo, C. del Rio, J.
Marti-Canales, M. Sorolla, R. Martin, “Quasioptical transmission lines for ECRH
at TJ-II stellarator,” Int. J. Infrared Millim. Waves 21, 1945-1957 (2000).

12. M. K. Thumm and W. Kasparek, “Passive high-power microwave
components,” IEEE Trans. Plasma Sci. 30, 755-786 (2002).

13. P. F. Goldsmith, “A quasi-optical feed system for radioastronomical
observations at mm wavelength,” Bell Syst. Tech. J. 56, 1483-1501 (1977).

14. L. B. Felsen, “Quasi-optic diffraction,” in Proceedings of Symposium on
Quasi-Optics (P. 1. Brooklyn Press, 1964), pp. 1-40.

15. J. A. Murphy, “Distortion of a simple Gaussian beam on reflection from off-
axis ellipsoidal mirrors,” Int. J. Infrared Millim. Waves 8, 1165-1187 (1987).

16. L. Empacher and W. Kasparek, “Analysis of a multiplebeam waveguide for
free-space transmission of microwaves,” IEEE Trans. Antennas Propag. 49, 483—
493 (2001).

17. T. Bondo and S. B. Sorensen, “Physical optics analysis of beam waveguides
using auxiliary planes,” IEEE Trans. Antennas Propag. 53, 1062—1068 (2005).

553



2024 )3 12 Aswd  Gaalclig duclaislig auiluwill Sgaul) audlpcll alanll

No.12A  March 2024 Traqi Journal of Humanitarian, Social and Scientific Research 1 @
Print ISSN 2710-0952 Electronic ISSN 2790-1254 .

18. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods

applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34—
43 (1997).

19. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord, “Scalar integral
diffraction methods: unification, accuracy, and comparison with a rigorous

boundary element method with application to diffractive cylindrical lenses,” J. Opt.
Soc. Am. A 15, 1822-1837 (1998).

20. M. Testorf, “On the zero-thickness model of diffractive optical elements,” J.
Opt. Soc. Am. A 17, 1132-1133 (2000).

21. T. Oguzer, A. L. Nosich, and A. Altintas, “E-polarized beam scattering by an
open cylindrical PEC strip having arbitrary “conical-section” profile,” Microwave
Opt. Technol. Lett. 31, 480-484 (2001). 22. A. A. Nosich and Y. V. Gandel,
“Numerical analysis of quasi-optical multireflector antennas in 2-D with the
method of discrete singularities,” IEEE Trans. Antennas Propag. 55, 399-406
(2007).

23.J. Tsalamengas, “Exponentially converging Nystrom’s methods for systems of
SIEs with applications to open/ closed strip or slot-loaded 2-D structures,” IEEE
Trans. Antennas Propag. 54, 1549-1558 (2006).

554



