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Abstract 

This research presents a new finite element technique that uses a gradient 

operator over generalized functions that is not well-defined. The idea of weak 

discrete gradients is introduced as a way to approximate weak gradients, which 

could be useful for numerical solutions of Partial derivatives equations . The study 

aims to present a comprehensive highlight for handling derivatives operators on 

generalized services . The approach utilizes a discrete weak gradient operator to 

develop numerical techniques that can solve a second-order elliptic problem. This 

operator is an alternative to the conventional gradient operator. The approach 

employed is known as weak Galerkin (WG), which is a numerical method that 

permits the use of entirely discontinuous functions.. The paper provides an error 

estimate for the weak Galerkin finite element solutions for both discrete and 

norms-based solutions to the second order elliptic problem. Additionally, the paper 

highlights the super convergence of the weak Galerkin approximation. 

Keywords: Discrete gradient; Finite element methods using Galerkin; hybrid finite 

element techniques; elliptic second-order issues. 

 التقريب العددي للمعادلات التفاضلية الجزئية

 رلى إسماعيل حمد

 مديرية تربية ذي قار

 خلاصة

ددة يقدم هذا البحث تقنية جديدة للعناصر المحدودة تستخدم عامل التدرج على الوظائف المعممة غير المح

جيداً. تم تقديم فكرة التدرجات المنفصلة الضعيفة كوسيلة لتقريب التدرجات الضعيفة، والتي يمكن أن تكون 

مفيدة للحلول العددية لمعادلات المشتقات الجزئية. وتهدف الدراسة إلى تقديم نظرة شاملة للتعامل مع مشغلي 

تدرج الضعيف المنفصل لتطوير التقنيات العددية المشتقات على الخدمات المعممة. يستخدم هذا النهج مشغل ال

التي يمكنها حل مشكلة إهليلجية من الدرجة الثانية. يعد هذا العامل بديلاً لمشغل التدرج التقليدي. يعُرف النهج 

، وهو طريقة عددية تسمح باستخدام وظائف متقطعة تمامًا. توفر (WG) الضعيف Galerkin المستخدم باسم

لكل من الحلول المنفصلة والقائمة على  Galerkin للخطأ لحلول العناصر المحدودة الضعيفة لـ الورقة تقديرًا

المعايير لـ مشكلة إهليلجية من الدرجة الثانية. بالإضافة إلى ذلك، يسلط البحث الضوء على التقارب الفائق 

 .لتقريب جاليركين الضعيف

المحدودة باستخدام جاليركين. تقنيات العناصر المحدودة : التدرج المنفصل؛ طرق العناصر الكلمات الرئيسية

 الهجينة؛ قضايا الاهليلجيه من الدرجة الثانية.
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Introduction 

This paper offers an approach for numerically approximating partial 

differential equations that is based on a novel comprehension of approximations 

and differential operators. Several criteria must be satisfied to determine an 

unknown function in the Dirichlet problem for second-order elliptic equations. 

−∇. (𝑎∇𝑢) + ∇. (𝑏𝑢) + 𝑐𝑢 = 𝑓    𝑖𝑛 Ω,                                                  (1.1) 

𝑢 = 𝑔    𝑜𝑛 𝜕Ω,                                                                                            (1.2) 
The domain Ω is either a polygon or a polyhedron. 

ℝ𝑑(𝑑 = 2,3), 𝑎 = (𝑎𝑖𝑗(𝑥))
𝑑×𝑑

∈ [𝐿∞(Ω]𝑑2
  is a function with symmetric matrix 

values,  

 𝑏 = (𝑏ه
(𝑥))

𝑑×1
 The function f is a function of vector, and C is a function of 

scalar, defined on the domain Ω, while the matrix α meets a specified condition. 

there produces  a constant α > 0. such that  

α𝜉𝑇 ≤ 𝜉𝑇𝑎𝜉,          ∀𝜉 ∈ ℝ𝑑 .                                                                   (1.3)  
We will limit our focus to two-dimensional issues simply for the sake of 

simplicity. It is simple to extend to higher-dimensional issues.  

The standard weak form for (1.1), (1.2) seeks.   𝑢 ∈ H1  (Ω) 

Such that u = g and         

 (a∇𝑢, ∇𝑢) − (𝑏𝑢, ∇𝑢) + (𝑐𝑢, 𝑢) = (𝑓, 𝑢)    ∀𝑢 ∈ H0
1(Ω),           (1.4) 

In the given equation (1.4), f and g are vector functions, and C is either a 

scalar or a vector function. The gradient operator is used to represent the gradient 

of the function. The Galerkin technique is a standard method that uses subspaces of 

finite dimensions in place of the trial and test spaces in the equation (1.4), and this 

is done correctly as described in references [1] and [2]. The solution obtained from 

this approach is known as a approximation of Galerkin. A key aspect of the 

Galerkin technique is the selection of approximation services  that allow the 

gradient operator to be verified  in the traditional sense. 

Galerkin finite element methods involve using continuous piecewise 

polynomials for both trial and test approximation functions over a finite element 

partition of the domain, which is usually marked  by a symbol. As a result, a 

significant amount of attention has been paid to ensuring that the "continuity" 

criterion is satisfied in traditional Galerkin finite element methods, as opposed to 

recent guidlines in discontinuous Galerkin methods. However, in both continuous 

and discontinuous Galerkin finite element techniques, the meaning of the gradient 

operator remains consistent with the conventional concept as described in existing 

literature. 

There have been many numerical techniques produced  for solving the 

problem ‘s model  (1.1)-(1.2). These techniques can be divided into two 
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classifications: those worked on the primary variable and those worked  on a 

variable and a flow variable (mixed formulation). The first category includes 

interior penalty type discontinuous Galerkin methods and standard Galerkin finite 

element methods. The second category includes mixed finite element and variable-

based discontinuous Galerkin methods. As there are numerous publications 

regarding generic finite element methods, it is not feasible to outline all the 

noteworthy contributions that have been made by the computational mathematics 

research community in this article.. The main aim of the reference cited is to 

establish a connection between existing numerical methods and those that will be 

introduced in the following sections. 

The weak Galerkin finite element technique, the hybridizability 

discontinuous Galerkin (HDG) method, and the mixed finite element approach 

with a hybridised illustration  of Fraeijs de Veubeke are all interconnected. This 

relationship has been elucidated and explained in detail.. The hybridised 

formulation introduces the Lagrange multiplier as a new term on each element's 

periphery. It is known that the Lagrange multiplier approaches the original 

function near each element's border. When it comes to certain popular mixed finite 

element techniques, such as the HDG approach, the WG systems mentioned in 

Section 4 are actually similar (1.1).  The weak Galerkin method differs from 

previous methods when the coefficients are variable functions that are not 

necessarily smooth or well-behaved. Weak gradients provide a logical framework 

for handling such functions, even at the interfaces between different components, 

in a manner that is similar to the classical approach. This concept is expected to 

hold true for various classes of partial derivatives equations that involve 

derivatives differential operators, such as divergence and curl, as well as their 

associated constraints. 

The weak Galerkin finite element technique can be applied to solve 

elliptic problems in one space dimension, as well as in higher dimensions.  

Our research presents a weak finite technique method to solve elliptic 

problems in one spatial direction . We found that this technique offers significant 

benefeits over the well-known weak Galerkin technique, which is commonly used 

for multi-dimensional problems. These advantages include improved accuracy and 

the ability to solve discrete equations locally, element by element. We also provide 

the most precise wrong estimates for the discrete H1-norm, L2-norm, and L-norm, 

along with few super convergence results. To support our theoretical analysis, we 

provide numerical examples at the end. 

The numerical partial differential equation community has recently shown 

significant interest in the weak Galerkin finite element technique.. This method for 

tackling elliptic issues in a multidimensional space was first put forth by Wang and 

Ye. Later, a number of altered weak Galerkin approaches were researched. The 
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weak Galerkin finite element technique is an continuous  of the traditional finite 

element technique  that replaces classical derivatives in the variational equation 

with weak derivatives based on weak finite element functions. This approach 

allows for the usage  of completely stoppage  finite element services , which means 

that the benefit  of a finite element service  on an element boundary can differ from 

its value inside the element. Compared to the traditional discontinuous Galerkin 

finite element technique, the weak Galerkin method is more flexible due to this 

property. To learn more about this technique and how it differs from other finite 

element methods, readers are encouraged to refer to related articles. 

Following is an outline for this essay., we present the elliptic problem using 

a weak finite element technique. In our study, Section 3 focuses on analyzing the 

fixation of the weak finite element approach, while Section four is dedicated to 

determining the optimal error and super convergence estimates for various norms. 

We also delve into the local solvability of the weak finite element system and 

provide experiments of numerical nature  to further demonstrate our theoretical 

framework. Our notation for the standard Sobolev spaces on the interval I with the 

norm (I) is denoted as Hm throughout the study. Additionally, we use the notations 

(,) and to represent the inner product and norm, respectively, in the L2 space on I. 

To provide  a positive constant that is not dependent on  of the mesh size h, we use 

the constant C. 

The process of approximating a solution to a given partial differential 

equation problem using the weak finite element technique. 

Analyze the problem of elliptic  (1.1).  adding the transformation function to 

equation (1.1)  

𝑝(𝑥) = exp (− ∫
a1(x)

a2(x)
dx

x

0
),  we see that problem (1.1). can be transformation into 

the  

Following from: −(𝑝𝑎2𝑢̀)̀ + 𝑝𝑎0 = 𝑝𝑓(𝑥),     𝑥 ∈ (𝑎, 𝑏),   𝑢(𝑎) = 0,     𝑢 ̀ (𝑏) = 0. 
As a result, we will only examine elliptic problems in the following discussion. 

{
−(𝑎2(𝑥)𝑢̀)̀ + 𝑎0(𝑥)𝑢 = 𝑓(𝑥),     𝑥 ∈ (𝑎, 𝑏),    

𝑢(𝑎) = 0, 𝑢(𝑏) = 0,̀                                               
 𝑤ℎ𝑒𝑟𝑒 𝑎2(𝑥) ≥ 𝑎𝑚𝑖𝑛 > 0, 𝑎0(𝑥)

≥ 0 𝑎𝑛𝑑 

𝑢̀ =
𝑑𝑢

𝑑𝑥
. 𝑤𝑒 𝑎𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑎𝑡 𝑎2(𝑥) ∈ H1(𝑎, 𝑏), 𝑎0(𝑥) ∈ 𝐿∞(𝑎, 𝑏). 

 

Error analysis 

This section is dedicated to examining the error in the weak finite principle 

approach. The illustration  indicates that the convergence rate of the weak finite 

element technique is either equal to or greater than that of the conventional finite 
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element technique. The section commences by showcasing the property of 

approximation for  of the weak finite element space, Sh. To maintain a stability in 

the approximation accuracy between Sh and the space Pr(Ii) utilized for dw and rv, 

we will always establish the index while constructing discrete weak functions.. 

The local solvability and  example of numbers 

This section revolves around conducting an analysis of error  for the weak 

finite element technique. Our findings reveal that the theoretical convergence rate 

of the weak finite element approach is either similar  or higher than that of the 

conventional finite element method. We commence by demonstrating the 

approximation property of the weak finite element space, Sh. To ensure a balance 

in the approximation accuracy between Sh and the space Pr(Ii) utilized for dw and 

rv, we will always establish the index when constructing discrete weak functions. 

This research focuses on employing  mechanics  of quarter-point 

tetrahedral finite elements in linear elastic fracture.  

The study of body cracks has garnered significant attention in various fields, 

include : science of material , engineering of structure , and engineering of oil and 

gas reservoir , due to the prevalence of intrinsic flaws and fractures in many 

materials and constructions. In the meaning  of linear elastic fracture mechanics 

(LEFM), computing stress intensity components (SIFs) with precision is vital for 

analyzing fractured bodies.. Due to the fact that they completely specify the stress 

condition close to the crack, SIFs are crucial to precisely estimating the beginning 

of fracture propagation. The SIFs can only be used to estimate a limited number of 

simple fracture configurations; for more complex crack difficulties, numerical 

techniques like the finite element (FE) method must be utilised. When using the FE 

technique to examine crack difficulties, it can be difficult to accurately replicate 

the fracture tip single stress field and capture the high stress gradient near to the 

break. This is the justification for the forty years' worth of intensive study on 

reliable and accurate FE methods for modelling fracture problems.  

In the early 1970s, the use of the finite element (FE) technique for solving 

problems gained popularity. However, it was discovered that conventional 

components were unable to accurately capture the distinctive stress field near the 

fracture due to the interpolation of field variables using polynomials. This led to 

the development of quarter-point/singular elements by Barsoum (1976) and 

Henshell and Shaw (1975) by put  mid-side nodes near the fracture tip or front at 

the quarter-point location. These elements can provide  the square root stress 

singularity through a nonlinear mapping. Utilization of Collapsed of quarter-point 

hexahedra, quarter-point pentahedra, and quarter-point bricks have been to study 

and model three-dimensional fractures. The collapsed quarter-point hexahedron is 

particularly useful for modelling fracture problems due to its accurate 

representation of the single stress field near the crack. Simple methods, such as 
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removal  correlation and central  integral techniques, have been developed for 

these principles  to withdraw  stress intensity factors (SIFs) from the FE solution. 

However, using these components requires the generation of a fully structured 

mesh around the fracture front, which can be challenging and time-consuming, 

especially for non simple crack and configurations of the body. 

Due to the meshing restrictions associated with using quarter-point hexahedral 

elements, researchers have increasingly turned to tetrahedra for addressing crack 

concerns. One proposed method involves using both hexahedral and tetrahedral 

elements, taking advantage of the latter's ability to mesh complex geometries and 

their effectiveness in the fracture front region when quarter-point hexahedral 

elements are crushed. The main drawback is the need for tie limitations or 

transition pyramid elements when hexahedral and tetrahedral elements meet due to 

the incompatibility between their interface node topologies. An alternate approach 

involves utilizing tetrahedra to describe the structure overall and mapping solution 

of  the FE to a sub-model that employs hexahedra to solve for the fracture variety . 

However, this approach necessitates two FE model evaluations and may result in 

higher computational costs. More recently, it has been suggested to model the 

entire fractured body domain using pure tetrahedra in an arbitrary and unstructured 

mesh, which has been successfully utilized to study crack propagation and 

fragmentation. However, there has not been sufficient emphasis in the literature on 

the effectiveness and precision of using tetrahedral elements for modelling fracture 

singular fields. 

overview and evaluation of quarter-point finite elements. 

It is well-known that classical finite elements use polynomials to interpolate 

field variables in the FE domain.. The fracture tip square root single stress field 

can't be duplicated as a result. To gather precise field variables close to the 

fracture, a very fine mesh is needed without the need for any formulation for the 

components connected to the crack tip. Early in the 1970s, when several studies 

recommended using specific element formulations near the fracture tip, it was 

discovered that FE crack problems produced unsatisfactory results when solved 

with standard elements. Previous studies have primarily concentrated on 

developing crack tip elements (CTEs) that can effectively replicate the singular 

fields near the tip of fracture . These principles  were employed to save  the region 

surrounding the tip of crack , while conventional elements were utilized for the 

remaining domain. The early development and applications of the Cessford stress 

intensity factor (SIF) calculation are documented in various sources (Byskov, 

1970; Tracey, 1971, 1974; Benzley, 1974; Akin, 1976).. However, the use of CTEs 

was limited due to several factors, including the need for transition elements to 

connect them to conventional elements in the remote region, algorithmic quirks in 

commercial FE codes, and limited support for fixed  strain and stiff body motion 
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modes in the CTE form functions. Quarter-point elements (QPEs) were proposed 

by Barsoum (1976) and Henshell and Shaw (1975), which greatly improved the FE 

analysis of fracture problems. 

Barsoum (1976) and Henshell and Shaw (1975) non dependent  

demonstrated that a quarter-point element with a mid-side node placed adjacent to 

the fracture tip can accurately select  the crack tip’s singularity. This modification 

lead to  non linear pattern between natural and local coordinates, This results in a 

stress singularity of inverse square root nature that affects the entire element.. 

Using quarter-point elements allows for representation of the entire fractured body 

domain with a single element, eliminating the need for commercial FE codes to use 

CTEs. Quarter-point elements are easy to construct algorithmically and 

automatically meet continuity requirements for shape functions between elements 

because they account for rigid body motion and constant stresses during form 

function generation. 

The characteristics of quarter-point elements sparked a phase of intense research 

and implementation spanning four decades. These elements have been used to 

analyze 2D and 3D fracture issues, Especially the quadrilateral element with four 

nodes and eight integration points. (Fig. 1a), which can be created by relocating  

nodes of mid-side  near the crack tip to the quarter-point location of an 

isoperimetric eight-noded quadrilateral. Early research on quarter-point 

quadrilateral elements revealed some shortcomings, Some erroneous assumptions 

made about the rectangular element include the belief that it modify the square root 

singularity solely on the boundaries of element and an incorrect demonstration that 

the energy strain of this factor is unbounded. . Subsequent studies, however, 

revealed that stresses exhibit square root singularity at all rays originating from the 

fracture tip in a small region near the crack tip and propagate throughout the entire 

element along the element sides. Additionally, it was found that the strain energy 

and stiffness of these elements were limited.. To obtain correct results, these 

components should be deformed as little as possible from a rectangle. However, 

because of  the big factor  angle at the tip of the crack, they are not frequently used 

and are instead replaced with triangular shaped elements (categories ii and iii) that 

can better reflect the angular distribution of stress. 

The formulation of tetrahedral elements in finite element analysis. 

The procedure involves converting the geometry and displacement variety of a ten-

node structure. Isoperimetric tetrahedral element from the local coordinate 

technique to the coordinate naturally the  system (where 0≤ξ,η,ζ≤1) has been 

provided. 

𝑥(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑥𝑖    

10

𝑖−1

,       𝑦(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑦𝑖    

10

𝑖−1

,       𝑧(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑧𝑖    

10

𝑖−1
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𝑢(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑢𝑖    

10

𝑖−1

,       𝑣(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑣𝑖   

10

𝑖−1

,       𝑤(𝜉, 𝜂, 𝜁) = ∑ 𝑁𝑖𝑤𝑖    

10

𝑖−1

 

the node's displacements in the x, y, and z directions are (ui,vi,wi) and The 

function of shape for  Ni corresponds to the node with coordinates (xi, yi, zi) in the 

local space., respectively (Fig. 2).  A finite element with ten-noded tetrahedral 

shape functions is given by:  

𝑁1 = 𝜆(2𝜆 − 1)   ,   𝑁2 = 𝜉(2𝜉 − 1)  , 𝑁3 = 𝜂(2𝜂 − 1)  , 𝑁4 = 𝜁(2𝜁 − 1)  ,              
(2) 

𝑁5 = 4𝜆𝜉   ,   𝑁6 = 4𝜉𝜂  ,    𝑁7 = 4𝜆𝜂  ,
𝑁8 = 4𝜆𝜁  , 𝑁9 = 4𝜉𝜁      ,     𝑁10 = 𝜁(2𝜁 − 1)  ,  

Bernstein-B ezier Finite factor Modeling of Scattering  of Short-Wave with 

Improved Conformal Perfectly Matched Layers  

The Finite Element Method (FEM), which is often used for domain 

discretization to model wave scattering in unbounded media, requires truncation of 

the infinite canter and the use of perfect boundary conditions. To prevent 

reflections, an absorbing layer, allowing waves to exit the computational domain. 

These two methods are commonly used for domain truncation. The Perfectly 

Matched Layer (PML), proposed by B. Erenger as a material of reflectionless 

absorbing condition that covers the area of interest, is a popular choice for an ABC 

method. 

. Initially developed for studying electromagnetic waves, the PML has been 

extended to various applications, including acoustic scattering, seismology, 

electrodynamics, and geophysical fluid dynamics, as evidenced by surveys and 

references in the literature. 

ABCs fall into 2 classifications : local and non-local, : locality is known  as 

the field's exclusive reliance on fields that are local to a certain area on the outer 

boundary. The advantage of local ABCs is that they maintain the FEM's 

computational effectiveness. The following are some examples: Bayliss, 

Gunzburger, and Feng. The lowest order ABCs are simple to construct, but unless 

the fake border is positioned sufficiently distant from the scatterer, suitable 

precision cannot be reached.  High order ABCs make it possible to obtain good 

accuracy, but their use is challenging and computationally intensive. The ABCs are 

listed in Reference. Nonlocal ABCs includes:  the truncated Dirichlet-to-Neumann 

(DtN) can position the artificial boundary closer to the scatterer, but this can lead 

to the creation of a dense sub-block in the FE global matrix next to the outer border 

, which increases the computational cost of solving the linear pattern, especially in 

3D applications. Other methods for domain truncation and boundary condition 

specification include the continued-fraction ABC, double absorbing boundary 

technique , infinite elements, wave envelope, and boundary element methods. 
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However, the PML has the advantage of being able to be put  near to the scatterer, 

similar to non-local ABCs, while still maintaining the computational efficiency of 

local ABCs within the FEM. For more information and discussion on these 

methods, readers are encouraged to consult the literature. 

. However, the discrete level of the PML is not completely reflection-free, 

which may result in erroneous reflections of outgoing waves and potentially 

contaminate solution across the entire computational factor . 

Hopefully, by modifying the FE discretization and PML settings, this source 

of inaccuracy may be reduced. The PML and its expansions to more broad 

geometries and applications are extensively covered in the literature. Cartesian 

coordinates and straight or flat artificial boundaries are used in the majority of 

PML designs. Deriving PMLs in different coordinate systems is important for 

addressing specific issues. For example, in electromagnetic wave time domain 

calculations, corner areas can be a significant source of reflection errors. 

Additionally, research has shown that a poor choice of time step can lead to long-

term instabilities of Cartesian PMLs. The issues with Cartesian PML have led to its 

extension to cylindrical and spherical dimensions using complex coordinate 

stretching. The optimal PML parameters for performance were identified through 

theoretical research in curvilinear coordinates. The comparison of ellipsoidal PML 

against infinite elements demonstrated the scalability and iteration count 

advantages of PML. A parameter-free PML using singular absorbing services was 

explored, and convex-shaped geometries were addressed in the time harmonic 

pattern. The PML formulation involves curvilinear coordinates (ζ1, ζ2) in the layer 

Ωpml with x = x(ζ1, ζ2) and a well-defined orthogonal projection of x onto the 

interface Σ denoted by . The coordinate ζ1 represents the distance from x to p, 

while the connect  ζ2 is a local parameterization of the interface Σ using its arc 

length, and n and t are the chosen unit outward normal and tangent, respectively, 

satisfying the Frenet formulas. 

 
𝑑𝑝

𝑑ζ2
= 𝑡  𝑎𝑛𝑑    

𝑑𝑛

𝑑ζ2
=    𝑘𝑡,                                                  (3.1) 

  

Any point x inside the layer Ωpml can be expressed as a service of the two 

curvilinear coordinates ζ1 and ζ2, where ζ1 represents the distance between x and a 

point p, and ζ2 is a local parameterization interference of  Σ using its arc of length. 

The curvature κ of Σ at the point p, which is also a function of ζ2, is used in the 

expression. The unit outward normal n and tangent t are also defined using ζ2, and 

satisfy the Frenet formulas. 

 

𝑥(𝜁1, 𝜁2) = 𝜁1𝑛(𝜁2) + 𝑝(𝜁2).                                                       (3.2) 
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Figure 2 : orthogonal curvilinear coordinates system. 

 

algebraic results. 

The accuracy of rPML and ePML was tested through two-dimensional 

landmarks that utilized BBFEM with condensation of static nature, which 

minimizes the bandwidth and degree of freedom of high-order FE global matrices. 

In this technique, the inner mode DoF is removed during the assembly process of 

the discrete algebraic system.The inner mode solution is obtained by resolving 

minute linear algebraic equations at the elemental level after the solution for the 

element border modes. The wavenumber is k= since all of the following assumes 

that the medium's propagation speed is unity. The Gauss-Legendre integration 

method is used for evaluating element matrices of affine elements with p+1 

integration points. For curved components, the number of quadrature points is 

determined by the desired precision and a rule of 2p+1 points is established. To 

evaluate the performance of the Gordon and Hall blending map approach, a 

benchmark test involving radiation from a Hankel source is conducted. The 

convergence of BBFEM coupled with rPML is then examined using a single wave 

scattering problem, and the discrete PML parameters' effect on accuracy is 

investigated. The final benchmark test involves multiple scattering and compares 

rPML and ePML to rBGT2 and eBGT2. 

Benchmarks’s Analysis  

The two benchmark problems have computational domains with an annular 

shape, as depicted in Figure 4. The rBGT2 domain has an inner radius of "a" and 

an outer radius of "b". On the other hand, the rPML domain has an inner radius of 

"a" and an outer radius of "a+PML thickness". 

. 
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Both variety of quarter-point tetrahedral factors are effective in accurately 

modeling a square root stress singularity close to the crack front. However, there is 

a small area at the curved shape of the quarter-point tetrahedra connected to the 

fronts  of curved crack where the Jacobian becomes negative. To avoid this 

problem, it is recommended to use quarter-point tetrahedra with straight sides to 

simulate the curved sides of the crack fronts. These elements can also simulate a 

square root displacement shapes  close to the crack front, which is confirmed by 

numerical results on relative displacements over fracture surfaces. The 

displacement correlation (DC) pattern is suggested for computing precise stress 

intensity factor (SIF) estimates, which is a computationally inexpensive technique 

that can be used with unstructured models even when the crack surfaces are not 

aligned. The DC method can be easily incorporated into any FE code. The 

conclusions of using the DC approach have been proven for various fracture 

geometries in mode I and mixed-mode loadings, with an mean SIF computation 

error ranging from 1% for through-the-thickness fractures to about 4% for 

elongated elliptical ones. A comparison of  conclusions  obtained using the DC 

approach for standard and quarter-point elements shows that the average SIF 

computation error are much than  doubles when quarter-point tetrahedra are used 

in the crack front area. The mean SIF computation error using the DC approach 

reaches its lowest value at an optimum distance from the fracture front, which 

depends on the mesh size according to a detailed parametric analysis. This study 

supports the use of unstructured meshes for accurate and successful investigations 

of fractured bodies. 

Conclusion 

The idea of curvilinear PMLs has been placed to frequency domain 

simulations of short-wave scattering using B-ezier-Bernstein based finite elements. 

Efficiently resolving the PML (perfectly matched layer) requires the insertion  of 

high-order finite elements (FEs) on computational mesh grids with large elements 

relative to the wavelength. The Gordon and Hall blending map is effective in 

portraying curved geometries in these applications. Standard FEMs must choose 

between using an expensive PML that allows for high absorption to reduce the 

mirror of outgoing waves or an inexpensive PML that requires less computation to 

provide solution. 

Numerical condition  have been conducted to evaluate the effectiveness of 

the suggested PMLs. Studies comparing the radial PML to a second-order ABC 

(absorbing boundary condition) with a radial shape and those working with Hankel 

source radiation and wave scattering by a rigid cylinder have shown that it allows 

for the improvement of the exponential and algebraic convergence rates predicted 

for the p and h patterns of BBFEM (Blended Boundary Finite Element Method), 

respectively. 
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For scattering problems with multiple modes, the radial ABC can lead to 

comparable outcome  if a precise result is not necessary. Numerical conclusions 

from a scenario involving multiple scattering by several rigid cylinders have shown 

that PMLs with radial and elliptical shapes can produce extremely accurate results. 

The research  highlights the value of elliptical PMLs for reducing the 

computational domain. The absorption function of parabolic  does not require a 

non-trivial optimization process since BBFEM can effectively image the rapid 

decay of emitted waves in the layer. Thick PMLs can be used to achieve optimal 

performance. 

In general, PML settings do not need to be adjusted for each problem since 

they have been successful across a wide range of frequencies, grid resolutions, and 

polynomial orders. Recent studies have shown improved performance of PMLs 

based on unbounded absorption functions, and future research should consider a 

comparison study using high-order FEs in this approach. 

. A technique based on curved tetrahedral Bezier-Bernstein FEs is being 

developed, and the use of high-order refinement methods is a potential way to 

enhance computing efficiency. 
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