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Abstract: In this paper, introduced new accelerated iterative algorithm in
generalized (a, ) -mean nonexpansive mappings in Banach spaces and present
some results for convergence to fixed point in this mapping, we using new
iterative scheme in new style mappings is generalized (a,f8) -mean
nonexpansive mapping, and transfer the idea of this class of mapping from
generalized (a, §) -mean nonexpansive mappings in modular function spaces to
Banach spaces.
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1-Introduction:

If f the self mapping of E and s € E then s side to be fixed point if s =
f(s), Banach in 1922 [1] proved that every contraction mapping defined on a
complete metric spaces has unique fixed point, and Banach discussed Picard
iterative algorithm this one of the earliest iterative scheme used to approximate
the solution of a fixed point problems, researchers have found many new types
of iterative schemes that appropriate the type of mapping and spaces. The most
prominent of these sequences are Mann [2], Ishikawa [3], Noor [4], Agarwal et
al [5], Kadioglu et al [6], Abbas and Nazir [7], Thakur et al [8], Karakaya et al
[9], Ullah and Arshad [10] A, and Hassan et al [11]. In general, to solve fixed
point problem must be followed approximate methods because from an
analytical point of view solving them is almost impossible, Therefore, fixed
point has become a thriving field of scientific research, while it is considered the
fixed point theory provides very useful tools to solve most of the problems, that
have many applications in different fields [12].
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Now, Present the iterative algorithm that will deal with in this paper
let T:E — E, and E nonempty convex subset of Banach spaces, here, we
introduced the sequence {x, } by the algorithm following.

x, €EE
hy, = (1= Bp)x, + BnTxy
Yn =Thy

Jn = (1- an)yn + a, Ty,
fn+1 = TJn, neN
where {a,, }and {8} in (0,1)

1)

2-Preliminearies
In this section review some important definitions and lemmas that we can use in
the results

Definition 2-1 [14]:LetT:E — E a mapping and E is nonempty subset of
Banach space said to be nonexpansive mapping if
ITx = Tyll < llx =yl

Definition 2-2 [15]:LetT:E — E a mapping and E is nonempty subset of
Banach space said to be gausi nonexpansive mapping if there exist s fixed point
and

ITx — sl < llx — sl|

Note that: Every nonexpansive mapping with fixed point is gausi nonexpansive
mapping but the convers is not true for example.

Example 2-3: Let T:E — E and E is nonempty subset of Banach space the
function

0 if x #2

1 if x=2

T is p-quasi nonexpansive mapping but not p-nonexpansive since if x =
1.9,y =2then ||Tx = Ty||=|[0—-1]| =1 £ ||]1.9-2| = 0.1.

Definition 2-4 [14]: LetT: E — E is mapping, a sequence {x,} in E is said to
be Fajer monotone if ||x,,;; — s|| < ||x,, — s]| for all s fixed point.

Tx = |

Lemma 2-5 [16]: Let X satisfy uniformly convex Banach spaces and let {¢,,} in
(0,1) be bounded away from 0 and 1, if there exists m > 0 such that

lim sup,,_,p(x,) < m,limsup,_,p(y,) <m
And lim,_, p(t,x, + (1 —t,)y,) = m,thenlim,_,, p(x,, —y,) =0
Lemma 2-6 [17]
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Let {p,} n=1, {00} m=1and {{,,} n=, NONNegative sequence such that
Pn+1 < (1 =0n)pn + Gn
Where {6,,} sequence in (0,1) and {{,,} sequence in real number such that
Yy 6, <ocoand Y-, ¢, < oo, then nlgrgo pn, 1S EXIists.
Definition 2-7 [18] : A Banach space X is said to be uniformly convex if

Py(e) = inf{1 - | =2||:x,y € By llx = yll 2 €} > 0 forall 0 < £ < 2 say that

uniformly convex Banach spaces has power P and P > 1 there exists constant c
such that 1, (e) = ce” forall 0 < & < 2.

Definition 2-8 [14]: Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, let T: E — E said to be satisfy condition (I) if
there exsist a nondecreasing function ¢:[0,00) — [0,) such that ¢(0) =
0and ¢(t) > 0 forall tin [0,00) and |[x — Tx|| = ¢(dist(x, F,(T)) forall x €
E, where dist(x, F,(T)) denotes the distance from x to F,(T).

3- Main Rustles

Salman.B.B, and Abed.S.S,in (2023) [13] introduced generalized
(4,8, p) -mean nonexpansive mappings in modular function spaces, will study
this concept in Banach space

Definition 3-1:Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, T:E — E is mapping said to be generalized
(a, f)-mean nonexpansive mapping if

ITx = Tyl < max{R(x,y), Q(x,y), Z(x,y)}
Where
R(x,y) = ally = Tx|l + Bllx = Tyll + (1 = (@ + B)lIx =yl
Q(x,y) = allx —yll + Bllx = Tyll
Z(x,y) = allx — yll + BlITx =yl
Andx,y inE, a,fin[0,1],a + B < 1.

Lemma 3-2: Every generalized (a, f)-mean nonexpansive mapping is gausi
nonexpansive mapping.

Proof: let s is fixed point for T to prove T is qausi
ITx — s|| < max{R(x,s),Q(x,s),Z(x,s)}
If R(x, s) is maximum
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ITx = sll < alls = Tx|| + Bllx = sll + (1 = (@ + B)llx — sl
1I-)Tx —sll < (1 —a)llx — sl
Then |Tx —s|| < |lx—s]||
If Q(x,s) is maximum

ITx —s|| < allx —s|| + Bllx — Ts||
ITx — s|| < (a+ B)llx — sl

Then ITx —s|| <|lx—s]|| sincea+p <1
Finally, If Z(x, s) is maximum

ITx —sll < allx = sll + BlITx — s

(1 =B)ITx = sll < allx = sl|

Then ITx —s|| <|lx —s]|| sincea<1-p

Theorem 3-3: Let X satisfy uniformly convex Banach spaces, let E be

nonempty convex subset of X, let T:E — E be generalized (a,f)-mean

nonexpansive mapping and x,, in E define by (1) then lim ||x,, — s|| exists for
n—oo

all s fixed pointof T in E.
Proof: T is generalized (a, 8)-mean nonexpansive mapping
If R(f, g) is maximum
By definition (3-1), and convexity
IXn+1 = sll = IT], — sl

<alls =TIl + BllJn = Tsll + (1 = (@ + BN — sl
(1 - )llxnsr —sll < A =)l — sl
I%n+1 — sl < |/ — sl (2)
Also, [IJn = sll = I(1 = an)yn + anTyn = sli

< A= a)llyn = sl + anllTyn — sl

We find ||Ty,, — sl

ITyn = sll < ap(s = Tyn) + Bllyn = Tsll + (1 = (a + )y = sl

< lyn = sl
Substituting in equation we get
Wn = sll < llyn = sll 3)
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By the same way,
lyn = sll = ITh, = sl|

< alls = Thyll + Bllhy = Tsll + (1 = (a + B)Ilhy — sl
(1 - a)llyn —sll = A = a)llhy = sl
lyn = sll < llhy = sl (4)
Similarity,

lhn = sl = I(X = Bn)xn + BnTxp — s
< (A= Bllxn = sll + BullTx, — sl
We find ||Tx,, — s]||
ITxn, —sll < alls = Txpll + Bllxy = Tsll + (1 = (a + B)llx, — sl

< [lx = sl
Substituting in equation we get
Ay = sll < llxn, = sl ()
By (2),(3),(4) and (5) llxn+1 — sl < [lx, — sl
And by Lemma 2-6 then nlilréo”xn — s||exists

If Q(f,g) is maximum, By Definition (3-1), Lemma 3-2, convexity and a +
B < 1then

%41 = sll = IT)n = sl
< allfn = sll + BlJn = Tsli
< (a+ Bl —sll
< | = sl (6)

Also, ”]n - S” = ”(1 - an)yn + an Ty, — S”

< (1 - an)”yn - S” + an”Tyn - S”
We find ||Ty,, — sl

ITyn = sll < ally, = sll + Bllyn = Tsl|

< lyn = sl
Substituting in equation we get
Wn = sll < llyn — sl (7)

By the same way,
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Iy — sl = ITh, — sl|
< allhy = sll + Bllhn, = Tsl|
< (a+B)llh, = sll
< [|hn = sll
Iy — sll < llhy — sl (8)
Similarity,
lhn = sll = [|(1 = Br)yn + BnTxn — sl
< (A =Bllxn = sll + BullTx, — sl
We find || Tx,, — s||
ITxn = sll < allx,, — sl + Bllxn, — Tsll
< lxn = sl
Substituting in equation we get
lhn = sll < llx, = sl (9)
By (6).(7),(8) and (9) llxp+1 — sl < llx, — sl
And by Lemma 2-6 then nlgrgollxn — s|| exists
If Z(f,g) is maximum, By Definition (3-1), Lemma 3-2, convexity and a <
1 — B then
IXn+1 = sll = IT], = sl
< allfn = sl + BlITS, — sl
(1 = Bllxnsr = sll < allJn — sl
I%n+1 = sll < lJn = sl (10)
Also, [IJn = sll = I(1 = an)yn + anTyn = sli
< (A = allyn = sll + anllTy, — sl
We find ||Ty,, — sl
1Ty = sll < allyn, = sll + BlITy, — sl
(1 =BTy —sll < Bllyn = sl
ITyn = sll < llyn — sl
Substituting in equation we get
Wn = sll < llyn — sl (11)
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By the same way,
lyn = sll = ITh, = sl|
< allhy = sll + BlITh, = sl|
(1 = Bllyn = sll < Bllh, — sl
lyn = sll < llhy = sl
Similarity,

”hn - S” = ”(1 - .Bn)xn + ,BnTxn -

< (A= Bllxn = sll + BullTx, — sl
We find ||Tx,, — s]||
ITxn = sl < allx, = sll + BlITx, — s
< [lx = sl
Substituting in equation we get
Ay = sll < llxn, = sl
By (10),(11),(12) and (13) [lxp+1 — sl < [lx, — sl

Also, Lemma 2-6 implies that lim ||x,, — s|| exists
n—oo

sl

(12)

(13)

Theorem 3-4: Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, let T:E — E be generalized (a,f)-mean
nonexpansive mapping and x,, in E define by (1) is Fajer monotone.

Proof: By Theorem 3-3 ||x,,4+1 — sl < ||x, — s

And by Definition 2-4, x,, in E define by (1) is Fajer monotone.

Theorem 3-5: Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, let T:E — E Dbe generalized (a,)-mean

nonexpansive mapping and x,, in E define by (1) then lim ||x,
n—oo

Proof: By Theorem 3-3 lim ||x,, — s|| exists
n—oo
Let lim ||x,, —s|| = ksuchthatk >0
n—oo

By (5),(6) and (13)
lhn —sll < llx, —sll =k

|xns1 —sll = k = lim [[x, — s]|
n—oo
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By (2).(6) and (10)
IXn+1 = sll = IT)n = sll < |lJn = sl
By (4),(8) and (12)
Wn = sll < llyn = sl
By (4),(8) and (12)
lyn = sll < llhy = sl
Then [[xp11 = sll < |lhy = sll = k < ||k, = s (16)
By (15) and (16) lim ||h,, —s|| =k (17)
n—oo
T is generalized (a, 8)-mean nonexpansive mapping
If R(f, g) is maximum
ITxn = sl < alls = Txpll + Blixy = Tsll + (1 = (a + B))lxn — sl
< [lxp = sl (18)
If Q(f, g) is maximum
ITxn — sl < allxy, — sl + Bllxn, — Tsll
< lxn = sl (19)
If Z(f, g) is maximum
ITx, — sl < allx, = sll + BlITx, — sl
< lxn = sl (20)
By (18),(19) and (20)
ITxn — sl < 2, = sl
lim ||Tx,, —s|| < lim ||x,, — s||
n—oo n—ooo
So, lim ||Tx,, —s|| <k (21)
n—oo
Since lim ||h,, — s|| = k then
n—oo
lim ||(1 —a)x, + &, Tx, —s|| =k
n—oo
lim [|(1 — a,)x, + a,Tx, —s|| =k
n—oo
nlgréo”(l - an)(xn - S) + an(Txn - S)” =k (22)
By (14),(21) , (22) and by using Lemma 2-5 then lim ||x,, — Tx,|| = O..
n—oo
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Theorem 3-6: Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, let T:E — E be generalized (a,f)-mean
nonexpansive mapping and x,, in E define by (1), x, is unique fixed point in T
then x,, p-strongly convergence to fixed pointof T in E.

Proof: T is generalized (a, 8)-mean nonexpansive mapping
If R(f, g) IS maximum
By definition (3-1), Lemma 3-2, convexity
IXn+1 = xoll = IT]n = Xoll
< allxo = T/ull + BllJn — Txoll + (1 = (a + B)/n — %0l
(1 — Dllxps1 = x0ll < A = ) lJ = %0l
|lxn+1 — xoll < [IJn — X0l (23)
Also, [ = xoll = I[(1 = a)yn + anTyn — xoll
< (1 = an)llyn = xoll + anllTyn — xoll
We find ||Ty,, — xoll
ITyn = xoll < allxo = Tynll + Bllyn — Txoll + (1 = (@ + B))llyn — ol

< llyn = xoll
Substituting in equation we get
“]n - xO” < ”yn - xO” (24)

By the same way,
lyn — xoll = ITh, — X0
< allxo = Thall + Blihn = Txoll + (1 = (a + B))llhn — Xoll
(1 = a&)llyn = x0ll = (1 = ) llhn — x0ll
|y — xoll < [[hy — Xl (25)
Similarity,
lhn = x0ll = (1 = Br)yn + BuTxn — xoll
< (1 = Bllxn = xoll + BullTxy — x0ll
We find ||Tx,, — x,ll

[T = x0ll]| < @llxg = Taull + Blly — Txoll + (1 = (@ + BN lxn — xoll

1252



2024 Jyx 13 dualcllg diclaisYlg duiluill Sgaul) dudlyc)lalaall /77

No.13 June 2024 Iraqi Journal of Humanitarian, Social and Scientific Research &\
Print ISSN 2710-0952 Electronic ISSN 2790-1254 -

< [lxn — xoll
Substituting in equation we get
1y = xoll < [l — xoll (26)
By (23),(24),(25) and (26)
Ixn41 — sl < llxn — sl
By the same way if Q(f, g) or Z(f,g) is maximum
Furthermore it
lx, — xoll < llxp-1 — X0l
Since [[x; — xoll < llxo — xoll, 50, [[xn, — X0l < lxg — X0l

[, — xoll < ||O]| = 0, then x,, — x,

Theorem 3-7: Let X satisfy uniformly convex Banach spaces, let E be
nonempty convex subset of X, let T:E — E be generalized (a,f)-mean
nonexpansive mapping and satisfy (I) condition, x,, in E define by (1), then x,,
strongly convergence to fixed pointof T in E.

Proof: : By Theorem 3-3 lim,_,||x,, — s|| exists for all s is fixed point, if
lim,_,»|lx, — sl| = 0, nothing to prove,

iflim, ,o|lx,—sll=k k=0

Since ||xp41 — sll < llx, — s, then dist (x4, B, (T) < dist, (xp, B, (T))

So limy,_,wdist,(xp, F,(T)) exists, by applying condition (1) and Theorem 3-3
lim, _,,@(dist (xn, Fp(T)) < lim,_, dist||x, — Tx,|| =0

Since @(0) = 0, hence lim,,_,dist(x,, F,(T)) =0

By Theorem 3-3 lim, o |lx, — sl exists, then lim,_||x, — E,(T)|| exists
and s € E,(T)

Suppose that x,,, subsequence of x,,, and u; sequence in F,(T)

||xnk — uk” < zik since liminf,, dist(xn, Fp(T)) =0

0, — el < s — il < o

ks — Ukl < lugsr — xpaall + x40 — vl
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S 2k+1 + Z_k
<t 5-26
- 2k—1 ( - )

lugs1r —ukll > 0ask — oo
uy is p-Cauchy, F,(T), So, uy is p-converge to F,(T), then [[u, — s|| — 0
Now,

|%n, = || < ||xn, — uk|| + llux = sll, hence, x,, converge to fixed point s in
E,(T).
4- Conclusion

In research paper, we proved that the iterative scheme that presented in
equation (1) convergence to the fixed point with the generalized (a, 8)-mean
nonexpansive mapping in Banach spaces, and proved this through the theorems
above. Suggest that to reader work on the iteration that presented in equation (1)
with other class of mapping or it is possible to work with other spaces, Finally, it
IS possible to use style mapping in definition 3-1 with onther iteration scheme
and prove it is convergence,
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