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RESEARCH ARTICLE

A Study on Machine Learning Based Parkinson
Disease Prediction

Suparna Dasgupta 1,*, Soumyabrata Saha 1, Pronay Pal 1, Shilarchana Maiti 2,
Sudarshan Nath 1

1 Department of Information Technology, JIS College of Engineering, West Bengal, India
2 Department of Computer Application, JIS College of Engineering, West Bengal, India

ABSTRACT

Parkinson’s Disease, a neurodegenerative disorder, is one of the major chronic health issues in the world. It causes a
severe disorder that affects majorly muscle control but it can also be the reason of affecting senses, cognitive ability and
cognitive health. Approximately, 90% of the Parkinson affected people face speech difficulty. Conventional diagnosis
methods may be biased which may result in wrong diagnosis of Parkinson’s Disease because symptoms are usually
elusive. This study aims to assess how well different machine learning algorithms can predict Parkinson’s disease using
vowel phonation data, with the goal of early detection and more accurate patient assessments. Different machine learning
algorithms, like Random Forest, Logistic Regression, Decision Tree, Support Vector Machine, and Boosting algorithms
(Gradient, Extreme Gradient, Light Gradient, and Categorical), are evaluated for their prediction ability. Based on vowel
phonation data, Random Forest achieved the highest accuracy of 98.4% among the evaluated classifiers in predicting
Parkinson’s disease. It highlights the prominence of machine learning application for early detection of Parkinson’s
disease accurately. This research helps create a better way to assess patients’ risk of Parkinson’s disease, leading to a
clearer understanding and supporting future studies in this area.

Keywords: Detection, Efficacy, Machine learning, Parkinson, Prediction

Introduction

One of the most prevalent neurodegenerative
disorders, Parkinson disease1 affects 1–2 persons per
1,000 people over 50 years. Due to the growing older
population and rising incidence rates, the projected
number of persons living with Perkinson Disease
worldwide has more than quadrupled from 1990 on-
wards. As of 2020, an estimated 9.4 million individu-
als were still suffering with this condition globally.2

Just 4% of occurrences of this condition occur in
adults under the age of 50, with those over 60 being
the group most affected.3 Movement preparation,
instigation, and completion are all a part of Parkinson
disease, a degenerative neurological condition involv-

ing motor and non-motor symptoms. The symptoms
of this condition will manifest differently in each per-
son. Some of the symptoms include tremor, slowness
of movement, rigidity of muscles, loss of spontaneous
movements, and even abnormalities in speech
and writing. Early Parkinson disease may cause
speech to seem bland and the face to slow down or
disappear.

Parkinson.4 is the most prevalent neurological
ailment, produces considerable impairment, lowers
quality of life. Dopamine is a neurotransmitter
that is synthesized by nerve cells in this region of
the brain. When dopamine levels drop, neurons in
the parts have trouble speaking, writing, walking,
and doing other basic tasks. Despite the creation
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of cardinal symptoms of Parkinson in clinical
evaluations, most disease severity rating systems
have not been extensively examined and validated.
Many individuals have non-motor symptoms before
the beginning of Parkinson, but they lack specificity,
are difficult to quantify, and vary from patient to
patient.

There have been significant improvements in health
care services that use pruning technology as a result
of technological developments like Artificial Intel-
ligence and Machine Learning.5,6 Machine learning
may leverage past results to make wise judgements
on previously unknown contemporary circumstances.
Researchers have made ML based methods for pre-
dicting the occurrence of Parkinson. The most crucial
issues for machine learning methods are how to
choose the right classifier and valid features. This
study uses several machine learning classifiers to do
classification. After conducting training on the pro-
vided data, the model’s accuracy is validated using
the test dataset. The approach applied to construct
the model will be determined by the accuracy of the
findings. To better predict the Parkinson, our effort
will make use of previously collected data to develop
ML approaches. Critical parameters for the predic-
tion technique were selected utilizing a data-driven
feature selection strategy based on statistical and fea-
ture reduction methods. The beginning of Parkinson
disease may often be predicted in many instances.7,8

These methods are either too costly or insufficient to
reliably predict a person’s risk of developing heart
disease. Prediction based on data from patient reports
is not always simple to make.

In the context of existing work, one prevalent issue
is the limited focus on feature selection techniques
and hyperparameter tuning in optimizing model per-
formance for Parkinson disease prediction. Many
previous studies have primarily emphasized accuracy
metrics without adequately addressing the impor-
tance of fine-tuning model parameters or selecting
relevant features. This oversight can lead to sub-
optimal predictive models that may not effectively
capture the complexity of the disease.

The combination of hyper-parameter tuning, model
development and feature selection avoided the chal-
lenge of the previous work which lacked these
necessary considerations. There are dozens of articles
that have been published in regard to the Parkinson
Disease prediction model, but hyper-parameter tun-
ing techniques and feature selection are infrequently
used.

Moreover, this phenomenon also extends to
realizable over-fitting which is associated with
using a narrow range of data sets, as the instruction
set contains numerous examples. To ensure the

models are applicable in a wide variety of situations,
the approach is based on cross-validation thereby
testing the model on several datasets.

Another limitation of the research so far is that
many studies only train models on existing datasets
and do not check whether the model does well on
new datasets or different patient populations. It can
lead to overfitting and make the models useless in the
real world. We generalize models by doing rigorous
cross-validation and applying it across many datasets
and cohorts of patients. In this way, our models can be
extended to different clinical scenarios and thus bet-
ter predict Parkinson’s disease. Our general method
solves more problems — we get more accurate and
general models.

These were the main findings of this research:

• This paper proposes a novel method for Parkinson
disease prediction using machine learning spe-
cially focusing on vowel phonation data for
preemptive detection and risk assessment.

• Data imbalance (and hence the importance of
IQR) is dealt with to control for its performance
of the model and generalizing it.

• To construct a generalized model, hyper pa-
rameterize by running many large variations of
parameter values.

• By testing different Machine Learning Algorithms
such as Random Forest, Logistic Regression, De-
cision Tree, Support Vector Machine, Gradient
Boosting Machine, Extreme Gradient Boosting,
Light Gradient Boosting, and Categorical Boost-
ing, the study finds out the best one for the
prediction of Parkinson disease with accuracy.

• More regarding the features picked, the original
push in this particular research is for wrappers to
be associated.

• In its current structure, it seems that research gets
to be optimal on model performance, tending to
have been ignored in former projects focused only
on accuracy. The great aspect remains the most
significant one in most cases where prediction
models are enabled and the previous research ef-
forts are compared.

• Revealed Strategic Hyperparameter Tuning in the
improvement of model efficacy since this has been
very neglected within the whole scope of the past
research endeavors and brings a predicted power
in the model.

• Meaningful Model Selection Combined with Fea-
ture Selection and Hyperparameter Tuning Thus,
the whole process stands equally in guarantee-
ing higher accuracy levels in predicting Parkinson
Disease hence setting a new trend for future re-
search in the field.
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• The findings of this study contribute valuable
insights into the potential of machine learning
algorithms in improving diagnostic accuracy for
Parkinson disease, addressing the limitations of
traditional diagnostic methods that are often sub-
jective and prone to misdiagnosis.

The remainder part of the paper is outlined as fol-
lows. A literature survey has been pursued in the next
section followed by the system model and methodol-
ogy of the proposed system. In the next section the
result analysis along with discussion is presented. The
conclusion is offered in the final section.

Literature survey

Recent research employed a variety of machine
learning techniques for symptom-based Parkinson pa-
tient identification. MRI scans, gait analysis, and
genetic data have all been used in studies to predict
Parkinson disease, but there is surprisingly little study
on the use of hearing loss as an early indicator.

In9 authors used SVM model to predict senior
patients’ Parkinson onset using genetic data. They
managed to train an SVM model to an accuracy of
0.889, whereas an enhanced SVM model achieves
a precision of 0.9183. This finding supports the su-
periority of auditory data over genetic data in PD
categorization. UCI telemonitoring dataset keystroke
data was used to train a Random Forest classifier10

to predict the severity of PD in elderly individu-
als. The models used in11 that utilize audio data
to categorize PWP are very dependent on MATLAB.
Python-trained open-source models, which are both
quick and memory-efficient, are used in this study.

Authors12 demonstrated how ensemble deep learn-
ing models applied to phonation data might predict
Parkinson disease progression. Deep learning model
performance was poor since they didn’t apply feature
selection. Authors13 intended to decrease PD diagno-
sis dependency on wearable technology by training
a classical decision tree on 12 complicated speech
parameters of the MDVR-KCL dataset. The ResNet14

model was not trained on the subtleties of audio
frequency, but rather on pictures of audio data. Au-
thors15 used an objective ML model to predict PD
cases, their best findings only got up to an accuracy
of 85%, leaving room for clinicians’ biases.

In16 authors used different machine learning mod-
els to categorize patients as having PD based on
a dataset of numerous speech biomarkers. Using a
unique deep learning model, authors were able to
achieve a 96.45% accuracy rate in classification, but
at a high cost owing to the model’s high memory
needs. Authors17 used a linear classification model

with 95% accuracy to classify PD patients’ shuffling.
Their research focused on patient gait, and subse-
quent studies recommended using audio and sleep
data to enhance findings. Authors18 analyzed brain
MRI images spatially and temporally. To identify
MCI in PWP, authors19 have used a combination of
decision trees, random forests, and K-Nearest Neigh-
bors. Authors20 performed L1-support SVM on vowel
phonation dataset for neurological illness patients
without feature identification. Authors21 indicated
that ML can identify PD’s subtle non-motor symp-
toms that doctors may overlook. They built a data
gain evaluation model to determine PD talents from
the dataset. This strategy included many machine
learning and data-gathering techniques. Compared to
DL-based PD assessment models, this method worked
well in PD findings but had insignificant conse-
quences.

Authors22 provided a technique for identifying
Parkinson disease. Weka tools were utilized to con-
struct algorithms for data pre-processing, classifica-
tion, clustering, and analysis. In23 authors explored
numerous speech signal analysis methods for di-
agnosing this subjective condition. TQWT excelled
in state-of-the-art speech signal computational al-
gorithms used for PD detection feature extraction.
Classifier predictions were pooled using ensemble
techniques after applying several classifiers to dis-
tinct feature groups. The authors tested ML methods
for PD patient identification.24 KNN, SVM, Naive
Bayes, and random forest are four machine learning
classifiers that were employed to diagnose PD. At
70.26% accuracy and 0.64 precision for test data,
the Naive Bayes algorithm detected PD patients.
The authors suggested PD diagnosis utilizing feature
selection, extraction, and pre-processing classifica-
tion.25 Recursive feature elimination and feature
significance approaches were employed for feature
selection in their study. SVM was shown to have
an accuracy of 79.98% before feature selection,
however it performed better after selection. The au-
thors suggested a statistical technique to identify
subjective illness using vowels and voice parame-
ters. The accuracy rates for SVM and KNN were
91.25% and 91.23%, respectively.26 The authors pro-
posed comparing performance measures with genetic
algorithm-based feature sets and Principal Compo-
nent Analysis based feature reduction strategies in.27

They achieved 97.57% accuracy using SVM with RBF
and genetic algorithm-based feature sets.

In28 authors used multi-agent fact analysis to de-
cide reaction. Reinforcement learning, Choice Tree,
Naive Bayes classification, and Random Forest ap-
proaches were used to construct the multi agent de-
vice for speech issue assessment. Authors29 examined
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Fig. 1. Proposed methodology.

indicators of idiopathic Parkinson disease for several
feature groups. Parkinson prediction the usage of arti-
ficial neural network research on this machine. After
expertly importing the data into the Neural Network
environment, the ANN model was 90% correct.

The drawback is that illness prediction solely relies
on vowel phonation data, which could not adequately
represent the intricacy of biomarkers and symptoms
associated with Parkinson disease. Our primary goal
of improving the models’ performance is commend-
able, but it risks ignoring how well the models work
with other types of patients or in other types of
healthcare environments.

System model and methodology

This section elaborated on the research methods
used by the authors of the proposed system model.
The proposed methodology involves the acquisition
of data from Kaggle, specifically focusing on
voice modulations in individuals with Parkinson
disease. The dataset encompasses information on
jitter, shimmer, and MDVP (Mean Delta Pitch
Value) derived from vowel phonation. Following
data pre-processing, comprehensive analysis, and
visualization, a profound understanding of these
attributes is gained. To develop predictive models
for classifying audio data into Parkinson disease or
healthy categories based on frequency variations,

nine distinct models are employed. These models
include Logistic Regression, Support Vector Machine,
Decision Tree, Random Forest, K-Nearest Neighbours,
Gradient Boosting Machine, XGBoost, Light GBM, and
Cat Boost. The training phase utilizes 70% of the data,
while 20% is reserved for validation. The models are
subsequently tested on 10% of the data, and their
performance is evaluated using precision, recall, F1-
score, confusion matrix, and ROC-AUC score metrics.
The procedure of the proposed model is shown in
Fig. 1.

Data collection

The dataset for Parkinson disease comprises a di-
verse range of voice modulation data collected from
individuals with Parkinson disease. Variables include
jitter, shimmer and MDVP of vowel phonations fea-
tures. The dataset is obtained from Kaggle repository
and carefully curated to ensure data quality. Biomed-
ical voice measurements were collected from 31
individuals, comprising 23 patients diagnosed with
Parkinson disease. The data set includes patients
within the age range of 46 to 85 years, while nor-
mal readings are derived from individuals aged 23
years. Each participant underwent an average of 6
phonation sessions, recorded 195 times per session.
The duration of these recordings varied from 1 to
36 seconds. The primary objective of the dataset is
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Table 1. Feature names and their description.

Feature Name Description

MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo(Hz) Minimum vocal fundamental frequency
MDVP:Jitter (%), MDVP:Jitter (Abs), MDVP:RAP, MDVP:PPQ,
Jitter:DDP

Several measures of variation in fundamental frequency

MDVP:Shimmer, MDVP:Shimmer (dB), Shimmer:APQ3,
Shimmer:APQ5, MDVP:APQ, Shimmer:DDA

Several measures of variation in amplitude

NHR, HNR Two measures of the ratio of noise to total components in the voice
Status The health status of the subject (one)-Parkinson, (zero)-healthy
RPDE, D2 Two nonlinear dynamical complexity measures
DFA Signal fractal scaling exponent
Spread1, Spread2, PPE Three nonlinear measures of fundamental frequency variation

Fig. 2. PD Patient and non-patient distribution.

to distinguish between healthy individuals and those
with Parkinson disease based on the “status” column,
with 0 indicating a healthy status and 1 indicating
Parkinson disease. Below table is elaborating on the
attributes of 195 records. Feature names and their
description are presented in Table 1.

Data preprocessing

Data cleaning
In the initial stage, our focus was on identifying null

values and duplicate records within the dataset and
employed the Pandas library for this purpose. After
a thorough examination, it has been determined that
there are no null values or duplicate records present
in the dataset. The absence of null values signifies that
each field or attribute in the dataset contains valid
and complete information, contributing to the overall
integrity of the data. Additionally, the absence of du-
plicate records indicates that each entry in the dataset

is unique, preventing redundancy and ensuring the
accuracy of our analysis.

Data exploration
To gain insights into the fundamental statistics and

characteristics of the data, conducted exploratory
data analysis (EDA). This analytical approach fa-
cilitated the identification of patterns, trends, and
potential outliers within the dataset see Fig. 2.

The pie chart presented above illustrates that
within the dataset, approximately 75.38% of the data
is associated with individuals diagnosed with Parkin-
son disease, while the remaining portion represents
non-patient instances. This distribution highlights the
presence of a class imbalance issue in the data, where
one class (PD patients) significantly outweighs the
other in terms of representation. Acknowledging this
class imbalance is crucial for maintaining a balanced
and unbiased perspective in subsequent analyses and
model training, as it can impact the performance and
reliability of predictive models. Histogram represen-
tation of different features is presented in Fig. 3.

Examining the histogram provided, it is evident
that a majority of the data exhibits a positive skew-
ness, indicating a concentration of values towards the
lower end of the distribution. Notably, features such
as spread1, spread2, and D2 demonstrate characteris-
tics of a normal distribution. These particular features
display a more symmetrical and balanced pattern in
their distribution, suggesting a relatively even spread
of values across their respective ranges. Boxplot of
different features for outlier detection is presented in
Fig. 4.

Outliers in a box plot are identified using the in-
terquartile range (IQR), which measures how spread
out the data is. The IQR is the distance between the
first quartile (Q1) and the third quartile (Q3). Any
data points that fall significantly outside this range
are considered outliers. The boxplot’s whiskers ex-
tend to a predefined multiple of the IQR, and any data
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Fig. 3. Histogram representation of different features.

points lying beyond these whiskers are considered
potential outliers.

Dealing with outliers
To deal with potential outliers in the data, the

authors used the Interquartile Range (IQR) method.
This involves calculating the IQR, which shows how
spread out the middle 50% of the data is. Then, they
set upper and lower limits based on a multiple of the
IQR. Any data points outside these limits are consid-
ered potential outliers.

Here’s a simple way to calculate the IQR and detect
outliers:

• Step 1: Sort the Data
Arrange the data points in ascending order.

• Step 2: Find the First Quartile (Q1)
The first quartile, Q1, is the middle value of the
lower half of the data. It marks the point below
which 25% of the data lies.

• Step 3: Find the Third Quartile (Q3)
The third quartile, Q3, is the middle value of the
upper half of the data. It marks the point below
which 75% of the data lies.

• Step 4: Calculate the Interquartile Range (IQR)
IQR = Q3 – Q1

• Step 5: Define the Lower and Upper Limits
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Fig. 4. Boxplot representation of different features for outlier detection.

Lower Limit: Q1 − K*IQR
Upper Limit: Q3 + K*IQR
Here, K is a constant that decides how far away
from the quartiles a data point can be to be consid-
ered a potential outlier. The value of K is usually
set to 1.5.

• Step 6: Identify Outliers
Any data points below the lower limit or above
the upper limit are considered potential outliers.

To reduce the effect of outliers, replacement with
the average value of features was used instead. This
includes extreme data that is beyond their set limits

but is replaced with the average instead. In turn, this
causes the data distribution to be normalized and
prevents eventual analysis or model building from
its influence. These steps ensure keeping the overall
structure while maintaining the features.

Feature scaling

Feature scaling is one of the preprocessing steps
applied to the data in order to prepare it for machine
learning. This implies making numerical features into
the same range, thereby assisting certain models. The
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Fig. 5. Bar plot of the target variable ‘status’ representation.

authors applied the Z-Score Normalization method
to standardize the features. This transforms each
feature’s value so that it has a mean of 0 and a
standard deviation of 1. In doing this, all features are
scaled in a similar fashion so that those features with
greater values do not overly dominate the analysis.
The Eq. (1) is presented as:[
z =

xi− µ

σ

]
(1)

In this formula, Z is the Z-score, xi is the current
value, µ is the mean of the dataset, and σ is the
standard deviation. By using this formula, all values
are standardized into Z-scores. As a result, the values
fall within the range of –1 to +1, which keeps the
original data’s range but shows how far each value is
from the mean, in terms of standard deviations.

Data augmentation

Since the dataset is small, with only 195 entries, the
authors used the IQR technique to create more data.
This process generated synthetic data points to add to
the existing dataset. The IQR technique made sure the
new data matched the original dataset’s patterns. This
data augmentation helped increase the dataset size,
giving the machine learning models more examples
to learn from, which improves their performance.

Fig. 5 shows a bar plot of the target variable “sta-
tus”.

Authors addressed the issue of limited data by
generating 2000 new data points for individuals di-
agnosed with Parkinson disease and additional 2000
data points for non-PD individuals. Thus, our dataset
has now increased to 4,195 patient records. The
increase in size also solved the problem of class imbal-
ance to ensure a more balanced mix of PD and non-PD
cases. Our goal is to make the training of the machine

learning model more reliable and fairer with a more
balanced mix of cases.

Feature selection

Feature selection is one of the critical steps that
occur during the machine learning process. It helps in
the selection of the most appropriate features, which
would be best for the model, enhancing performance,
avoiding overfitting, and easy interpretation, reduc-
ing computation. The authors enable the model to
concentrate on meaningful patterns while making it
more efficient and interpretable by selecting the most
important features.

The wrapper-based approach was implemented in
feature selection, where a tree-based model was
taken. Wrapper-based approach analyzes the perfor-
mance of different feature subsets to see which are
most significant. This identifies features that give the
most impact on the performance of the model. The
intention was to refine the accuracy and readability of
the model by selecting the best features. The selected
features are shown in Table 2.

Our wrapper-based feature selection approach uses
four machine learning models: Logistic Regression,
Support Vector Machine, Decision Tree, and K-
Nearest Neighbors. Forward feature selection was to
iteratively enhance our model’s performance from the
initial set of 22 features.

Beginning with a null model containing zero
features, authors adopted a greedy approach, sequen-
tially adding features one at a time to optimize the
model’s predictive capabilities. Through this process,
the authors identified and selected the best subset
of 15 features, leveraging the unique perspectives of
each model to collectively enhance the overall feature
set for improved model performance.

Our feature selection strategy extended by incor-
porating a Tree-based model, leveraging Random
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Table 2. Wrapper based feature selection technique and their description.

Logistic Regression SVM Decision Tree KNN

PPE PPE MDVP:Shimmer(dB) MDVP:Shimmer(dB)
Spread1 MDVP:Fo(Hz) PPE MDVP:Jitter(%)
MDVP:Fo(Hz) MDVP:Shimmer(dB) Spread1 PPE
MDVP:APQ Spread1 Shimmer:APQ5 Spread1
D2 D2 MDVP:Jitter(%) MDVP:Fo(Hz)
Spread2 MDVP:Jitter(Abs) MDVP:Fo(Hz) MDVP:RAP
MDVP:Fhi(Hz) Spread2 D2 D2
MDVP:Flo(Hz) MDVP:Jitter(%) MDVP:RAP MDVP:Fhi(Hz)
NHR MDVP:Fhi(Hz) MDVP:Shimmer Spread2
Shimmer:APQ5 Shimmer:DDA MDVP:Fhi(Hz) MDVP:Shimmer
MDVP:RAP Shimmer:APQ3 Spread2 MDVP:APQ
MDVP:Jitter(Abs) Shimmer:APQ5 RPDE DFA
Shimmer:APQ3 RPDE Shimmer:APQ3 Shimmer:APQ3
Shimmer:DDA HNR DFA RPDE
MDVP:Shimmer MDVP:APQ MDVP:APQ Shimmer:APQ5

Table 3. Features selected using tree-based model and their description.

Random Forest GBM XGBM Light GBM Cat Boost

PPE PPE MDVP:Shimmer(dB) MDVP:Shimmer(dB) D2
Spread1 MDVP:Fo(Hz) PPE MDVP:Jitter(%) MDVP:Fhi(Hz)
MDVP:Fo(Hz) MDVP:Shimmer(dB) Spread1 PPE MDVP:Fo(Hz)
MDVP:APQ Spread1 Shimmer:APQ5 Spread1 Spread2
D2 D2 MDVP:Jitter(%) MDVP:Fo(Hz) Spread1
Spread2 MDVP:Jitter(Abs) MDVP:Fo(Hz) MDVP:RAP RPDE
MDVP:Fhi(Hz) Spread2 D2 D2 Shimmer:APQ5
MDVP:Flo(Hz) MDVP:Jitter(%) MDVP:RAP MDVP:Fhi(Hz) PPE
NHR MDVP:Fhi(Hz) MDVP:Shimmer Spread2 DFA
Shimmer:APQ5 Shimmer:DDA MDVP:Fhi(Hz) MDVP:Shimmer MDVP:Fo(Hz)
MDVP:RAP Shimmer:APQ3 Spread2 MDVP:APQ MDVP:Shimmer(dB)
MDVP:Jitter(Abs) Shimmer:APQ5 RPDE DFA MDVP:APQ
Shimmer:APQ3 RPDE Shimmer:APQ3 Shimmer:APQ3 HNR
Shimmer:DDA HNR DFA RPDE Jitter:DDP
MDVP:Shimmer MDVP:APQ MDVP:APQ Shimmer:APQ5 Shimmer:APQ3

Forest, Gradient Boosting Machine, XGBoost, Light
GBM, and Cat Boost. These models facilitated the
identification of the most important features based
on their calculated feature importance scores. This
comprehensive approach aimed to capture and prior-
itize features that collectively contribute the most to
the predictive power of the model, enhancing its ro-
bustness and performance across multiple tree-based
algorithms. Selected features by tree-based model is
presented in Table 3.

Final selected features

Using various approaches, 15 features have identi-
fied those consistently emerged as common selections
across different methods, and these are presented in
Table 4.

Train, test and validation data generation

The dataset was partitioned into three distinct sets:
Training, Testing, and Validation. Initially, 90% of

Table 4. Final selection of important features and
their description.

Top 15 Important Features MDVP:Fo(Hz)
MDVP:Fhi(Hz)
MDVP:Flo(Hz)
MDVP:Jitter(%)
MDVP:Jitter(Abs)
MDVP:RAP
MDVP:PPQ
MDVP:Shimmer(dB)
Shimmer:APQ3
HNR
RPDE
Spread1
Spread2
D2
PPE

the data was allocated to the Training set, while the
remaining 10% was reserved for the Test set. Within
the Training set, 20% of the data was further set
aside for Validation, serving as an independent sub-
set for fine-tuning and optimizing the model during
the training process. This partitioning strategy aimed
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Fig. 6. Pie chart representation of train, test and validation data.

to ensure a robust evaluation of the model’s perfor-
mance on unseen data while allowing for effective
model validation and parameter tuning. Pie Chart
representation of Train, Test and Validation Data are
presented in Fig. 6.

Model selection

In this proposal authors have opted for a diverse en-
semble of nine models to tackle our classification task.
These models encompass a range of algorithms and
techniques, each bringing its unique strengths and
characteristics to the table. This comprehensive set
of models enables us to explore various approaches
and select the most suitable one based on the spe-
cific nuances of our dataset and the nature of the
classification problem at hand. Fig. 7 represented the
Logistic Function, while Fig. 8 presented the Parkin-
son Disease Prediction Using SVM, Fig. 9 represented
the Decision Tree, Fig. 10 presented the Random For-
est Classifier, and Fig. 11 represented the Parkinson
Disease Prediction using KNN.

Logistic regression
Logistic regression serves as a statistical technique

primarily employed for binary classification tasks,
wherein the objective is to predict the outcome of
a categorical dependent variable with two possi-
ble values. Widely utilized in machine learning and
statistics, logistic regression models the relationship
between independent variables and the probability of
a specific outcome. Diverging from linear regression,
which forecasts continuous outcomes, logistic regres-
sion utilizes the logistic function (sigmoid function).
This transformation confines the predicted values
within the range of 0 to 1, making it particularly
suitable for scenarios like audio data analysis. In the
context of Parkinson Disease classification, where the

Fig. 7. Logistic function (sigmoid function) representation.

Fig. 8. Using SVM parkinson disease prediction representation.

Fig. 9. Decision tree representation.

attributes influencing the prediction are not linearly
correlated but exhibit an exponential pattern, logistic
regression proves to be an apt and effective modelling
approach. Below is the Eq. (2) of sigmoid function:

Sigmoid (x) =
1

1+ e−x (2)

Here, Sigmoid(x) denotes the output of the sigmoid
function for a given input x. e-x represents the base of
the natural logarithm where x signifies the input to
the function.
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Fig. 10. Random forest classifier representation.

Fig. 11. Using knn parkinson disease prediction representation.

In our specific context, a threshold value of 0.5
is considered. Instances where the output value sur-
passes this threshold are designated as Parkinson
Disease (PD), while those falling below the threshold
are classified as non-Parkinson Disease (non-PD).

Support vector machine
SVMs work based on the best-known boundary,

known as a hyperplane, that can distinguish data
points into different classes in a high-dimensional
space. For the prediction of Parkinson’s disease, SVMs
learn clinical markers or genetic data and project
them into a multi-dimensional space. It finds the
hyperplane which classifies between the two classes
while minimizing the error. A kernel function in SVM
actually transforms the input data into the higher
dimensional space, allowing this classifier to identify
the complex relationships. Therefore, it makes the
SVM an effective tool for resolving nonlinear relation-
ships, as well as the complexity due to Parkinson’s
disease.

Decision tree
Simple yet powerful, decision trees operate on

a principle of predicting Parkinson disease. The

algorithm partitions the input dataset based on
the most informative features to optimize the tree
structure, maximally separating the positives and
the negatives with respect to Parkinson disease.
For each node in the tree, the algorithm picks that
feature which can best discriminate between the two
classes from the branches leading to the subsequent
nodes. The process continues until one of the stopping
criteria is satisfied: either a specified depth is reached
or homogeneity is achieved in the terminal nodes.
Since decision trees inherently discover complex
decision boundaries and provide for interpretability
by visualizing the path from root nodes to the final
leaf node, they are precious in the Parkinson disease
prediction task because they find some of the key
features and their interactions in the dataset for
understanding what causes the disease and making
good predictions on new cases.

Random forest classifier
Random Forest operates based on an ensemble

learning principle specifically by building up multiple
decision trees and averaging their outputs towards
robust and accurate Parkinson disease prediction. For
the purpose of disease prediction, in the Random
Forest, every single tree is developed based on a
bootstrap sample of the original dataset and has ran-
domness both in data as well as in feature selection.
For the purpose of tree building up, at every node,
a random subset of features is split, thereby creat-
ing diversity among trees. The ultimate prediction
is given by aggregating the predictions coming from
individual trees, typically done using a mechanism of
majority vote. The two sources of randomness, the
initial creation of a tree and then averaging different
trees, would help reduce overfitting and enhance the
generalization capability. Random Forest’s capacity
for modeling complex relations in the dataset, han-
dles high-dimensional feature spaces and gives an
estimation of feature importance. Therefore, it is a
very effective and reliable tool for predicting Parkin-
son disease.

K-nearest neighbours
This algorithm is proximity-based classification

and, therefore, is highly applied in the prediction of
Parkinson disease. In terms of disease prediction, ev-
ery single element in the dataset lies in some feature
space, and this algorithm classifies a new instance by
determining its k-nearest neighbors based on some
chosen distance metric, usually Euclidean distance.
The majority class of all these neighbors will then be
the one predicted for that new instance. KNN never
assumes an underlying data distribution and auto-
matically adapts to patterns in local minima. These
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Table 5. Parameters selection for hyper parameter tuning and their description.

Model Name Parameters Values

Logistic Regression max_iter 50,100,150
Warm_start True, False
Fir-intercept True, False

SVM C 1,3,5
kernel rbf, sigmod
tol 0.1, 0.01, 0.001

Decision Tree, Random Forest criterion gini, entropy
splitter best, random
min_samples_split 2, 4, 6
Warm_start True, False

KNN n_neighbors 3, 5, 7
P 1, 2
metric euclidean, manhattan, minkowski

GBM loss log_loss, exponential
learning_rate 0.1, 0.01, 0.001
criterion friedman_mse, squared_error
min_samples_split 2, 4, 6
max_depth 3, 5, 7

XGBM objective binary:logistic
n_estimators 100, 200, 300
learning_rate 0.1, 0.01, 0.001
max_depth 3, 5, 7
gamma 0.1, 0.2, 0.3

Light GBM boosting_type gbdt, rf, dart, goss
num_leaves 31, 37, 41
learning_rate 0.1, 0.01, 0.001
n_estimators 100, 150, 200
objective binarys
min_child_samples 20, 30, 40

Cat Boost iterations 100, 200,300
learning_rate 0.1, 0.01, 0.001
depth 6, 8, 10
l2_leaf_reg 3, 5, 7

*Red marked values are selected after hyper parameters tuning using GridSearchCV.

Table 6. Precision, recall, F1-score and ROC AUC of different models and their
description.

Precision Recall F1-Score

Model Nam 0 1 0 1 0 1 ROC AUC

Logistic Regression 0.73 0.90 0.90 0.72 0.80 0.80 0.86
SVM 0.90 0.82 0.76 0.93 0.93 0.87 0.86
Decision Tree 1.00 0.97 0.96 1.00 0.98 0.98 0.99
Random Forest 1.00 0.97 0.96 1.00 0.98 0.98 1.00
KNN 0.85 0.84 0.80 0.88 0.82 0.86 0.86
GBM 0.96 0.98 0.98 0.97 0.97 0.97 0.99
XGBM 0.98 0.98 0.98 0.98 0.98 0.98 0.99
Light GBM 1.00 0.94 0.92 1.00 0.96 0.97 0.99
Cat Boost 1.00 0.95 0.93 0.99 0.98 0.97 1.00

characteristics make the algorithm especially strong
in situations when decision boundaries cannot be de-
fined and are complex at the same time. In the context

of Parkinson disease, it makes use of the similarity in
patterns of features to classify the subjects. Thereby,
it provides a simple yet highly efficient way to predict
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Fig. 12. Logistic regression confusion matrix representation.

Fig. 13. SVM confusion matrix representation.

Fig. 14. Decision tree confusion matrix representation.

the existence or absence of the disease by relying on
the features of the nearest instances in the feature
space.

Gradient boosting machine
Gradient Boosting Machine is based on an ensemble

learning technique that makes a predictive model for
Parkinson disease prediction through several weak
learners; the common form of weak learner is decision

Fig. 15. Random forest confusion matrix representation.

Fig. 16. KNN confusion matrix representation.

Fig. 17. GBM confusion matrix representation.

Fig. 18. XGBM confusion matrix representation.
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Fig. 19. Light GBM confusion matrix representation.

Fig. 20. Cat boost confusion matrix representation.

tree. It proceeds iteratively such that each tree will try
to improve the errors committed by the combined en-
semble so far. In each iteration, it will find the errors
of the current ensemble by calculating the gradient
of a defined loss function. A weak learner will then
be trained to minimize these gradients and added to
the ensemble, thus improving the predictive accuracy
of the overall model. GBM adjusts by giving more
weight to instances that were misclassified in previ-
ous iterations. This is continued until a fixed number
of trees is reached or satisfactory performance is
achieved. GBM strength The strength of GBM is due
to its capacity to deal with the complex relationship
present in the data, automatic capture of non-linear
patterns, and high predictive accuracy for Parkinson
disease based on the collective strength of multiple
decision trees.

Extreme gradient boosting
XGBoost is an advanced implementation of gradient

boosting with focus on accuracy and efficiency. Thus,
it is appropriate for Parkinson’s disease prediction.
It builds a predictive model by combining multiple
weak learners that typically are decision trees in an
additive manner. It utilizes a regularized objective
function with both loss and regularization terms to
measure prediction error and control the complexity
of the model. In every boosting round XGBoost looks

at the existing ensemble’s performance and fits in
a new tree to correct all the errors. Gradient based
optimization techniques and parallel computation
are used for the training and the algorithm reduces
the time consumption and increases its efficiency.
Furthermore, XGBoost also allows features like tree
pruning and column subsampling to eliminate over-
fitting and enhance the generalization power. Its
applicability to manage missing data, nonlinear rela-
tionships, and high-dimensional feature spaces. This
makes XGBoost a very powerful, accurate tool for pre-
diction of Parkinson disease while remaining robust
and interpretive.

Light gradient boosting machine
Light GBM is an efficient gradient boosting frame-

work developed to work well for large-scale and
computationally efficient machine learning problems,
hence being the most suited predictor of Parkinson
disease. It works on sequential ensemble decision
tree construction wherein every decision tree train
to rectify the mistake that was done by the previ-
ously built decision trees. Unlike traditional gradient
boosting, Light GBM does the growth of the tree
leaf-wise, not depth-wise. This strategy efficiently ex-
plores the feature space, and at each level, it identifies
the most informative features to split upon. More-
over, Light GBM also introduces the histogram-based
learning approach where, for faster computations,
feature values are binned. The objective function is
optimized by the use of a gradient-based approach
such that the resultant prediction accuracy may be
the best. Its ability to handle large datasets, high-
dimensional feature spaces, and to provide fast and
accurate predictions makes Light GBM a robust tool
in predicting patients with Parkinson disease, espe-
cially in scenarios where efficiency in computation is
crucial.

Categorical boosting
CatBoost, like all other gradient boosting

algorithms, works on an ensemble learning principle
to predict Parkinson disease. However, CatBoost
has innovations that it introduces to increase its
efficiency and predictive performance. It uses a
category-specific approach to handle categorical
features, making the algorithm avoid manual
encoding-increasing model accuracy. This model
also uses ordered boosting where the best ordering
of the categorical feature happens at tree building,
hence there is a minimization in overfitting. The
symmetric structure of the tree also helps decrease
overfitting and reduces bias in training caused by
unbalanced splits. Other features include CatBoost’s
unique handling of missing data, thereby making it
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Fig. 21. Different models ROC AUC curve representation

much more robust. The algorithm of CatBoost works
on gradient optimization with improvement that is
iterative at the level of the predictive model. All
of these make CatBoost very good for predicting
Parkinson disease: It balances these aspects of
accuracy, efficiency, and use, especially in scenarios
with heterogeneous data types and missing values.

Model training
A total of 5-fold cross-validation is used while set-

ting the value of K for training our model. This entails
breaking down the given dataset into subsets, and
during training and validation, the procedure goes
through five trials, where at each trial a different sub-
set becomes the validation set, and all the remaining
data are used in training. All the results will then
be averaged to give an overall robust impression of
the given model’s performance across different sets of
data subsets. Model training was conducted in three
steps: first, training the model on all possible features;
second, the model was only trained on selected fea-
tures; finally, hyper parameter tuning for achieving
the maximum accuracy was carried out using Grid
Search Cross-Validation. Such an extensive step was
taken for the validation of the performance of the
model at different subsets of features as well as hyper
parameter optimization of the best model with robust
and accurate prediction.

Considered parameters for hyper parameter tuning
is presented in Table 5.

Model evaluation

To assess the performance of these models, vari-
ous authors have chosen a pretty representative set
of metrics: ROC-AUC curve, confusion matrix, pre-
cision, recall, and F1 score are among them. These
metrics collectively give a pretty thorough evalua-
tion of the models’ ability to discriminate between
classes, detect true positives and negatives and bal-
ance precision and recall. The ROC-AUC curve would
suggest the trade-off between true positives and false
positives, and the confusion matrix basically breaks
down further into detailed classification outcomes.
Accuracy, precision, recall, and F1 score measure the
overall effectiveness and balance in how the models
were picking up on the important patterns within the
data.

Mathematical Formula of Eqs. (3) to (5) Precision,
Recall and F1-Score:

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1-Score =
2 ∗Precision ∗Recall

Precision+ Recall
(5)
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Table 7. Accuracy of different machine learning models and their description.

Accuracy before Hyper-parameter Accuracy after Hyper-parameter
Model Nam tuning and Feature Selection (%) tuning and Feature Selection (%) Avg. Model accuracy (%)

Logistic Regression 84.2 86.4 87.0
SVM 89.7 92.1 92.2
Decision Tree 89.1 89.2 95.4
Random Forest 89.3 90.7 98.4
KNN 84.0 84.5 84.9
GBM 89.7 90.0 97.8
XGBM 89.8 90.7 97.8
Light GBM 89.0 93.5 96.8
Cat Boost 89.1 92.1 98.

Fig. 22. Different model’s accuracy bar chart representation.

Here, TP = True Positive, FP = False Positive and
FN = False Negative

Precision, Recall, F1-Score and ROC
AUC of Different Models are presented in
Table 6.

The confusion matrix is used in the evaluation of
our classification models that provide an elaborative
account of the performance of a classification algo-
rithm by summing up results in a tabular format. This
matrix compares predicted labels of the model with
actual labels and groups instances into four different
outcomes.

• True Positive (TP): Instances correctly predicted
as positive.

• True Negative (TN): Instances correctly predicted
as negative.

• False Positive (FP): Instances incorrectly predicted
as positive (Type I error).

• False Negative (FN): Instances incorrectly pre-
dicted as negative (Type II error).

Confusion Matrix of different models is presented
below from Figs. 12 to 20.

The Receiver Operating Characteristic curve along
with the area under the Curve is basic measuring
performance when validating binary classification
models. A graphic that displays, at any fixed value of
decision threshold, which proportion of truly positive
classifications that are ranked “above” is a measure
by the false alarm rate at every such value. The AUC
measures the overall performance of the model by
quantifying the area under the ROC curve, ranging
from 0 to 1.

ROC AUC Curve of different models is presented
below in Fig. 21.

The AUC scores for Random Forest and CatBoost
stand at a perfect 1, signifying their status as perfect
classifiers. Similarly, Decision Tree, GBM, XGBoost
(XGB), and Light GBM exhibit AUC scores of 0.99,
indicating an almost impeccable classification per-
formance. In contrast, Logistic Regression, SVM, and
KNN display scores indicating better-than-random
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Table 8. Comparative analysis of previous study models-our models and description.

Authors Logistic Regression SVM Decision Tree Random Forest KNN GBM XGBM Light GBM Cat Boost

Mathur et al.22 – – – – 91.2% – – – –
Aich et al.27 – 97.5% – 95% – – – – –
Govindu et al.28 83.6% 91.7% – 83.6% 83.7% – – – –
Raya et al.29 – 83% 85% 88% 88% – – – –
Patra et al.30 – – – 82% – 81% – – –
Sandhiya et al.31 – – – – – – 95% – –
Celic. et al.32 76% 75.5% – 72.7% – 72.3% – – –
Jain et al.33 – – – 91.5% – 90% – – –
Proposed 87% 92.2% 95.4% 98.4% 84.9% 97.8% 97.8% 96.8% 98%

performance in their classification capabilities. Ac-
curacy of different Machine Learning Models is
presented in Table 7. The bar chart representation of
different model’s accuracy is presented in Fig. 22.

It can be observed that following the feature se-
lection process, there is a noticeable improvement
in accuracies. Subsequently, after fine-tuning hy-
per parameters, further enhancements in accuracies
are observed. Notably, all reported accuracies rep-
resent averages. Among the models, Random Forest
stands out with the highest accuracy, reaching 98%.
Additionally, the tree-based models, including De-
cision Tree, Random Forest, GBM, XGBoost, Light
GBM, and CatBoost, consistently outperform Logistic
Regression, SVM, and KNN in terms of predictive
accuracy.

Results and discussion

Among all the classifiers used in the task of classi-
fication of Parkinson disease using vowel phonation
data, Random Forest stands out with a high accuracy
of 98.4%. The reason behind such excellent perfor-
mance is that the model fairly considers all attributes
within the MDVP dataset. Both Logistic Regres-
sion and SVM also report commendable accuracies,
whereas KNN shows a less satisfactory accuracy of
84.5% for the prediction of the disease, which is
critical to be higher in the said task. The models,
ranging from Decision Tree and Random Forest up
to GBM, XGBoost, Light GBM, CatBoost, had consis-
tently high precision over 95%. Such models shine
when the relationship becomes intricate and non-
linear; they would successfully identify meaningful
features, could manage complex interaction effects,
and could be very beneficial for feature importances.
Indeed, ensemble technique application, mostly with
Random Forest and Gradient Boosting, tends to per-
form better in a prediction model if combined with
the results of numerous weak learners. Their immu-
nity to irrelevant features, anti-overfitting capacity,
and ability to handle imbalanced datasets make it a

good choice for the task of forecasting the outcome
of Parkinson disease, which is really challenging.
Proper feature selection through wrapper-based and
tree-based techniques, indeed, is a critical optimiza-
tion task in model performance, which usually gets
neglected by earlier studies only concentrating on
the accuracy aspect. These apart, the incorporation
of strategic tuning of hyperparameter not covered in
past studies enhances model efficacy. This selection
of model or selecting features together along with op-
timal tuning of a hyperparameter combines to build
strong approach ensuring peak accuracy to Parkinson
disease.

The comparative analysis reveals that our mod-
els is presented in Table 8 and it outperform those
utilized in a prior study, primarily owing to our pro-
posed technique. Notably, even in the case of SVM,
where Aich et al. achieved a commendable accuracy
of 97.5%, our hyper-tuned Random Forest model sur-
passes this result. It is worth noting that the authors of
the previous study employed only a limited number
of models for Parkinson disease prediction, whereas
our approach explores a more comprehensive range
of machine learning algorithms. This broader explo-
ration enables us to identify and leverage the best
classification model, contributing to superior predic-
tive performance in the context of Parkinson disease
classification.

The limitation of this work is that it only depends
on vowel phonation data for the prediction of
Parkinson disease, and it may not capture the entire
spectrum of symptoms and biomarkers associated
with the disease. In fact, though vowel phonation
data may give valuable insights, it may fail to account
for other clinical features and imaging modalities
that would further enhance prediction accuracy.
Another limitation of this study is the main focus
on optimization of model performance with feature
selection and hyperparameter fine-tuning, which
pays no regard to generalizability of the models
across different patients or environments. Some of
these gaps will be filled up in future works through
the incorporation of a wider array of data sources
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and validation strategies to optimize robustness and
applicability across different contexts.

Conclusion

This study emphasizes the theoretical and practical
implications of our research findings. This research
indicates the need to integrate wrapper-based and
tree-based feature selection with smart hyperparam-
eter adjustment for optimization of performance of
the Parkinson disease prediction model. These effec-
tive methods, usually neglected in previous research,
give the highest accuracy in illness prediction. Our
results are of value to healthcare providers and re-
searchers. Our research improves identification and
risk assessment of Parkinson disease by improving the
prediction models, improving patient outcomes and
treatment methods.

However, it is worth noting that some limitations
are intrinsic to our proposal. The sole use of vowel
phonation data for disease prediction may not totally
capture Parkinson symptoms and biomarkers. Opti-
mizing model performance is important, but it may
overlook model generalizability across patient groups
or clinical situations. Future research efforts would
then be possible in addressing some of these issues
through the introduction of a broader scope of sources
of data as well as diverse validation methods to prove
the robustness and applicability of predictive models
in different environments.

Several intriguing research directions, in addition
to the presented work, open up from this study.
Indeed, the application of multimodal sources of clin-
ical, imaging, and genetic data might further raise
the precision and accuracy of predictive models for
Parkinson disease. The development of interpretable
machine learning models could perhaps shed light
into the underlying biology and disease progression
pathways, which are crucial to advancing the under-
standing of Parkinson disease. Longitudinal analyses
of predictive model utility in predicting disease pro-
gression or treatment response at different points
of time can add valuable clinical perspectives and
help make personalized therapeutic intervention de-
cisions. Such pathways can lead to further research
investments that push our knowledge of Parkinson
disease forward and support the best care for patients.
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 دراسة حول التنبؤ بمرض باركنسون القائم على التعلم الآلي

 

 1، سودارشان ناث2، شيلارشانا مايتي1، بروناي بال1، سوميابراتا ساها1سوبارنا داسغوبتا

 

  .ولاية البنغال الغربية، الهند،  JISقسم تكنولوجيا المعلومات، كلية الهندسة1 
 .، ولاية البنغال الغربية، الهند JISقسم تطبيقات الحاسوب، كلية الهندسة 2

 

 الخوارزمية، المرض، التعلم الآلي، باركنسون، التنبؤ. :المفتاحية الكلمات

 ةالخلاص

يعتبر تطور مرض باركنسون مزمناً، ويتميز بتفاقم الأعراض بمرور الوقت، بما في ذلك الرعشات وضعف الحركة والتدهور المعرفي 

التشخيص التقليدية عرضة للذاتية، مما يؤدي إلى التشخيص الخاطئ بسبب الطبيعة الخفية لتقييم الأعراض. والتغيرات السلوكية. طرق 

تهدف هذه الدراسة إلى تقييم مدى فعالية خوارزميات التعلم الآلي المختلفة في التنبؤ بمرض باركنسون باستخدام بيانات نطق حروف 

تقييم قابلية المرضى للإصابة بالمرض. العديد من خوارزميات التعلم الآلي، بما في ذلك العلة، بهدف الكشف المبكر وتحسين الدقة في 

 (XGBوتعزيز التدرج الفائق ) (GBMوآلة تعزيز التدرج ) (SVMالغابة العشوائية والانحدار اللوجستي وشجرة القرار وآلة ناقل الدعم )

، يتم تقييمها لقدراتها التنبؤية. من بين المصنفات التي تم  ( Cat Boostوالتعزيز الفئوي ) (Light GBMوتعزيز التدرج الخفيف )

% في تصنيف مرض باركنسون باستخدام بيانات نطق الحروف المتحركة. 98.4أعلى دقة تبلغ  Random Forestتقييمها، أظهرت 

ن. تؤكد النتائج على أهمية الاستفادة من تستكشف هذه الدراسة طرقاً مختلفة لتعزيز الكشف المبكر وتقييم المخاطر لمرض باركنسو

خوارزميات التعلم الآلي للكشف المبكر والتنبؤ الدقيق لمرض باركنسون. يساهم هذا البحث في وضع استراتيجية لتقييم أكثر دقة لمدى 

 تعرض المرضى للإصابة بمرض باركنسون، مما يسهل تحسين الفهم والبحث المستقبلي في هذا المجال.
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