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Psilostachyin B as Potential Immune Checkpoint Inhibitor Targeting CTLA-4 and
PD-L1 in the Development of Cancer Immunotherapy: A Computational
Investigation

Abstract

Immunotherapy is a promising treatment approach by targeting immune checkpoints such as CTLA-4 and
PD-L1 to overcome cancer progression. The utilization of Curcuma longa and Phyllanthus niruri as
potential immune checkpoint inhibitors offers an alternative cancer therapy. Computational analyses
including molecular docking and molecular dynamics with validation using Molecular Mechanics/
Poisson-Boltzmann Surface Area (MM-PBSA), Dynamic Cross-Correlation Matrix (DCCM), and Principal
Component Analysis (PCA), were performed in this study. Results show that Psilostachyin B is the most
promising inhibitor candidate against CTLA-4 and PD-L1, with binding affinity values of -6.9 and -6.8 kcal/
mol, respectively. Molecular dynamics simulation results indicated that Psilostachyin B exhibited greater
stability than the native ligand, with RMSD values remaining below 3 A for the ligand—complex on CTLA-4
and PD-L1 over 40 ns and 20 ns, respectively. These findings were further supported by favorable binding
free energy values from MM-PBSA calculations, as well as positive correlations observed in DCCM and
stable conformational profiles revealed by PCA. Moreover, PPl analysis showed that Psilostachyin B
interacts with various key cancer-related proteins based on Gene Ontology annotations and KEGG
pathway analysis. Psilostachyin B is a promising drug candidate with favorable drug-likeness, high
predicted antineoplastic activity (Pa 95%), and efficient membrane permeability. This computational
investigation highlights the potential of Psilostachyin B as a novel immune checkpoint inhibitor targeting
CTLA-4 and PD-L1, two key regulators involved in modulating the tumor microenvironment and enhancing
immune responses. Future studies through in vitro and in vivo studies are necessary to evaluate its
efficacy before clinical application.
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Abstract

Immunotherapy is a promising treatment approach by targeting immune checkpoints such as CTLA-4 and PD-L1 to
overcome cancer progression. The utilization of Curcuma longa and Phyllanthus niruri as potential immune checkpoint
inhibitors offers an alternative cancer therapy. Computational analyses including molecular docking and molecular
dynamics with validation using Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA), Dynamic Cross-
Correlation Matrix (DCCM), and Principal Component Analysis (PCA), were performed in this study. Results show that
Psilostachyin B is the most promising inhibitor candidate against CTLA-4 and PD-L1, with binding affinity values of
—6.9 and —6.8 kcal/mol, respectively. Molecular dynamics simulation results indicated that Psilostachyin B exhibited
greater stability than the native ligand, with RMSD values remaining below 3 A for the ligand—complex on CTLA-4 and
PD-L1 over 40 ns and 20 ns, respectively. These findings were further supported by favorable binding free energy values
from MM-PBSA calculations, as well as positive correlations observed in DCCM and stable conformational profiles
revealed by PCA. Moreover, PPI analysis showed that Psilostachyin B interacts with various key cancer-related proteins
based on Gene Ontology annotations and KEGG pathway analysis. Psilostachyin B is a promising drug candidate with
favorable drug-likeness, high predicted antineoplastic activity (Pa 95 %), and efficient membrane permeability. This
computational investigation highlights the potential of Psilostachyin B as a novel immune checkpoint inhibitor targeting
CTLA-4 and PD-L1, two key regulators involved in modulating the tumor microenvironment and enhancing immune
responses. Future studies through in vitro and in vivo studies are necessary to evaluate its efficacy before clinical
application.

Keywords: C. longa, P. niruri, Psilostachyin B, CTLA-4, PD-L1, Immune checkpoint inhibitor

1. Introduction which is a key factor in evading the body's defense
mechanism [1]. One of the strategies cancer cells

C ancer is a leading cause of death worldwide,  used to modify the TME is by creating an immu-
with rising incidence and treatment resistance. = nosuppressive environment, suppressing the im-
Despite advances in surgery, chemotherapy, and mune system's ability to fight cancer cells and
radiation, many cancers evade immune detection,  promoting a pro-tumor environment [2]. Therefore,
leading to recurrence. Cancer cells have the ability = understanding how cancer interacts with the im-
to influence the tumor microenvironment (TME), mune system has become a critical focus in modern
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oncology. One of the main mechanisms involved is
the upregulation of immune checkpoint molecules
such as Programmed Death-Ligand 1 (PD-L1) on the
surface of cancer cells, which is effectively pre-
venting T cell attacks [3]. In addition, the immuno-
suppressive mechanism is further reinforced
through the influence of other checkpoint proteins,
such as Cytotoxic T-lymphocyte-associated protein
4 (CTLA-4), which plays a role in inhibiting the
initial activation of T cells [4]. Within the TME, the
immune response to cancer cells triggers the
recruitment and activation of immune cells that
support tumor growth, such as Regulatory T cells
(Tregs), which suppress the antitumor immune
response [5]. This allows cancer cells to continue
growing and developing without being detected or
destroyed by the immune system.

Immunotherapy is a widely used treatment me-
thod for combating various types of cancer. One of
the immunotherapy approaches involves regulating
the immune system's mechanism in combating
tumor cells through immune checkpoint inhibitors
[6]. PD-L1 is a ligand that interacts with Pro-
grammed Death-1 (PD-1) receptors found on T cells.
When PD-L1 is expressed by cancer cells, it binds to
PD-1 on T cells then a negative signal is transmitted,
leading to a reduction in effector activity and T cell
proliferation [7]. This mechanism inhibits the im-
mune system's ability to recognize and destroy
cancer cells. In the tumor microenvironment (TME),
cancer cells and surrounding components often
exploit CTLA-4 expression on regulatory T cells
(Tregs) to further suppress immune activity [8]. The
activation of Tregs in the TME can inhibit effector T
cell activation through various biological mecha-
nisms, such as the secretion of immunosuppressive
cytokines like IL-10 and TGF-B [9]. The activation of
PD-L1 and CTLA-4 has a synergistic effect in helping
cancer cells evade immune attack. CTLA-4 primarily
functions during the early stages of T cell activation
in lymphoid organs, whereas PD-L1 operates at the
effector stage within the tumor microenvironment.
The combination of these two mechanisms signifi-
cantly weakens the immune response, allowing
more aggressive tumors to grow [10].

In several clinical studies, the combination of PD-
1/PD-L1 and CTLA-4 therapies has demonstrated
greater efficacy than monotherapy. One example is
the combination of nivolumab (anti-PD-1) and ipili-
mumab (anti-CTLA-4), which has been shown to
enhance immune responses against various types of
cancer [11]. Immune checkpoint inhibitors work by
removing barriers to T cell activation and effector
function, allowing the immune system to recognize
and eliminate cancer cells more effectively [12].

Anti-PD-L1 and anti-CTLA-4 are key targets in
cancer immunotherapy due to their ability to
amplify the immune response against cancer cells.
The mechanism of action of the anti-PD-L1 and
anti-CTLA-4 combination lies in its ability to elim-
inate obstacles to T cell activation and effector
function, thereby enhancing immune recognition
and destruction of cancer cells [13]. Moreover, the
inhibition of PD-1/PD-L1 and CTLA-4 not only
counteracts the immune escape mechanisms
employed by cancer cells but also strengthens the
adaptive immune response. Therefore, these two
targets are considered crucial therapeutic ap-
proaches in cancer immunotherapy development,
offering new hope for improving treatment out-
comes in cancer patients [14].

In the development of targeted immunother-
apies, herbal medicine has gained attention due to
its multifaceted pharmacological properties and
potential to produce superior therapeutic outcomes
compared to synthetic drugs. Curcuma longa (tur-
meric) and Phyllanthus niruri (meniran) are two
herbs known for their various health benefits,
including anti-cancer and anti-diabetic properties
[15,16]. Additionally, C. longa is well recognized for
its strong antioxidant properties [17], while P. niruri
functions as an immunostimulant that enhances
the activity of cytotoxic T cells, which play a crucial
role in destroying cancer cells [18]. The potential
role of these herbs compounds in modulating the
immune system and exhibiting anticancer activity
through the regulation of immune checkpoints
such as PD-L1 and CTLA-4 using in silico ap-
proaches remains limited.

In this study, an in silico approach combining
molecular docking and molecular dynamics simu-
lations was employed to investigate the interaction
profiles of selected phytochemicals with the im-
mune checkpoint proteins PD-L1 and CTLA-4,
which are critical regulators of tumor-induced im-
mune suppression. This computational strategy
enabled the prediction of binding affinities and
conformational stability, providing mechanistic in-
sights into the inhibitory potential of these com-
pounds on immune checkpoint signaling pathways
[19]. The integrated modeling framework facilitated
the efficient screening and prioritization of bioactive
candidates with favorable interaction profiles,
establishing a strong rationale for downstream ex-
perimental validation. By targeting molecular path-
ways associated with immune evasion, this study
supports the development of novel candidate
immunotherapeutic agents derived from medicinal
plants, potentially associated with limited side ef-
fects. This study aims to contribute to ongoing
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efforts to expand immunomodulatory strategies
against cancer through nature-inspired drug
discovery.

2. Methods

2.1. Identification of bioactive compound using LCHRMS
analysis

The formulation of C. longa and P. niruri (1:1 ratio)
was obtained from Ismut Fitomedika Indonesia
(IFI). The bioactive compounds of C. longa and P.
niruri were analyzed using the Thermo Scientific
Ultimate 3000 RSLCnano-Q Exactive™ Plus Hybrid
Quadrupole-Orbitrap™ Mass Spectrometer at the
Laboratorium Riset Terpadu (LRT), Brawijaya Uni-
versity, Indonesia. The prepared samples were
placed in an autosampler and injected into an LC-
HRMS system. Data processing was conducted
using Compound Discoverer version 3.2 (Thermo
Scientific) with the mzCloud MS/MS Library for
analysis [20]. Compounds with a BestMatch value
exceeding 85 % similarity were selected for further
analysis. The selected compounds were compiled
into 3D structures and its 3D-SDF file format and
canonical SMILES were retrieved from the Pub-
Chem database for further study [21].

2.2. Molecular docking screening

Molecular docking in this study was used as a
screening method to identify potential compounds
that can interact with CTLA-4 and PD-L1 target
proteins (Table 1). The target proteins used were
PD-L1 (PDB ID: 5]J89) and CTLA-4 (PDB ID: 1I8L)
[22,23]. The native ligands used were the PD-L1
inhibitor BMS-202 (PubChem ID: 117951478) and
the CTLA-4 inhibitor 2-acetamido-2-deoxy-beta-D-
glucopyranose (PubChem ID: 24139). Simulations
were performed using AutoDock Vina in PyRx. Two
controls including a drug control (Doxorubicin) and
a native ligand were used in this study to compare
the effectiveness and validity of the test compound's
interaction with the target protein.

Table 1. Protein preparation in molecular docking.

Active site predictions for the target proteins were
obtained from binding sites identified through blind
docking with the native ligands using AutoDock
Vina [24]. Molecular docking results were visualized
using Discovery Studio 2019 software. Molecular
tethering simulations were performed by energeti-
cally binding the bioactive compound to the target
protein.

Potential compounds with the best binding en-
ergy values were selected for molecular dynamics
analysis. Molecular dynamics simulations were
performed using Yet Another Scientific Artificial
Reality Application (YASARA) software with the
AMBER14 force field [25]. System parameters were
set to mimic the physiological environment of cells,
including a temperature of 37 °C, pH of 7.4, pressure
of 1 atm, and a salt concentration of 0.9 %, with a
simulation duration of 100 ns. The temperature of
310 K closely reflects human physiological condi-
tions, and it's commonly used in molecular dy-
namics (MD) simulations to mimic the human body
environment. The main programs used included
md_run to execute the simulation, md_analyze to
evaluate the Root Mean Square Deviation (RMSD),
and md_bindingenergy to analyze the binding en-
ergy of protein-ligand complexes. The binding en-
ergy in this context is calculated using the Molecular
Mechanics/Poisson-Boltzmann Surface Area (MM-
PBSA) method. By integrating the analysis of
various parameters derived from molecular dy-
namics (MD) simulations, the prediction of a com-
pound as a potential drug candidate can be
performed with greater accuracy [26]. The molecular
mechanics Poisson-Boltzmann surface area (MM/
PBSA) method was applied using the YASARA
macro, specifically md_analyzebindenergy.mcr, to
conduct binding free energy calculations consid-
ering the solvation of the ligand, complex, and free
protein, among others [27].

To analyze the dynamical behavior in the
conformational space, RStudio was used to perform
Dynamic Cross-Correlation Matrix (DCCM) and
Principal Component Analysis (PCA). During a 100
ns MD simulation, a DCCM was constructed based

No Protein PDB ID Active Site Prediction Inhibitor Grid Center
1 PD-L1 5j89 TYR 32, SER80, ARG84, ASP103, BMS-202 (PubChem ID: Center = X: 7.0223, Y: 1.7972, Z:
(Chain: B) GLN107, LEU106, LYS 105, HIS140, 117951478) 162.9474
GLU139 Dimensions (A) = X: 23.0904, Y:
27.4865, Z: 22.9468
2 CTLA-4 1I8L VAL104, GLU77, PRO74, PHE134, 2-acetamido-2-deoxy-beta- Center = X: 12.2041, Y: 87.5202, Z:
(Chain: A) PRO135, ASP107, LYS105, LEU189,  D-glucopyranose (PubChem  157.2734

ALA106

ID: 24139) Dimensions (A) = X: 25.0000, Y:

26.3347, Z: 27.5026
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on all Co atoms of the CTLA4 and PD-L1 complex to
examine domain correlations. PCA was applied to
the same 100 ns simulation to capture the global
motions of the trajectories. For the PCA, a covari-
ance matrix was generated as described. Data
analysis was performed using PAST4 and RStudio,
employing the “mktrj.pca” function from the Bio3D
package for MD trajectory analysis [28].

2.3. Protein—protein interaction (PPI) network and
functional annotation construction

The target proteins of Psilostachyin B compounds
were obtained from the SWISS Target Prediction
database (http://www.swisstargetprediction.ch/) or
STITCH (http://stitch.embl.de/). The most prom-
ising target proteins were selected based on the
results of potential compound screening. Indirect
targets of each active compound were retrieved
from the STRING web server (https://string-db.org/
) by inputting the identified target proteins. All ob-
tained results were then integrated and visualized
using Cytoscape 3.10.3 software [29].

All proteins obtained from the PPI network con-
struction were input into the DAVID web server
(https://davidbioinformatics.nih.gov/). ~ Functional
annotation was performed using the Gene Ontology
(GO) and KEGG pathway databases, with a focus on
biological mechanisms related to immune response
and cancer apoptosis [30].

2.4. Drug-likeness, bioactivity, and membrane
permeability of potential compound

Potential compounds found in the C. longa and P.
niruri herbs were subjected to drug similarity

screening using the SWISS ADME web server
(https://www.swissadme.ch/) [31]. The bioavail-
ability of each compound was predicted using the
PASS Online web server (http://www.way2drug.
com/passonline), in which the probable activity
(Pa) value was assessed based on various biological
activities [32]. Furthermore, the ability of each
compound to penetrate the lipid bilayer of cell
membranes was analyzed using the PerMM server
(https://permm.phar.umich.edu). The PDB files of
the compounds were uploaded, and physiological
conditions were set at 310 K and pH 7.4. The energy
transfer values of each compound were then
compared and visualized in 3D using Discovery
Studio 2019 [25,33].

3. Results and discussion

3.1. Bioactive compound

Based on LC-HRMS analysis, at least 16 com-
pounds were found with 85 best matches as can be
seen in Table 2. The molecular weights of the com-
pounds contained in the combination of C. longa and
P. niruri were in the range of 71—368 g/mol, in which
choline had the lowest and curcumin had the highest
molecular weight. Molecular weight is a critical
parameter in medical biochemistry as it influences a
compound's ability to cross biological membranes,
interact with cellular receptors, and modulate
metabolic pathways [34]. In this context, low mo-
lecular weight compounds, such as choline (71 g/
mol), potentially have better penetration ability into
tissues, including the central nervous system. In
contrast, higher molecular weight compounds, such
as curcumin (368 g/mol), may require structural

Table 2. Bioactive compounds in C. longa and P. niruri from library LC-HRMS analysis.

No Name Formula Molecular Weight Retention Time Area (Max.) mzCloud
(MW) (g/mol) (RT) [min] Best Match
1 Trigonelline C; H; N O, 137.04 0.883 28126358.41 93.1
2 Erucamide C,, Hy N O 337.33 66.39 205633.5199 92.7
3 DL-Carnitine C; His N O3 161.10 0.891 11232384.9 91.2
4 Betaine Cs Hi1 N O, 117.07 0.878 103358308.2 91.1
5 Choline CsHizs N O 71.07 0.822 27689546.01 90.8
6 L-Norleucine C¢ Hi3 N O, 131.09 1.271 25798884.92 89.8
7 Curcumin Cy1 Hyg Og 368.12 62.336 2506381.809 88.4
8 Psilostachyin B Ci5 Hig Oy 230.1 1.439 8288454.35513165 87.5
9 Peruvinine Cy5 Hyg Oy 264.13 1.455 16685461.67 87.4
10 DL-Stachydrine C; Hi3 N O, 143.09 0.867 4057596.442 87.4
11 L-Aspartic acid CsH;, N Oy 133.03 0.759 1652585.893 86.8
12 2-Hydroxyphenylalanine Cy Hi1 N O3 181.07 1.264 4438698.375 86.7
13 Pipecolic acid Cs Hi1 N O, 129.07 1.252 8121221.514 86.4
14 Indole-3-acrylic acid Ci1 Ho N O, 187.06 1.289 2735172.522 85.5
15 (-)-Caryophyllene oxide Ci5 Hyy O 220.18 62.066 1462034.826 85.2
16 Antheindurolide A Ci5 Hy Oy 264.13 37.085 425711.3299 85.1
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modifications or specialized delivery systems to
enhance their bioavailability.

3.2. Molecular docking analysis

Molecular docking results against PD-L1 and
CTLA-4 showed varied binding potentials among
the analyzed compounds based on their binding
energy values (Table 3). These results can serve as a
basis for understanding the potential activity of
bioactive compounds in inhibiting both key targets
in immunology-based cancer therapy. Based on
binding energy values, Psilostachyin B exhibited the
highest affinity for PD-L1 and CTLA-4, with binding
energy values of —6.9 and —6.8 kcal/mol, respec-
tively. These values indicate stronger binding
compared to the native ligand and the drug control
(Doxorubicin). Additionally, doxorubicin also
demonstrated strong binding affinity, with binding
energy values of —6.1 kcal/mol and —6.7 kcal/mol
for PD-L1 and CTLA-4, respectively. In contrast,
choline-like compounds exhibited the weakest
binding affinity, with binding energy values of
—2.9 kcal/mol for PD-L1 and -3.2 kcal/mol for
CTLA-4. Overall, compounds from the combination
of C. longa and P. niruri demonstrate potential as
inhibitors of PD-L1 and CTLA-4, making them
promising candidates for cancer treatment. Molec-
ular docking is a computational approach used to
predict interactions between small molecules (li-
gands) and protein targets, especially in the devel-
opment of immune checkpoint inhibitors for cancer
therapy [35]. Immune checkpoints, such as PD-1,
PD-L1, and CTLA-4, play a crucial role in regulating

the immune system and are often exploited by
cancer cells to evade immune responses. Molecular
docking studies of immune checkpoint inhibitors
aim to assess the potential binding affinity of a
compound to a target protein, thereby assisting in
the design and development of more effective drugs
[36]. Based on the molecular docking results, Psi-
lostachyin B was identified as the most promising
compound among the tested ligands. Subsequently,
its interactions with key residues of CTLA-4 and
PD-L1 were further analyzed.

Molecular docking analysis showed that the in-
hibitor and Doxorubicin exhibit significant similar-
ities in interacting with key PD-L1 residues, namely
TYR32, SER80, ARG84, ASP103, GLN107, LEU106,
LYS105, HIS140, and GLU139. The inhibitor formed
hydrophobic, hydrogen bonding, and van der Waals
interactions with almost all of these key residues,
indicating high affinity and specificity toward the
PD-L1 active site. Doxorubicin exhibited hydro-
phobic interactions with ARG84 and hydrogen
bonds with SER79 and SER80, while its van der
Waals interactions involved TYR32, ASP103,
LYS105, GLN107, GLU139, and HIS140. Meanwhile,
Psilostachyin B exhibited hydrophobic interactions
with ILE65, LEU74, ARG86, and LEUS89. It also
formed a hydrogen bond with GLN77. In addition,
its van der Waals interactions involved several res-
idues, including ILE64, GLN66, PHE67, GLU72,
ASP73, GLN83, ALAS85, and LYS89 (Fig. 2b). The
interactions between a ligand and a protein—such
as hydrogen bonds, hydrophobic interactions, and
van der Waals forces—are essential for determining
binding affinity and complex stability. Hydrogen

Table 3. Molecular docking results of C. longa and P. niruri bioactive compounds.

No Name Pubchem ID Binding Energy (kcal/mol)
PD-L1 CTLA-4

1 Trigonelline 5570 —4.1 —4.3
2 Erucamide 5365371 —4 —4.2
3 DL-Carnitine 288 -3.7 -3.9
4 Betaine 247 -3.2 -3.2
5 Choline 305 -2.9 -32
6 L-Norleucine 21236 -3.8 —4
7 Curcumin 969516 —6 —6.6
8 Psilostachyin B 5320768 —6.9 —6.8
9 Peruvinine 75368817 -5.9 —6.7
10 DL-Stachydrine 555 —4 —4.3
11 L-Aspartic acid 5960 —4.2 —4.1
12 2-Hydroxyphenylalanine 91482 —4.5 -5.2
13 Pipecolic acid 849 -39 —4.5
14 Indole-3-acrylic acid 5375048 -5.2 —5.8
15 (-)-Caryophyllene oxide 1742210 -53 -5.7
16 Antheindurolide A 14733728 —5.8 —6.1
17 Inhibitor 117951478/24139 -5.7 —5.6
18 Doxorubicin 31703 —6.1 —6.7
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bonds are among the most common and significant
motifs in biological systems, contributing to both
binding affinity and selectivity [37].

The results of molecular docking against CTLA-4
protein showed that the three ligands, namely
native ligand, doxorubicin, and Psilostachyin B
interacted with a number of residues previously
predicted as part of the active site, namely VAL104,
GLU77, PRO74, PHE134, PRO135, ASP107, LYS105,
LEU189, and ALA106. The native ligand showed van
der Waals interactions with almost all key residues
and formed two hydrogen bonds with residues
VAL104 and ALA106. Doxorubicin interacted with
most of the key residues by forming three hydrogen
bonds, at residues GLU77 and ALA106, and a hy-
drophobic interaction at LEU189. Psilostachyin B
did not show hydrogen bond formation but showed
a predominance of strong hydrophobic interactions
with key residues such as PRO74, VAL104, ALA106,
and PHE134. These interactions show good binding
potential although through different mechanisms.
The interaction of Psilostachyin B with some of the

" CTLA4 - Inhibitor

A

) CTLA4- Doxorubicin

461

same key residues as the inhibitor and Doxorubicin
suggests that Psilostachyin B has potential as a
CTLA-4 ligand candidate (Fig. 1b). In this case,
Psilostachyin B did not exhibit direct interactions
with the predicted active site residues. Nevertheless,
it formed a greater number of hydrophobic and van
der Waals interactions, which can contribute to the
overall stability of the complex. Hydrophobic in-
teractions play a crucial role in maintaining long-
term stability, especially within non-polar environ-
ments, while van der Waals forces, although weaker
and less specific, help sustain surface contact be-
tween the ligand and the protein [38].

3.3. Molecular dynamics simulation

Molecular dynamics (MD) simulations have be-
come a crucial tool in understanding the behavior
and stability of molecular systems, especially in the
context of drug design and protein-ligand in-
teractions [39]. In immunotherapy development,
MD simulation plays a crucial role in evaluating the
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stability of the interaction between a ligand and its
target protein in a physiological environment. By
simulating changes in molecular structure on a unit
time scale, this method provides valuable insights
into the binding mechanism, conformational dy-
namics, and stability of protein-ligand complexes,
thus laying the foundation for the development of
more effective immune therapies [40]. In this study,
MD simulations were employed to evaluate the
stability, binding affinity, and conformational
behavior of Psilostachyin B in its interactions with
CTLA-4 and PD-L1 proteins. The results from MD
simulations provide valuable insights into the dy-
namic properties of Psilostachyin B-protein com-
plexes, which cannot be fully elucidated through
static docking studies alone. Notably, MD simula-
tions revealed that Psilostachyin B exhibited a more
stable binding interaction compared to the native
ligand. These findings suggest that Psilostachyin B
maintains a more stable conformation throughout
the simulations, highlighting its potential as a
promising immune checkpoint inhibitor candidate
for cancer therapy.

Binding site molecular docking and molecular
dynamics simulation showed that different residues
exhibited distinct flexibility and interaction profiles,
influencing the overall ligand binding conformation.
The results of molecular docking and molecular
dynamics (MD) simulations demonstrated that the
Psilostachyin B has potential to be used as an agent
that interacts with CTLA-4. In Fig. 1a, visualization
of the molecular docking and MD simulation results
revealed that the native ligand detached from the
active site and lost its interaction with the CTLA-4
protein, indicating instability in binding to the
target. In contrast, both Doxorubicin and Psilos-
tachyin B exhibited changes in ligand interaction
throughout the 100 ns MD simulation, suggesting
dynamic binding to the CTLA-4 protein. Fig. 1b il-
lustrates the changes in residue interactions be-
tween molecular docking and MD simulation
results. In the docking analysis, residues Glu77,
Vall04, Lys105, Alal06, and Phel34 acted as the
primary interaction sites. On the other hand, the
interaction of the inhibitor with CTLA-4 shows an
unstable interaction as shown by the final results of
the simulation, that the inhibitor ligand is separated
from the protein complex. This result is supported
by the results of the Ligand Movement inhibitor
analysis which shows fluctuations after 10 ns. This
could be due to the influence of temperature and
water content during the simulation. Meanwhile,
Psilostachyin B and doxorubicin showed interaction
during the 100 ns simulation with differences in the
interaction results with the docking results (Fig. 1b).

However, during the MD simulation, the ligand
interaction pattern changed, suggesting that the
ligand-protein complex undergoes structural adap-
tation, which may influence the stability and effec-
tiveness of the binding. The CTLA-4—Psilostachyin
B complex exhibited a stable RMSD value during
the initial 40 ns of the simulation and regained sta-
bility after 80 ns, with an RMSD value below 3 A
(Fig. 1c). In comparison, the CTLA-4-inhibitor
complex initially maintained a stable bond during
the first 10 ns but exhibited fluctuating ligand-pro-
tein interactions throughout the remainder of the
simulation, with RMSD values reaching 6—9 A.
Meanwhile, the drug control Doxorubicin demon-
strated a more stable complex at 50 ns, with an
RMSD value below 3 A. Interestingly, Psilostachyin
B followed a similar trend of Doxorubicin after 70
ns, indicating its potential to maintain a stable
interaction with CTLA-4.

The backbone RMSD values of the three com-
plexes remained within the range of 1-3.5 A, indi-
cating that the backbone structure remained
relatively stable throughout the simulation (Fig. 1d).
Among the three, the CTLA-4—Doxorubicin com-
plex exhibited the least fluctuation, suggesting that
its interaction with Doxorubicin helped maintain
the backbone structure more effectively. RMSD
(Root Mean Square Deviation) Backbone (Bb) is a
specific metric used to evaluate the stability of the
main skeleton or compact structure of proteins. It is
particularly useful in assessing the structural sta-
bility and conformational changes of proteins dur-
ing simulations or experimental studies [41].
Meanwhile, the CTLA-4—Inhibitor complex showed
higher fluctuations but remained within an accept-
able range. Furthermore, the Radius of Gyration
(Rg) measures the degree of density or compactness
of the protein structure during the simulation. A
lower Rg value indicates a more compact structure.
The CTLA-4—Inhibitor complex exhibited signifi-
cant fluctuations between 25 and 27.5 A, suggesting
a more extended protein structure. Similarly, the
CTLA-4—Psilostachyin B complex followed a com-
parable trend but displayed slightly greater stability.
In contrast, the CTLA-4—Doxorubicin complex had
the lowest Rg value, stabilizing around 25-26 A,
indicating that its interaction with Doxorubicin
maintained a more compact protein structure
(Fig. 1e). Root Mean Square Fluctuation (RMSF)
analysis, as shown in Fig. 2f revealed that the
CTLA-4—Inhibitor complex experienced instability
at Lys9, Lys36, and Lys89. Meanwhile, Doxorubicin
exhibited fluctuations at Ser121, and Psilostachyin B
showed instability at Lys36, Lys89, Asn144, Glul46,
and Ile151.
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The RMSD Ligand Conformation analysis shows
that the CTLA-4—Inhibitor complex exhibited the
most stable RMSD throughout the 100 ns simula-
tion, with an RMSD value of approximately 1-3 A,
indicating that the ligand remained stable (Fig. 1g).
RMSD Ligand Conformation is used to assess the
conformational changes of the ligand during simu-
lation, reflecting its structural flexibility [42]. In
contrast, the RMSD Ligand Movement analysis re-
veals that the CTLA-4—Inhibitor complex fluctuated
after 10 ns, while the CTLA-4—Psilostachyin B
complex began fluctuating after 40 ns. Meanwhile,
the CTLA-4—Doxorubicin complex demonstrated
better ligand stability over the entire 100 ns simu-
lation (Fig. 1h). As an immune checkpoint inhibitor
drug candidate, maintaining protein-ligand in-
teractions for at least 10 ns is sufficient to exert a
CTLA-4 inhibitory effect, as observed with the
native ligand. On the other hand, CTLA-4-Doxoru-
bicin showed the best number of hydrogen bonds
from the beginning to the end of the simulation,
while CTLA-4- Psilostachyin B showed hydrogen

bonds from the beginning of the simulation up to 38
ns and again formed hydrogen bonds at 80 ns until
the end of the simulation, while CTLA-4-inhibitor
showed hydrogen bond loss after 10 ns (Fig. 1i).
Therefore, CTLA-4—Psilostachyin B has the poten-
tial to be an effective CTLA-4 inhibitor drug candi-
date, as it exhibits stronger protein-ligand
interaction potential compared to the native ligand
and performs similarly to the drug control. This
conclusion is further supported by the binding en-
ergy values based on MM/PBSA method, which
indicate the interaction energy between the protein
and ligand during the simulation. The CTLA-
4—Psilostachyin B complex showed a positive value
of 37.713 kJ/mol and exhibited more stable binding
energy values compared to both the inhibitor and
Doxorubicin, with average values of —6.951 kJ/mol
and —20.845 kJ/mol, respectively, reinforcing its
potential as a novel inhibitor targeting CTLA-4.
CTLA-4 as a negative immune checkpoint plays a
crucial role in regulating T cell activation and
maintaining immune system homeostasis [43]. In
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the context of cancer, high CTLA-4 expression
contributes to the suppression of effector T cell
(Teff) activation and proliferation, while increasing
the activity of immunosuppressive regulatory T cells
(Treg) [44]. Inhibition of CTLA-4 disrupts its inter-
action with CD80/CD86, which are found on anti-
gen-presenting cells (APCs). This mechanism
promotes enhanced activation of CD8+ T cells while
reducing Treg dominance in the TME, ultimately
strengthening the antitumor immune response [45].
Furthermore, by decreasing the Treg/Teff ratio
through CTLA-4 inhibitors in the tumor environ-
ment, this approach has the potential to increase
cytotoxicity against cancer cells and improve the
effectiveness of immune-based cancer therapies.
Therefore, CTLA-4 inhibition is one of the primary
strategies in cancer immunotherapy development to
enhance antitumor immune responses.

Interaction analysis of the PD-L1 protein with
various ligands was performed using molecular
docking and molecular dynamics (MD) simulations
over 100 ns. Binding site molecular dynamics (MD)
simulations revealed the involvement of different
residues compared to the molecular docking results,
potentially influencing the overall ligand binding
conformation. The simulation results revealed that
the native ligand experienced detachment from the
active site, indicating an unstable interaction with
PD-L1. In contrast, Doxorubicin and Psilostachyin B
exhibited sustained interactions throughout the
simulation, suggesting that these two compounds
have the potential to act as more effective PD-L1
inhibitors compared to the native ligand. However,
Psilostachyin B maintained interactions with several
residues—ALA137, HIS140, and HIS141—after 100
ns of simulation. The residual interaction analysis
(Fig. 2b) indicates that at the molecular docking
stage, the interaction profiles were diverse. How-
ever, during the 100 ns MD simulation, the inter-
action pattern shifted, demonstrating dynamic
adjustments in ligand binding with the PD-L1 pro-
tein, with His140 identified as a key residue. In
contrast, the inhibitor lost its interactions with PD-
L1 residues during the 100 ns simulation, indicating
instability in the ligand—protein interaction
(Fig. 2b). Furthermore, molecular dynamics simu-
lation results confirmed that Psilostachyin B and
Doxorubicin maintained crucial interactions with
PD-L1, whereas the native ligand/inhibitor exhibi-
ted loss of binding with the protein complex.

The stability of the ligand-protein complex was
analyzed through RMSD All, which showed that the
native ligand/inhibitor experienced high fluctuation
after 20 ns, indicating instability in its interaction
with PD-L1. In contrast, Doxorubicin exhibited

fluctuation after 10 ns. Psilostachyin B demonstrated
a more stable RMSD pattern compared to both the
inhibitor and the control drug (Fig. 2c). The back-
bone RMSD (RMSD Bb) values for the three com-
plexes showed distinct fluctuation patterns during
the simulation. The PD-Ll—inhibitor complex
maintained relatively stable RMSD values below
3 A, indicating stable binding conformation,
whereas the PD-L1-Doxorubicin and PD-L1-
Psilostachyin B complexes exhibited higher fluctu-
ations, with RMSD values approaching 6 A. These
results suggest that the inhibitor complex is more
structurally stable compared to the other two com-
plexes (Fig. 2d). However, the PD-L1-Doxorubicin
complex exhibited an RMSD Bb value exceeding 3 A
after 10 ns, which persisted until the end of the
simulation, indicating a conformational change in
the protein structure. This observation is further
supported by the Radius of Gyration (Rg) values,
where the PD-L1-Doxorubicin complex displayed
continuous fluctuations from the start of the simu-
lation. Radius of Gyration (Rg) is used to evaluate
the compactness of the protein structure during
simulation (Fig. 2e). A stable Rg value indicates that
the protein-ligand complex maintains its structural
shape well, which may indicate the stability of the
ligand interaction with the target protein [46]. In
contrast, the PD-L1-Psilostachyin B complex
exhibited Rg values similar to those of the native
ligand/inhibitor, suggesting that the PD-L1 complex
remained more compact, and its protein structure
was more stable compared to that of Doxorubicin.
Root Mean Square Fluctuation (RMSF) analysis
(Fig. 2f) indicates that certain residues, particularly
LYS 46, TYR 134, and HIS 142, exhibit high fluctu-
ations, which may affect the flexibility of the active
site and the effectiveness of ligand binding. The
RMSD of Ligand Conformation reveals that the PD-
L1-inhibitor complex maintained an RMSD above
3 A throughout the 100 ns simulation, suggesting
that the ligand conformation was unstable. It has
been reported that RMSF provides information
regarding the flexibility of protein residues, where
high RMSF values at certain residues may indicate
regions that are more flexible or more prone to
conformational changes [47]. In contrast, Doxoru-
bicin and Psilostachyin B in complexes with PD-L1
exhibited RMSD values below 3 A, indicating
greater structural stability (Fig. 2g). Meanwhile, the
RMSD of Ligand Movement analysis shows that the
PD-L1-inhibitor complex experienced fluctuations
after 20 ns. Compared to this finding, Psilostachyin
B maintained lower RMSD values up to 20 ns before
exhibiting greater fluctuations after 40 ns. The PD-
L1-Doxorubicin complex demonstrated Dbetter
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ligand stability over the 100 ns simulation period
(Fig. 3h). RMSD Ligand Movement shows the dy-
namics of ligand movement within the active site of
the protein. If the RMSD of the ligand remains
stable within the simulation time span, it indicates a
strong and specific interaction between the ligand
and the target protein [48,49]. The number of
hydrogen bonds formed between PD-L1 and Psi-
lostachyin B was higher than that of the inhibitor
during the first 40 ns of simulation and was rela-
tively similar to the number observed with both the
inhibitor and Doxorubicin after 40 ns. The presence
of hydrogen bonds throughout the simulation
potentially supports stable interactions between the
ligands and PD-L1 (Fig. 2i).

The binding energy analysis further supports
these findings, as the PD-L1—Psilostachyin B com-
plex exhibited relatively stable binding energy
values throughout the simulation. This suggests
strong interactions with PD-L1, as indicated by the
MM/PBSA method analysis (Fig. 2j). All average
binding energy values from the MM/PBSA analysis
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for Doxorubicin, Psilostachyin B, and the inhibitor
were positive binding, with values of 7.632 kJ/mol,
28.053 kJ/mol, and 29.683 k]/mol, respectively. These
results indicate that Psilostachyin B has the potential
to act as a novel PD-L1 inhibitor, as its binding en-
ergy closely approaches that of the native inhibitor.
This interaction may contribute to PD-L1 inhibition
within the TME, potentially enhancing the immune
response against cancer cells.

PD-L1 is a key protein at immune checkpoint sites
that enables cancer cells to evade immune surveil-
lance by binding to PD-1 on T cells, thereby sup-
pressing T cell activity and promoting cancer
progression [50]. PD-L1 is frequently upregulated in
various cancers, often in response to inflammatory
signals such as IFN-v, and its expression is associ-
ated with poor prognosis due to its role in immune
suppression [51]. In immunotherapy, PD-L1 is tar-
geted by immune checkpoint inhibitors (ICIs), such
as anti-PD-1/PD-L1 antibodies, which have shown
the potential to restore immune system function by
modulating T cell activity and have demonstrated
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Fig. 3. Dynamic Cross-Correlation Matrix (DCCM) and Principal Component Analysis (PCA) during 100 ns Molecular Dynamics Simulations. (a)
DCCM analysis illustrating the correlated motions of Ca atoms throughout the simulation. Red indicates a positive correlation (parallel motion), and
blue indicates a negative correlation (antiparallel motion). (b) PCA shows conformational changes over time, with a color gradient from blue (initial
frame) to red (final frame), representing the progression of structural dynamics.



466 M. Dliyauddin et al. / Karbala International Journal of Modern Science 11 (2025) 456—470

significant clinical efficacy. Moreover, PD-L1
expression serves as a predictive biomarker for
response to immunotherapy; however, resistance
mechanisms—such as the activation of alternative
immune checkpoints and impaired antigen pre-
sentation—pose significant challenges to treatment
efficacy [52]. Therefore, targeting PD-L1 in cancer
therapy offers a promising opportunity to restore
immune system function in patients.

Dynamic Cross-Correlation Matrix (DCCM) and
Principal Component Analysis (PCA) analyses were
employed to evaluate the dynamics and conforma-
tional stability of CTLA-4 and PD-L1 protein com-
plexes over 100 ns molecular dynamics simulations
at 310 K. The Dynamic Cross-Correlation Matrix
(DCCM) analysis of Ca atoms also revealed that the
CTLA-4 and PD-L1 complex favored parallel
conformational movements over antiparallel ones.
The molecular interaction of CTLA-4—Psilostachyn
B and PD-L1—Psilostachyn B tends to compact the
protein conformation, consistent with the observed
stability and interaction strength of the complex, as
indicated by red-colored regions with correlation
values close to +1. These patterns reflect synchro-
nized movement in the same direction, suggesting a
more coherent and stable dynamic behavior [53].
The broader presence of parallel correlations and
the reduction of antiparallel motions in the Psilos-
tachyn B complex further underscore its potential as
a ligand capable of enhancing the structural stability
of CTLA-4 and PD-L1 more effectively than the
controls (Fig. 3a). The interactions involving Glu77,
Val104, and Ala106 play a critical role in maintaining
the stability of the Psilostachyn B—CTLA-4 complex.
These residues exhibit prominent interactions with
Psilostachyn B, supported by increased non-bonded
contacts that further enhance the overall stability of
the complex. However, LYS46, TYR134, and HIS142
show non-stable interactions, while HIS140 plays a
critical role in maintaining the stability of the Psi-
lostachyn B—CTLA-4 complex. The involvement of
these key residues is likely crucial for preserving the
structural integrity and ligand recognition of CTLA-
4 and PD-L1, particularly in the context of its role in
immune modulation.

Principal Component Analysis (PCA) analyses
were employed to evaluate the dynamics and
conformational stability of CTLA-4 and PD-L1 pro-
tein complexes during 100 ns molecular dynamics
simulations at the physiological temperature of
310 K. PCA was used to reduce the complexity of the
trajectory data and to identify the dominant collec-
tive modes of motion within the system. The
resulting eigenvalues represent the amount of vari-
ance explained by each principal component. The

CTLA-4 complexes with the native inhibitor and
Doxorubicin exhibited cumulative PC1 and PC2
values of 55.9 % and 61.4 %, respectively, indicating
dominant conformational fluctuations and potential
instability under physiological conditions. In
contrast, the complex with Psilostachyn B demon-
strated a slightly lower cumulative variance of
55.2 %, suggesting a more evenly distributed and
stable conformational motion throughout the simu-
lation (Fig. 3b). These results were further supported
by Root Mean Square Deviation (RMSD) and Root
Mean Square Fluctuation (RMSF) analyses, in which
all complexes showed values below 3 A, indicating
minimal structural fluctuations and favorable
conformational stability. Furthermore, PCA revealed
that the cumulative PC1 and PC2 values for the PD-
L1 complexes with the reference inhibitor, Doxoru-
bicin, and Psilostachyn B were 36.6 %, 40.5 %, and
29.7 %, respectively (Fig. 3b). The lower cumulative
value observed in the PD-L1—Psilostachyn B com-
plex indicates reduced conformational motion and
suggests enhanced structural stability. This finding is
further corroborated by RMSD analysis, which
demonstrated that the PD-L1—Psilostachyn B com-
plex exhibited lower structural fluctuations
compared to the control. Collectively, these results
suggest that Psilostachyn B may effectively stabilize
PD-L1, highlighting its potential as a novel immune
checkpoint inhibitor candidate through modulation
of PD-L1 dynamics.

Psilostachyin B compounds exhibit potential as
therapeutic agents targeting key proteins involved
in immune response mechanisms and cancer pro-
gression. Mass spectrometry results showed the
analysis of Psilostachyin B compound with a RT
value of 1.439 min. The mass spectrum displays
several peaks with the main ion at m/z 231.10046
[M+H]+, which indicates the presence of the target
compound in protonated form. In addition, a
methanol adduct ion was observed at m/z 263.12643
M + H + MeOH]+ (Fig. 4a), and the 2D structure of
compound Psilostachyin B is shown in Fig. 4b.
Protein interaction analysis (Fig. 4c) revealed that
Psilostachyin B interacts with several important
proteins, including the molecular docking targets
CTLA-4 and PD-L1, although indirectly. These in-
teractions suggest that this compound may partici-
pate in regulating various molecular pathways
implicated in cancer pathogenesis and TME dy-
namics. Furthermore, Gene Ontology (GO) analysis
(Fig. 4d) demonstrated that Psilostachyin B exhibits
immunosuppressive potential through multiple
biological mechanisms associated with inflamma-
tory response and immunomodulation, especially
via the regulation of inflammatory response,
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immune system activation, and T-cell proliferation.
This highlights the role of Psilostachyin B in
modulating the TME, a critical factor in cancer
development and progression. These findings are
further supported by the KEGG pathway analysis
(Fig. 4e), which indicates that Psilostachyin B
significantly influences inflammatory responses and
chemokine pathways. These pathways are known to
be pivotal in immune cell infiltration, cellular
communication within the tumor environment, and
cancer metastasis regulation.

Moreover, Psilostachyin B demonstrates signifi-
cant potential as a drug candidate based on its
drug-likeness assessment. The compound exhibits
a well-balanced profile of lipophilicity, polarity,

and molecular flexibility, which facilitates efficient
absorption and distribution within the body
(Fig. 4f). Prediction results of potential biological
activities (Fig. 4g) indicate that Psilostachyin B has
a high probability of activity (Pa) as an antineo-
plastic agent (95 %), as well as a Caspase 8 stimu-
lant, TP53 expression inducer, immunosuppressant
agent, apoptosis agonist, Chemopreventive, MMP9
expression inhibitor, and CDC25A inhibitor. These
activities suggest that Psilostachyin B may suppress
tumor growth by inducing apoptosis and inhibiting
cancer cell proliferation while modulating immune
components within the tumor microenvironment.
Furthermore, energy transfer analysis using the
PerMM method (Fig. 4h) reveals that the free
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energy of binding between Psilostachyin B and the
DOPC membrane is —4.01 kcal/mol at pH 7 and
310K, indicating a stable molecular interaction with
the cell membrane environment. This stability
could play a crucial role in the uptake and distri-
bution of the compound within biological systems,
thereby supporting its potential as an anticancer
drug candidate.

4. Conclusion

Immunotherapy-based treatment is considered an
effective strategy for modulating the TME. This
study explores the potential of immunotherapy by
utilizing molecular docking and molecular dy-
namics simulations to evaluate bioactive com-
pounds from Curcuma longa and Phyllanthus niruri as
immune checkpoint inhibitor candidates targeting
CTLA-4 and PD-L1. The findings of this study
indicate that Psilostachyin B emerges as the most
promising candidate among the compounds iden-
tified in C. longa and P. niruri. Molecular dynamics
simulations indicated that Psilostachyin B had
greater stability than both the positive control and
known inhibitors, as supported by favorable RMSD,
radius of gyration, and RMSF values. MM/PBSA
analysis also demonstrated strong binding affinity,
with negative binding free energy values, indicating
thermodynamically favorable complex formation. In
addition, DCCM analysis revealed correlated mo-
tions within the binding region, and Principal
Component Analysis (PCA) showed limited
conformational shifts, further supporting the sta-
bility of Psilostachyin B during the simulation.
These findings suggest that natural products
derived from C. longa and P. niruri, such as Psilos-
tachyin B, have the potential to modulate the TME,
thereby enhancing immune responses against can-
cer cells. The molecular dynamics promised that
Psilostachyin B is a molecule which has superior
stability compared native ligands, as evidenced by
favorable RMSD values. Additionally, Psilostachyin
B targets multiple key proteins involved in immu-
nosuppressive mechanisms, especially through
chemokine, cytokine, and JAK-STAT signaling
pathways, exhibiting strong biological activity
scores. However, further validation through
comprehensive studies is necessary. For future
research, extending computational simulations to
include variations in temperature and longer
simulation times is recommended. Additionally,
validation through in vitro and in vivo studies re-
mains essential to confirm the efficacy and safety of
Psilostachyin B in the development of cancer
immunotherapy.
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