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ABSTRACT

This article presents an analytical approximation for the nonlinearity of the fractional order gas dynamics equation
in both homogeneous and nonhomogeneous cases, with a particular emphasis on shock fronts. The approach utilizes
the fractional differentiation operator proposed by Atangana and Baleanu. By employing this operator, an approximate
solution for the fractional order gas dynamic equations in scenarios involving shock fronts is derived. The solution
process primarily involves an iterative procedure that leverages the Laplace transform for numerical computations. The
use of the Laplace transform minimizes round-off errors, resulting in a solution that is both precise and straightforward
to implement. The method’s accuracy and reliability were validated using specific criteria of existence and uniqueness.
Additionally, a table is included to demonstrate the method’s effectiveness and capability, showing the absolute errors
for particular values. Graphical illustrations are also provided to depict the solution’s behavior and variations across
different values. These visualizations aid in understanding the dynamics and complexities of the solutions obtained
using the Atangana-Baleanu operator. Overall, the method proves to be a robust and efficient tool for solving fractional
order gas dynamic equations, offering significant precision and ease of application.

Keywords: Atangana-Baleanu operator, Fractional differential equations, Fractional gas dynamic equations, Iterative
Laplace transform method, Numerical solutions

Introduction

Gas dynamic equations encompass mathematical formulations that define the fundamental physical prin-
ciples of conservation of energy, preservation of mass, and preservation of momentum. These nonlinear
fractional-order equations find application in scenarios involving shock fronts, intricate fractions, and con-
nectivity disruptions. Within the realm of fluid dynamics, gas dynamics delves into the examination of the
movement of gas and its effects, based on the fundamentals of fluid dynamics of fluids. In 2023, Alexander
Zlotnik1 introduced a finite-difference method for addressing linearized two-dimensional and three-
dimensional gas dynamic equations, incorporating kinetic-type regularization. The study of gas flow
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phenomena covers a range of scenarios, including choked flows within nozzles and pipelines, the movement
of gas propellants in rocket engines, the thermal impacts on vehicles re-entering the atmosphere, and the
formation of shock waves around aircraft. According to Kuzenov et al., the use of adaptive composite block-
structured grids is crucial for accurately calculating the gas-dynamic characteristics of an aircraft moving
through a gas environment, underscoring the significance of precise simulations in this area of research.2

Fractional calculus holds significant significance, primarily owing to its crucial contributions across di-
verse domains. It has gained prominence over integral calculus in shaping numerous everyday models and
facilitating their study. Over the years, various methods have been established by scholars and scientists to
attain convergent numerical solutions for fractional partial differential equations with nonlinearity. Recent
methodologies encompass analytical and numerical solutions, including the Crank–Nicholson finite difference
scheme method,3 Homotopy analysis method, finite difference method, Sumudu Transform, and various
iterative approaches.4–6 Lately, researchers have utilized the studies conducted by Biazar and Eslami,7 to derive
solutions for equations related to time-fractional gas dynamics in both homogenous and non-homogenous cases.
Additionally, Rasulov et al.8 employed the finite difference technique to ascertain solutions for nonlinear equa-
tions in gas dynamic scenarios characterized by discontinuous functions. In their study,9 Prakash and Kumar
immersed themselves in exploring a computational approach to tackle time-fractional gas dynamic equations.
The exploration of efficient methods to acquire solutions for gas dynamics equations with fractional orders is
undertaken by Iqbal et al. in,10 while Mohamed11 introduced a novel iterative method for dealing with coupled
Burger’s and fractional gas dynamics equations. The realm of fractional differential equations encompasses
various operators, including the Caputo operator, and Caputo-Fabrizio operator,12–14 each characterized by
power law kernels, exponential kernels, and singularities. However, these operators exhibit limitations when
it comes to modeling certain physical problems. To surmount this challenge, Atangana and Baleanu recently
proposed a different operator utilizing the Mittag-Leffler function characterized by a nonlocal and non-singular
kernel, which is recognized as the Atangana-Baleanu operator.15 The aim of this study is focused on using the
iterative approach of the Laplace transform methodology.

Future research could explore extending these models to more complex nonlinear systems, where fractional
dynamics play a crucial role. Investigating numerical stability and accuracy for higher-order fractional differ-
ential equations is another promising direction. Moreover, applying the fractional-order models to real-world
scenarios, such as gas dynamics under extreme conditions (e.g., in propulsion systems or re-entry vehicles),
can provide valuable insights. The exploration of newer operators, such as the Atangana-Baleanu operator, for
modelling intricate physical phenomena also presents an avenue for further study.

The structure of the document is as follows: Section 2 covers an outline is presented that summarizes key
findings in the field of fractional calculus. Section 3 outlines the operational guidelines for the iterative Laplace
transform technique. Within Section 4, criteria regarding the presence and singular nature of solutions for equa-
tions of gas dynamics with fractional temporal derivatives, both in homogeneous and non-homogeneous forms
are expounded upon. Section 5 showcases numerical simulations alongside tables and visual representations
of the derived solutions. Ultimately, our conclusions are presented in Section 6.

Preliminary

Definition 1: The definitions of the Fractional derivatives using the Atangana-Baleanu operator in the Caputo
sense of order µ, are as follows:

ABC
aDµξ f (ξ ) =

B (µ)
1− µ

∫ ξ

a

df (t )
dt

Eµ
[
−

µ

1− µ
(ξ − t )µ

]
dt .

where B(µ) = (1− µ)+ µ

0(µ) is a normalization function, and Eµ(z) =
∑
∞

k=0
zk

0(µk+1) is the Mittag-Leffler
function.

Definition 2: Atangana-Baleanu fractional integral with order µ is defined as follows:

ABIµξ f (ξ ) =
1− µ
B (µ)

f (ξ )+
µ

B (µ)0 (µ)

∫ ξ

a
f (t ) (ξ − t )µ−1dt .

When f (ξ ) takes on a constant value, the integral will result in an outcome of zero.
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Definition 3: Laplace Transform of function with Atangana-Baleanu fractional derivative has the following
definition:16

L
{ABDµt f (ξ, t )

}
=

sµL
{

f (ξ, t )
}
− sµ−1 f (ξ,0)

sµ (1− µ)+ µ
.

Core concept of the method of Laplace transform iteration

To predict solutions for gas dynamic equations with fractional time derivatives, both in homogeneous and
non-homogeneous forms that involve the Atangana-Baleanu operator. The equations are presented below:

ABC∂µψ

∂tµ
+ ψ

∂ψ

∂ξ
− ψ (1− ψ ) logλ = 0 λ > 0, µ ∈ (0,1) , (1)

including the initial condition ψ (ξ, 0) = λ−ξ and

ABC∂µψ

∂tµ
+ ψ

∂ψ

∂ξ
+ (1+ t )2ψ2

= ξ2 µ ∈ (0,1), (2)

including the initial condition ψ (ξ,0) = ξ .
where ψ is the function of independent variables ξ and t .

In this context, the foundational steps of the method presented by Daftardar-Gejji and Jafari17 are demon-
strated. This is achieved by investigating a general differential equation of fractional order that incorporates
the Atangana-Baleanu operator.

ABC
aDµξ ψ (ξ, t )+ Pψ (ξ, t )+ Qψ (ξ, t ) = f (ξ, t ) , (3)

including the initial state

ψ (ξ,0) = u (ξ, t ) . (4)

Here, P and Q represent linear and non-linear operators, respectively, defined on an appropriate function
space, such as L2(�), where� ⊆ Rn represents the spatial domain. The term f (ξ, t ) denotes the source function.

By employing the Laplace transform to Eq. (3), the result is achieved. . .

L {ψ (ξ, t )} −
1
s
ψ (ξ, 0)+

1
B (µ)

(
1− µ+

µ

sµ
) (

L {Pψ (ξ, t )} + L {Qψ (ξ, t )} − L
{

f (ξ, t )
})
= 0. (5)

After regrouping terms, the result

L {ψ (ξ, t )} =
1
s

u (ξ, t )−
1

B (µ)

(
1− µ+

µ

sµ
) (

L {Pψ (ξ, t )} + L {Qψ (ξ, t )} − L
{

f (ξ, t )
})
. (6)

Moreover, through the application of the Laplace transform’s inverse to Eq. (6), the point is reached where

ψ (ξ, t ) = u (ξ, t )+ L−1
{
−1

B (µ)

(
1− µ+

µ

sµ
) (

L {Pψ (ξ, t )} + L {Qψ (ξ, t )} − L
{

f (ξ, t )
})}

. (7)

Subsequently, the iterative approach is employed described in15 to derive the series solution as presented
below:

ψ (ξ, t ) =
∞∑
j=0

ψ j (ξ, t ) . (8)
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As P is linear,

P

 ∞∑
j=0

ψ j (ξ, t )

 = ∞∑
j=0

P
(
ψ j (ξ, t )

)
. (9)

The nonlinear operator Q is decomposed as. . .

Q
(
ψ j (ξ, t )

)
= Q (ψ0 (ξ, t ))+

∞∑
j=0

Q
 j∑

i=0

ψi (ξ, t )

− Q
 j−1∑

i=0

ψi (ξ, t )

 (10)

=

∞∑
i=0

Mi. (11)

Where M0 = Q(ψ0(ξ, t )) and Mi = {Q(
∑i

j=0 ψ j(ξ, t ))− Q(
∑i−1

j=0 ψ j(ξ, t ))}, 1 ≤ i.
By using Eqs. (8) to (10), the Eq. (3) transforms to

ψ (ξ, t ) = u (ξ, t )

+ L−1


−1

B (µ)

(
1− µ+

µ

sµ
)

L
{∑

∞

j=0 P
(
ψ j (ξ, t )

)}
+L

{
Q (ψ0 (ξ, t ))+

∑
∞

j=1

{
Q
(∑ j

i=0 ψ j (ξ, t )
)
− Q

(∑ j−1
i=0 ψi (ξ, t )

)}}
−L

{
f (ξ, t )

}

.

(12)

Furthermore, let’s investigate the subsequent recursive relationship.

ψ0 (ξ, t ) = u (ξ, t ) , (13)

ψ1 (ξ, t ) = L−1
{
−1

B (µ)

(
1− µ+

µ

sµ
)

(L {P (ψ0 (ξ, t ))} + L {Q (ψ0 (ξ, t ))})
}
, (14)

...

ψn+1 (ξ, t ) = L−1

{
−1

B (µ)

(
1− µ+

µ

sµ
)(

L {P (ψn (ξ, t ))} + L

{
Q

( n∑
i=0

ψi (ξ, t )

)
− Q

(n−1∑
i=0

ψi (ξ, t )

)})}
. (15)

The solution that approximates the n-term is provided by

ψ = ψ0 + ψ1 + ψ2 . . . . . . . . .+ ψn−1. (16)

Existence and Uniqueness condition for solutions to fractional gas dynamics equation

The presence of solutions to the fractional gas dynamics equation with homogenous characteristics:

Within this segment, conditions have been established for both scenarios the existence and uniqueness of
solutions to the gas dynamics equation by employing the fixed-point theorem.18 Let’s examine the gas dynamics
equation with a fractional time derivative Eq. (1) employing the operator for fractional derivatives following
the Atangana-Baleanu approach, as depicted below:

ABCDµψ (ξ, t ) =W (ξ, t, ψ (ξ, t )) = −ψ
∂ψ

∂ξ
+ ψ (1− ψ ) logλ. (17)

Where ABCDµ signifies the Atangana-Baleanu-Caputo (ABC) type of fractional operator having fractional order
µ; where 0 < µ < 1, subjected to the given initial constraints ψ0(ξ, t ) = ψ (ξ,0).
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By utilizing the ABC fractional integral, one can convert Eq. (17) into a Volterra-type integral equation. This
can be expressed by referencing Definition 2, as illustrated below:

ψ (ξ, t )− ψ (ξ,0) =
1− µ
M (µ)

W (ξ, t, ψ )+
µ

M (µ)0 (µ)

∫ t

a
W (ξ, τ, ψ ) (t − τ )µ−1dτ. (18)

Theorem 1: The kernel denoted as W(ξ, t, ψ ) in Eq. (17) satisfy the conditions for Lipschitz continuity and
contraction, given that the specified condition is fulfilled:

0 ≤
(η

2
(ϕ1 + ϕ2)+ logλ (1+ ϕ1 + ϕ2)

)
< 1.

Proof: Consider

W (ξ, t, ψ (ξ, t )) = −ψ
∂ψ

∂ξ
+ ψ (1− ψ ) logλ.

Suppose there are two functions, ψ1 and ψ2. As a result, the following is obtained

‖W (ξ, t, ψ1 (ξ, t ))−W (ξ, t, ψ2 (ξ, t )) ‖

=

∥∥∥∥−ψ1 (ξ, t )
∂ψ1 (ξ, t )

∂ξ
+ ψ2 (ξ, t )

∂ψ2 (ξ, t )
∂ξ

+ logλ (ψ1 (ξ, t )− ψ2 (ξ, t ))+ logλ
(
−ψ2

1 (ξ, t )+ ψ2
2 (ξ, t )

)∥∥∥∥
≤

1
2

∥∥∥∥ ∂∂ξ [ψ2
1 (ξ, t )− ψ2

2 (ξ, t )
]∥∥∥∥+ logλ‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖

+ logλ‖ (ψ1 (ξ, t )+ ψ2 (ξ, t )) (ψ1 (ξ, t )− ψ2 (ξ, t )) ‖

≤
η

2
‖ψ2

1 (ξ, t )− ψ2
2 (ξ, t ) ‖ + logλ‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖ + logλ (ϕ1 + ϕ2) ‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖

≤

(η
2

(ϕ1 + ϕ2)+ logλ (1+ ϕ1 + ϕ2)
)
‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖

≤ 1‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖.

Where η = ∂
∂ξ

is the differential operator. ψ1 and ψ2 are bounded functions, as a result ‖ψ1‖ ≤ ϕ1, ‖ψ2‖ ≤ ϕ2

is obtained.
Moreover, 1 = ( η2 (ϕ1 + ϕ2)+ logλ(1+ ϕ1 + ϕ2)). Hence, it is derived that,

‖W (ξ, t, ψ1 (ξ, t ))−W (ξ, t, ψ2 (ξ, t )) ‖ ≤ 1‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖. (19)

Consequently, the Lipschitz condition is derived for W. Additionally, it becomes evident that
If 0 ≤ ( η2 (ϕ1 + ϕ2)+ logλ(1+ ϕ1 + ϕ2)) < 1 then this suggests the occurrence of contraction.
The Eq. (18) is described in the following manner,

ψn (ξ, t ) =
1− µ
M (µ)

W (ξ, t, ψn−1)+
µ

M (µ)0 (µ)

∫ t

a
W (ξ, τ, ψn−1) (t − τ )µ−1dτ. (20)

Next, the following expression gives the difference between the successive iterative terms,

πn (ξ, t ) = ψn (ξ, t )− ψn−1 (ξ, t ) =
1− µ
M (µ)

(W (ξ, t, ψn−1)−W (ξ, t, ψn−2))

+
µ

M (µ)0 (µ)

∫ t

a
(W (ξ, τ, ψn−1)−W (ξ, t, ψn−2)) (t − τ )µ−1dτ. (21)
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Note

ψn (ξ, t ) =
n∑

i=1

πi (ξ, t ) . (22)

Next, applying Eqs. (20) and (21) yields:

‖πn (ξ, t ) ‖ ≤
1− µ
M (µ)

1‖πn−1 (ξ, t ) ‖ +
µ

M (µ)0 (µ)
1

∫ t

0
‖πn−1 (ξ, τ ) ‖dτ. (23)

This is the required result of the theorem.

Theorem 2: The existence and uniqueness of a solution for Eq. (17) are guaranteed, provided a value t0 can be
identified that fulfills the condition:

1− µ
M (µ)

1+
µt0

M (µ)0 (µ)
1 < 1.

Proof: If the functionψ (ξ, t ), which is constrained in its behavior, satisfies the Lipschitz criterion. By employing
Eq. (21) and Eq. (23), the resulting equation

‖πn (ξ, t ) ‖ ≤ ‖ψn (ξ, t ) ‖
[

1− µ
M (µ)

1+
µt0

M (µ)0 (µ)
1

]n

. (24)

This demonstrates the effectiveness of the solution, and furthermore, establishes the validity of the acquired
result. Additionally, the solution to Eq. (24) is verified to correspond with the solution provided in Eq. (17).
To accomplish this, take into consideration,

ψ (ξ, t )− ψ (ξ,0) = ψn (ξ, t )− wn (ξ, t ) . (25)

Where the terms of the series solution are denoted as wn(ξ, t ). Our objective is to demonstrate that these
terms diminish toward zero as approach infinity, that is, ‖w∞(ξ, t )‖ → 0.

‖wn (ξ, t ) ‖ =
∥∥∥∥ 1− µ

M (µ)
(W (ξ, t, ψ )−W (ξ, t, ψn−1))

+
µ

M (µ)0 (µ)

∫ t

0
(W (ξ, τ, ψ )−W (ξ, τ, ψn−1)) (t − τ )µ−1dτ

∥∥∥∥
≤

1− µ
M (µ)

‖ (W (ξ, t, ψ )−W (ξ, t, ψn−1)) ‖

+
µ

M (µ)0 (µ)

∫ t

0
‖ (W (ξ, τ, ψ )−W (ξ, τ, ψn−1)) ‖(t − τ )µ−1dτ

≤
1− µ
M (µ)

1‖ψ − ψn−1‖ +
µ

M (µ)0 (µ)
1‖ψ − ψn−1‖t . (26)

Thus, by following this recursive process, the result can be obtained at time t0.

‖wn (ξ, t ) ‖ =
(

1− µ
M (µ)

+
µt0

M (µ)0 (µ)

)n+1

1n+1P. (27)

Where P = ‖ψ − ψn−1‖. Upon evaluating the limit from both directions as n →∞, ‖wn(ξ, t )‖ → 0 obtained.
Subsequently, it is crucial to verify the distinctiveness of the solution to the provided problem.
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Assume that ψ̃ (ξ, t ) represents an alternative solution. In this case, the result is

ψ (ξ, t )− ψ̃ (ξ, t ) =
1− µ
M (µ)

(
W (ξ, t, ψ )−W

(
ξ, t, ψ∗

))
+

µ

M (µ)0 (µ)

∫ t

0
‖
(
W (ξ, τ, ψ )−W

(
ξ, τ, ψ∗

))
‖(t − τ )µ−1dτ. (28)

Applying norms to both sides of the previously mentioned equation yields

‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖ =
∥∥∥∥ 1− µ

M (µ)
(
W (ξ, t, ψ )−W

(
ξ, t, ψ∗

))
+

µ

M (µ)0 (µ)

∥∥∥∥ (W (ξ, τ, ψ )−W
(
ξ, τ, ψ∗

))
‖(t − τ )µ−1dτ‖

≤
1− µ
M (µ)

‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖ +
µ

M (µ)0 (µ)
1t‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖. (29)

Following the process of simplification, the result is obtained as follows

‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖
(

1−
1− µ
M (µ)

1−
µt0

M (µ)0 (µ)
1

)n

≤ 0. (30)

From the inequality presented above, it follows that if(
1−

1− µ
M (µ)

1−
µt0

M (µ)0 (µ)
1

)n

≥ 0, (31)

then ‖ψ (ξ, t )− ψ̃ (ξ, t )‖ = 0.
Hence, Eq. (31) serves as a necessary requirement for ensuring uniqueness.

The presence of solutions to the fractional gas dynamics equation with non-homogenous characteristics

In this segment, the focus will be on exploring the time fractional non-homogeneous Eq. (2) within the context
of fractional gas dynamics. The fractional derivative operator introduced by Atangana-Baleanu is utilized as
illustrated below:

ABCDµψ (ξ, t ) = J (ξ, t, ψ (ξ, t )) = −ψ
∂ψ

∂ξ
− (1+ t )2ψ2

+ ξ2. (32)

Where ABCDµ symbolizes the Atangana-Baleanu-Caputo (ABC) type fractional operator with a fractional
order denoted as µ; where 0 < µ < 1, under the constraint of the initial condition ψ0(ξ, t ) = ψ (ξ,0). The
transformation of Eq. (32) into an Integral equation of the Volterra-type is achieved by employing the ABC
fractional integral in a subsequent manner:

ψ (ξ, t )− ψ (ξ,0) =
1− µ
M (µ)

J (ξ, t, ψ )+
µ

M (µ)0 (µ)

∫ t

a
J (ξ, τ, ψ ) (t − τ )µ−1dτ. (33)

Theorem 3: Kernels J(ξ, t, ψ ) outlined in Eq. (17) meets the requirements of Lipschitz continuity condition and
contraction, given that the following requirement is fulfilled:

0 ≤
(υ

2
(ϕ3 + ϕ4)+ (1+ t )2 (ϕ3 + ϕ4)

)
< 1.

Proof: Let J(ξ, t, ψ (ξ, t )) = −ψ ∂ψ

∂y − (1+ t )2ψ2
+ ξ2,
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Consider the functions ψ1 and ψ2, the ensuing outcome is as follows:

‖J (ξ, t, ψ1 (ξ, t ))− J (ξ, t, ψ2 (ξ, t )) ‖

=

∥∥∥∥−ψ1 (ξ, t )
∂ψ1 (ξ, t )

∂ξ
+ ψ2 (ξ, t )

∂ψ2 (ξ, t )
∂ξ

− (1+ t )2ψ2
1 (ξ, t )+ (1+ t )2ψ2

2 (ξ, t )
∥∥∥∥

≤
1
2

∥∥∥∥ ∂∂y [ψ2
1 (ξ, t )− ψ2

2 (ξ, t )
]∥∥∥∥+ (1+ t )2

‖ (ψ1 (ξ, t )+ ψ2 (ξ, t )) (ψ1 (ξ, t )− ψ2 (ξ, t )) ‖

≤
υ

2
‖ψ2

1 (ξ, t )− ψ2
2 (ξ, t ) ‖ + (1+ t )2

‖ψ2
1 (ξ, t )− ψ2

2 (ξ, t ) ‖

≤

(υ
2

(ϕ3 + ϕ4)+ (1+ t )2 (ϕ3 + ϕ4)
)
‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖

≤ 2‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖.

where υ = ∂
∂ξ

is the differential operator. ψ1 and ψ2 are bounded functions, it gives ‖ψ1‖ ≤ ϕ3, ‖ψ2‖ ≤ ϕ4.

Also, 2 = ( υ2 (ϕ3 + ϕ4)+ (1+ t )2(ϕ3 + ϕ4)). Hence

‖J (ξ, t, ψ1 (ξ, t ))− J (ξ, t, ψ2 (ξ, t )) ‖ ≤ 2‖ψ1 (ξ, t )− ψ2 (ξ, t ) ‖. (34)

This indicates that the Lipschitz condition is satisfied for J. Furthermore, it is evident that if 0 ≤
( υ2 (ϕ3 + ϕ4)+ (1+ t )2(ϕ3 + ϕ4)) < 1 in such a scenario, this leads to the concept of contraction. The recursive
nature of Eq. (33) can be defined in a subsequent manner:

ψn (ξ, t ) =
1− µ
M (µ)

J (ξ, t, ψn−1)+
µ

M (µ)0 (µ)

∫ t

a
J (ξ, τ, ψn−1) (t − τ )µ−1dτ. (35)

Subsequently, express the difference between consecutive iterative elements in the following manner:

σn (ξ, t ) = ψn (ξ, t )− ψn−1 (ξ, t ) =
1− µ
M (µ)

(J (ξ, t, ψn−1)− J (ξ, t, ψn−2))

+
µ

M (µ)0 (µ)

∫ t

a
(J (ξ, τ, ψn−1)− J (ξ, t, ψn−2)) (t − τ )µ−1dτ. (36)

Be aware that

ψn (ξ, t ) =
n∑

i=1

σi (ξ, t ) . (37)

By utilizing Eq. (35) and then applying the norm to Eq. (36), the result is reached,

‖σn (ξ, t ) ‖ =
1− µ
M (µ)

2‖σn−1 (ξ, t ) ‖ +
µ

M (µ)0 (µ)
2

∫ t

0
‖σn−1 (ξ, τ ) ‖dτ. (38)

with this, the theorem’s proof concluded.

Theorem 4: The uniqueness and existence of a solution for Eq. (32) are guaranteed, provided a value t0 can be
identified that fulfills the condition

1− µ
M (µ)

2+
µt0

M (µ)0 (µ)
2 < 1.

Proof: If the functionψ (ξ, t ), which is constrained in its behavior, satisfies the Lipschitz criterion. By employing
Eqs. (36) and (38), arrived at the subsequent equation,

‖σn (ξ, t ) ‖ ≤ ‖ψn (ξ, t ) ‖
[

1− µ
M (µ)

2+
µt0

M (µ)0 (µ)
2

]n

. (39)
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Hence, the solution displays smooth characteristics, with the existence of the derived solution being con-
firmed. Afterward, continue to illustrate that formula Eq. (39) functions as the answer to Eq. (32). To accomplish
this, scrutinize. . .

ψ (ξ, t )− ψ (ξ,0) = ψn (ξ, t )− un (ξ, t ) . (40)

within the framework of solution in the form of a series, considering un(ξ, t ) as for the remainder terms, our
objective is to prove that these terms tend towards zero as n→ 0 that is, ‖u∞(ξ, t )‖ → 0.

‖un (ξ, t ) ‖ =
∥∥∥∥ 1− µ

M (µ)
(J (ξ, t, ψ )− J (ξ, t, ψn−1))

+
µ

M (µ)0 (µ)

∫ t

0
(J (ξ, τ, ψ )− J (ξ, τ, ψn−1)) (t − τ )µ−1dτ

∥∥∥∥
≤

1− µ
M (µ)

‖ (J (ξ, t, ψ )− J (ξ, t, ψn−1)) ‖

+
µ

M (µ)0 (µ)

∫ t

0
‖ (J (ξ, τ, ψ )− J (ξ, τ, ψn−1)) ‖(t − τ )µ−1dτ

≤
1− µ
M (µ)

2‖ψ − ψn−1‖ +
µ

M (µ)0 (µ)
2‖ψ − ψn−1‖t . (41)

Continuing recursively from t0, the result is obtained as follows:

‖un (ξ, t ) ‖ =
(

1− µ
M (µ)

+
µt0

M (µ)0 (µ)

)n+1

2n+1P, (42)

Where Q = ‖ψ − ψn−1‖.

Upon taking the limit as n approaches infinity for both sides, ‖un(ξ, t )‖ → 0 obtained.
Subsequently, it becomes imperative to illustrate the distinctiveness of the solution. To the provided issue.
Assume that ψ̃ (ξ, t ) represents an alternative solution. In this case, obtaining,

ψ (ξ, t )− ψ̃ (ξ, t ) =
1− µ
M (µ)

(
J (ξ, t, ψ )− J

(
ξ, t, ψ∗

))
+

µ

M (µ)0 (µ)

∫ t

0
‖
(
J (ξ, τ, ψ )− J

(
ξ, τ, ψ∗

))
‖(t − τ )µ−1dτ. (43)

by applying norms to both sides of the equation mentioned earlier, the result is obtained

‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖ =
∥∥∥∥ 1− µ

M (µ)
(
J (ξ, t, ψ )− J

(
ξ, t, ψ∗

))
+

µ

M (µ)0 (µ)

∫ t

0

∥∥∥∥ (J (ξ, τ, ψ )− J
(
ξ, τ, ψ∗

))
‖(t − τ )µ−1dτ‖

≤
1− µ
M (µ)

2‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖ +
µ

M (µ)0 (µ)
2t‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖. (44)

After simplification, the result obtained is

‖ψ (ξ, t )− ψ̃ (ξ, t ) ‖
(

1−
1− µ
M (µ)

2−
µt0

M (µ)0 (µ)
2

)n

≤ 0. (45)

Based on the inequality provided earlier, it follows that if(
1−

1− µ
M (µ)

2−
µt0

M (µ)0 (µ)
2

)n

≥ 0, (46)
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Then ‖ψ (y, t )− ψ̃ (y, t )‖ = 0.
Hence, Eq. (46) serves as a necessary requirement for ensuring uniqueness.

Numerical simulation

Within this segment, the effectiveness of the method iterative Laplace transform is showcased by implement-
ing it to solve the equation of gas dynamics involving time-fractional homogeneous & non-homogeneous cases.
The calculations are executed utilizing the Mathematica software platform.

Approximate solution to the equation governing homogeneous gas dynamics with a time-fractional
component

Examine gas dynamics Eq. (1) involving fractional time, along with its initial condition ψ (ξ,0) = λ−ξ . The
solution for Eq. (1) is explicitly provided in19 as follows:

ψ (ξ, t ) = λt−ξ . (47)

by employing the Laplace transform from both sides of Eq. (1), the conclusion is:

L {ψ (ξ, t )} −
1
s
ψ (ξ,0)+

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
− ψ (1− ψ ) logλ

}
= 0. (48)

by rearranging terms, the result is

L {ψ (ξ, t )} =
1
s
(
λ−ξ

)
−

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
− ψ (1− ψ ) logλ

}
. (49)

Furthermore, when the Laplace transform’s inverse is employed on Eq. (49), the outcome is as bellow:

ψ (ξ, t ) = λ−ξ − L−1
{

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
− ψ (1− ψ ) logλ

}}
, (50)

the method yields a series solution as expressed by,

ψ (ξ, t ) =
∞∑

n=0

ψn (ξ, t ) . (51)

The term that is not linear in nature ψ ∂ψ

∂ξ
can be expressed as ψn

∂ψn
∂ξ
=
∑
∞

n=0 An; Meanwhile, An is additionally
broken down in the subsequent fashion

An =

n∑
i=0

ψi
∂

∂ξ

( n∑
i=0

ψi

)
−

n−1∑
i=0

ψi
∂

∂ξ

(n−1∑
i=0

ψi

)
,

by using ψ0(ξ, t ) = λ−ξ , the iterative equation arises in the following manner

ψn (ξ, t ) = ψ0 (ξ, t )− L−1
{

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψn
∂ψn

∂ξ
− ψn (1− ψn) logλ

}}
. (52)

The solution using the n-term approximation is expressed as

ψ (ξ, t ) = ψ0 (ξ, t )+ ψ1 (ξ, t )+ ψ2 (ξ, t )+ · · · · · · · · · + ψn−1 (ξ, t ) . (53)
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Hence, by employing Eq. (52) below, the computation of the initial three components of the estimated
solution to Eq. (1) is presented.

ψ0 = λ
−ξ ,

ψ1 = −
t0 (µ) log (λ) λ−ξ

(
−µ+

µtµ
0(µ+2) + 1

)
µ+ µ (−0 (µ))+ 0 (µ)

,

ψ2 =
µt20 (µ) log2 (λ) λ−ξ(

−µ+
µ

0(µ) + 1
)

((µ− 1)0 (µ)− µ)
−

t20 (µ) log2 (λ) λ−ξ

2
(
−µ+

µ

0(µ) + 1
)

((µ− 1)0 (µ)− µ)

−
2µ0 (µ) log2 (λ) tµ+2λ−ξ(

−µ+
µ

0(µ) + 1
)

((µ− 1)0 (µ)− µ)0 (µ+ 3)
−

µ2t20 (µ) log2 (λ) λ−ξ

2
(
−µ+

µ

0(µ) + 1
)

((µ− 1)0 (µ)− µ)

−
µ20 (µ) log2 (λ) t2µ+2λ−ξ(

−µ+
µ

0(µ) + 1
)

((µ− 1)0 (µ)− µ)0 (2µ+ 3)
+ . . .

ψ3 =
µt30(µ)2log3 (λ) λ−ξ

2
(
−µ+

µ

0(µ) + 1
)

((µ)+ µ (0 (−µ))+ 0 (µ))2
−

t30(µ)2log3 (λ) λ−ξ

6
(
−µ+

µ

0(µ) + 1
)

(µ+ µ (−0 (µ))+ 0 (µ))2

+
µ3t30(µ)2log3 (λ) λ−ξ

6
(
−µ+

µ

0(µ) + 1
)

(µ+ µ (−0 (µ))+ 0 (µ))2
−

µ2t30(µ)2log3 (λ) λ−ξ

2
(
−µ+

µ

0(µ) + 1
)

(µ+ µ (−0 (µ))+ 0 (µ))2

−
µ30(µ)2log3 (λ) t3µ+3λ−ξ(

−µ+
µ

0(µ) + 1
)

(µ+ µ (−0 (µ))+ 0 (µ))20 (3µ+ 4)
+ . . .

Following the same approach, the remaining terms of the iteration formula in Eq. (13) can be calculated.

Remark 1: According to Table 1 and Fig. 1, the computed outcomes for obtaining approximate solutions of
Eq. (1) are presented. This method provides precise numerical solutions even with lower-order approximations.
The precision of the technique in addressing nonlinear gas dynamics equations involving fractional time
derivatives in a homogeneous setting is demonstrated by the absolute discrepancies between Eq. (1) and
its exact solution. Fig. 1 displays surfaces representing the approximate solution of Eq. (1) and the precise
solution for homogeneous fractional gas dynamics equations. Inspection reveals that the approximate and
exact solutions closely align.

Table 1. Assessing the disparity in the discrepancy between the precise solution and the true solution and approximations
using three terms acquired through the ILTM of Eq. (1) for µ = 1 and numerical results for µ = 0.6, 0.8.

Absolute error
|ψexact − ψapprx|

t ξ µ = 0.6 µ = 0.8 µ = 1 for µ = 1

0.03 0 0.997213 0.998720 0.666626 0.005052
1 0.845096 0.846373 0.847395 0.004282
2 0.766183 0.717265 0.718131 0.003628

0.06 0 0.994109 0.997202 0.999702 0.010278
1 0.842465 0.845086 0.847205 0.008710
2 0.713954 0.716175 0.717970 0.007382

0.09 0 0.990782 0.995483 0.999330 0.015678
1 0.839645 0.843630 0.846890 0.013286
2 0.711564 0.714941 0.717703 0.012597
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Fig. 1. An estimated solution to Eq. (1), for µ = 0.95, µ = 0.75, µ = 0.65.

Approximate solution to the equation governing non-homogeneous gas dynamics with a time-fractional
component

In this segment, time fractional non-homogeneous gas dynamics Eq. (2) is analyzed including the initial
condition ψ (ξ,0) = ξ .

The precise solution to the classical non-homogeneous gas dynamics equation is presented as16

ψ (ξ, t ) =
ξ

1+ t
. (54)

by employing Laplace transform from both sides of Eq. (2), the conclusion is:

L {ψ (ξ, t )} −
1
s
ψ (ξ,0)+

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
+ (1+ t )2ψ2

− ξ2
}
= 0, (55)

by rearranging terms, the result is,

L {ψ (ξ, t )} =
ξ

s
−

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
+ (1+ t )2ψ2

− ξ2
}
. (56)

Moreover, applying the Laplace transform’s inverse to Eq. (56) leads to

ψ (ξ, t ) = ξ − L−1
{

1
M (µ)

(
1− µ+

µ

sµ
)

L
{
ψ
∂ψ

∂ξ
+ (1+ t )2ψ2

− ξ2
}}
, (57)

the method yields a series solution as expressed by,

ψ (ξ, t ) =
∞∑

n=0

ψn (ξ, t ) . (58)

The term that is not linear in nature ψ ∂ψ

∂ξ
can be expressed as ψn

∂ψn
∂ξ
=
∑
∞

n=0 Bn; Meanwhile Bn is additionally
broken down in the following manner

Bn =

n∑
i=0

ψi
∂

∂ξ

( n∑
i=0

ψi

)
−

n−1∑
i=0

ψi
∂

∂ξ

(n−1∑
i=0

ψi

)
.
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by using ψ0(ξ, t ) = ξ . The recursive formula becomes evident in the following manner.

ψn (ξ, t ) = ψ0 (ξ, t )− L−1
{
−1

M (µ)

(
1− µ+

µ

sµ
)

L
{
ψn
∂ψn

∂ξ
+ (1+ t )2ψ2

n − ξ
2
}}
. (59)

the solution using the n-term approximation is expressed as

ψ (ξ, t ) = ψ0 + ψ1 + ψ2 + . . . · · · · · · + ψn−1. (60)

ψ0 = ξ,

ψ1 =
t3ξ0 (µ)

3 (µ+ µ (−0 (µ))+ 0 (µ))
+

t2ξ20 (µ)
µ+ µ (−0 (µ))+ 0 (µ)

+
tξ0 (µ)

µ+ µ (−0 (µ))+ 0 (µ)

−
µt3ξ0 (µ)

3 (µ+ µ (−0 (µ))+ 0 (µ))
−

µtξ 0 (µ)
µ+ µ (−0 (µ))+ 0 (µ)

−
µt2ξ20 (µ)

µ+ µ (−0 (µ))+ 0 (µ)

+
2µξ20 (µ) tµ+2

(µ+ µ (−0 (µ))+ 0 (µ))0 (µ+ 3)
+

µξ0 (µ) tµ+1

(µ+ µ (−0 (µ))+ 0 (µ))0 (µ+ 2)
,

ψ2 =
1(

−µ+
µ

0(µ) + 1
)
 2t5ξ

15
(
−µ+

µ

0(µ) + 1
)2 +

t3ξ

3
(
−µ+

µ

0(µ) + 1
)2 + µtξ2

− tξ2

+
t7ξ

63
(
−µ+

µ

0(µ) + 1
)2 +

5t4ξ2

4
(
−µ+

µ

0(µ) + 1
)2 +

t3ξ2

3
(
−µ+

µ

0(µ) + 1
)2

+
8µ3ξ30 (2µ+ 8) tµ+2(µ+4)(

−µ+
µ

0(µ) + 1
)2
0 (µ+ 3)0 (µ+ 4)

+
8µ3ξ20 (2µ+ 8) tµ+2(µ+4)(
−µ+

µ

0(µ) + 1
)2
0(µ+ 4)2


ψ3 =

4t12ξ

945
(
−µ+

µ

0(µ) + 1
)6 +

134t10ξ

4725
(
−µ+

µ

0(µ) + 1
)6 +

4t8ξ

45
(
−µ+

µ

0(µ) + 1
)6

+
t6ξ

9
(
−µ+

µ

0(µ) + 1
)6 +

t14ξ

3969
(
−µ+

µ

0(µ) + 1
)6 +

t6ξ2

3
(
−µ+

µ

0(µ) + 1
)6

−
384µ6ξ50(2µ+ 8)2tµ+2(µ+4)(

−µ+
µ

0(µ) + 1
)6
0(µ+ 3)20(µ+ 4)20 (2 (µ+ 4)+ 1)0 (µ+ 2 (µ+ 4)+ 1)

+ · · ·

Remark 2: Table 2 and Fig. 2 illustrate the computed outcomes for obtaining approximate solutions of Eq. (2).
This approach ensures accurate numerical solutions, even with lower-order approximations, for nonlinear gas
dynamics equations involving fractional time derivatives in a non-homogeneous setting. Fig. 2 shows surfaces
depicting the approximate solution of Eq. (2) and the exact solution for non-homogeneous fractional order gas
dynamics equations. The surfaces indicate that the approximate and exact solutions are closely aligned.

Results and discussion

The results from applying the Laplace transform iteration method to solve time-fractional gas dynamics
equations demonstrate its effectiveness and precision. For both homogeneous and non-homogeneous cases,
the method yields accurate numerical solutions even with lower-order approximations. The close alignment
between the approximate and exact solutions, as observed in the computed outcomes, highlights the method’s
reliability in addressing nonlinear gas dynamics equations involving fractional time derivatives.
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Table 2. Assessing the disparity in absolute error between the accurate solution and the three-term approximations
acquired through the iterative Laplace transform method (ILTM) of Eq. (2) for µ = 1 and numerical results for µ = 0.6, 0.8.

Absolute error
|ψexact − ψapprx|

t ξ µ = 0.6 µ = 0.8 µ = 1 for µ = 1

0.04 0.2 0.285745 0.243016 0.214680 0.001186540
0.6 0.862571 0.713500 0.631011 0.003101090
1.0 1.461070 1.166890 1.030160 0.000315870

0.06 0.2 0.392077 0.296655 0.237210 0.001279000
0.6 1.336260 0.914550 0.692986 0.001929860
1.0 2.579890 1.588230 1.125760 0.000500755

0.09 0.2 0.581501 0.390823 0.276887 0.007688600
0.6 2.356710 1.344820 0.825964 0.004285710
1.0 5.293520 2.626570 1.379250 0.000823695

Fig. 2. An estimated solution to Eq. (2), for µ = 0.95, µ = 0.75, µ = 0.55.

Conclusions

In the present study, the method of Laplace transform iteration has been effectively employed. To numerically
solve time-fractional homogeneous and non-homogeneous gas dynamic equations. This approach yields highly
realistic series solutions that exhibit rapid convergence in real-world scenarios. The theoretical analysis of
the solutions includes establishing the criteria for the existence and uniqueness of solutions using the applied
technique. Upon comparing absolute errors, it becomes clear that the suggested technique functions as an
effective and resilient numerical method for approximating solutions. It is noteworthy that this method remains
effective even in the case of nonlinear problems, without necessitating linearization or perturbation techniques.
As a result, the iterative Laplace transform method proves to be easily implementable and more convenient
compared to alternative approaches.
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أتانجانا باليانو التفاضلية الكسرية مع تطبيق في مشكلة  دراسة لمعادلة

  ديناميكية الغاز

 

 4نزار سوبي كوتاكاران ،3باتيل دينكار ،2واغول شاشيكانت ،1شيخ أمجد

 .411001 -بوني ، AKIs Poonaوالتجارة والآداب العلوم كلية الرياضيات، قسم1
 .412201 -بوني والتكنولوجيا، والتصميم للفنون  MITجامعة ، MITالحوسبة كلية2
 .422401 -ناشيك المتقدمة، والعلوم والتجارة للفنون  .K. R. Tكلية الرياضيات، قسم3
 .السعودية العربية المملكة ، 11942الخرج العزيز، عبد بن سطام الأمير جامعة بالخرج، والإنسانيات العلوم كلية الرياضيات، قسم4

 

لابلاس باليانو، المعادلات التفاضلية الكسرية، المعادلات الديناميكية الغازية الكسرية، طريقة تحويل -أتانجانا ؤثرم الكلمات المفتاحية:

 .، الحلول العدديةةالتكراري

 ةالخلاص

الرتبة الجزئية في كل من الحالات المتجانسة وغير المتجانسة، الغير خية ذات غاز المعادلة ديناميكيات لتقدم هذه المقالة تقريباً تحليلياً 

الذي اقترحه أتانجانا وباليانو. من خلال توظيف هذا  الكسريمؤثر الاشتقاق مع التركيز بشكل خاص على جبهات الصدمة. يستخدم 

في السيناريوهات التي تنطوي على جبهات الصدمة.  ذات الرتبة الكسورية، يتم اشتقاق حل تقريبي للمعادلات الديناميكية الغازية ؤثرالم

ت العددية. إن استخدام تحويل لابلاس يقلل من تتضمن عملية الحل في المقام الأول إجراء تكراري يستفيد من تحويل لابلاس للحسابا

الأخطاء المتتالية، مما يؤدي إلى حل دقيق ومباشر للتنفيذ. تم التحقق من دقة الطريقة وموثوقيتها باستخدام معايير محددة للوجود 

توفير  كما تمالمطلقة لقيم معينة. تضمين جدول لإثبات فعالية الطريقة وقدرتها، مع توضيح الأخطاء  تم. بالإضافة إلى ذلك، وحدانيةوال

الرسوم التوضيحية الرسومية لتصوير سلوك الحل والاختلافات عبر القيم المختلفة. تساعد هذه التصورات في فهم ديناميكيات 

لة لحل . بشكل عام، تثبت الطريقة أنها أداة قوية وفعاAtangana-Baleanuوتعقيدات الحلول التي تم الحصول عليها باستخدام مشغل 

 المعادلات الديناميكية لغاز الترتيب الجزئي، مما يوفر دقة وسهولة تطبيق كبيرة.
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