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Abstract

The rapid expansion of the population is a significant factor in the quick
transformation rate of land use and land cover (LULC) in various locations
worldwide. This approach led to a substantial exhaustion of natural resources.
Consequently, continuous monitoring of LULC alterations has become crucial for
efficiently administering natural resources and assessing the consequences of climate
change. Land cover change (LULC) is widely recognized as a significant driver of
environmental change that can affect human activities. Evaluating LULC change is
the most accurate approach to understanding past land use patterns, identifying
changes that need assessment, and establishing their substantial influence on urban
environmental planning and management. Machine learning methods have become
more critical for rapidly and accurately mapping LULC using remote sensing (RS)
data. The main reason is the growing demand for LULC estimation in ecosystem
services, natural resource management, and environmental management. Hence,
assessing and contrasting the efficacy of different machine learning classifiers is
crucial to attaining accurate LULC mapping. This study was conducted in the Kufa
district using eight images, three from Landsat-8 in 2013, 2016, and 2019, to monitor
change detection in LULC. Five classes were obtained: residential buildings, water
bodies, orchards, bare lands, and agricultural land from a supervised classification
using ERDAS Imagine 2015 connected with Google Earth Pro and ArcGIS 10.8
software. For LULC change detection 2013-2016, residential buildings increased by
4.04 km? to 0.77% of the total area, and bare lands decreased by 47.08 km? (10.17 %
of Kufa’s area), converted into agricultural lands. The orchard area decreased by
22.29 km? with a percent of 4.88%, which transfers into agricultural lands, and the
latter increased by 67.40 km, which is 14.36 % of the total area. However, for LULC
change detection 2016-2019, the bare lands increased by 30.66 km? to 6.63 % of the
total area, while orchards increased by 29.67 km? with 6.47 % of the total area due to
agricultural land converted into orchards. The residential buildings decreased by
20.93 km?, with 4.41% of the total area transferred into agricultural lands. This study
output is crucial for environmental scientists, land managers, decision-makers, and
urban planners in Al Najaf province.
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1. Introduction

Change detection is a technique employed to detect discrepancies in the state of a target or
phenomenon by studying it at various time intervals [1].To effectively examine the changes in
land cover of a specific area, it is essential to get data that precisely reflects its condition at
different time intervals [2]. By utilizing satellite photos and a Geographic Information System
(GIS) platform, change detection can be significantly achieved [3]. The process entails swiftly
collecting data from multiple locations and documenting alterations in land surface across
various scales with a high level of time precision [4]. Most cities' urbanization expanded during
the twentieth century due to population increase and rural-to-urban migration. Urbanization at
a fast pace significantly affects the management and growth of cities globally [4]. Metropolitan
areas are seeing substantial urbanization and demographic expansion, while rural settlements,
commonly called villages, are encountering accelerated growth and population increase. Once
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villages have grown into cities, they are rapidly approaching the threshold of being a city. Iraq
has had multiple conflicts in the past, all of which impacted the country's economic, urban, and
human recession [5]. This resulted in a massive urban sprawl and an expansion in the uses of
built land. Overshot is the maximal capacity for city management in emerging nations. As a
result, it appears that urban planning has a critical rule for managing cities' ability to
accommodate population growth rates [6].

Remote sensing uses satellite or aerial images to generate various spatial data, including
metropolitan areas, land use types, vegetated regions, water bodies, and other information
about aregion's utilities [7]. Conversely, GIS offers efficient and useful ways to produce, store,
analyze, and display data from remote sensing [8]. When compared to previous methodologies,
satellite remote sensing exhibits the potential to serve as a significant tool for monitoring land-
use changes with enhanced temporal resolution and reduced financial burden [9]. The phrase
"land use" describes the land's usage, including whether it is utilized for agricultural,
residential, industrial, or other purposes [ 10]. When human operations are not being carried out
on a piece of land, it is said to have a certain state or cover known as the land cover. Examples
are natural pastures, rock-detecting areas, and riverbeds [11]. Earth's surface land use change
detection through human activities for proper urban management is generally called LULC
change detection [12]. Population density expansion and economic development undoubtedly
influence land cover change, resulting in a discernible pattern in the LULC over time [13]. The
rising urbanization rate in most emerging nations is one of the most pressing global issues, yet
this transformation has important implications for future environmental and urban planning
processes [14] [15].

There are many studies on mapping and monitoring LULC, like mapping and assessing
LULC Change in the Laylan sub-district, Kirkuk province [16], LULC changes of Kufa
monitoring [17], detecting and monitoring the vegetal cover of Karbala Province areas mapping
[18], predicting land cover changes in Al Najaf Province [19], land cover changes of Al Najaf
[20], monitoring of LULC areas of Al-Kut city [21], mapping of detecting desertification in the
northeastern part of the Al-Najaf province areas [22], and the expansion of urbanized and open
land and the degradation of the vegetative areas, [23]. This research aims to detect and monitor
the changes in LULC during 2016-2019 in the Kufa district employing the supervised
classification technique. The supervised classification technique was applied using ERDAS
Imagine 2015 connected with Google Earth Pro and ArcGIS 10.8 software indices from
Landsat satellite data for the 2013, 2016, and 2019 periods.

2. Material and Methods
2.1 Description of the Study Area

Kufa is located in Southwest Iraq and Northeast of Najaf within the alluvial plain, which
has mixed clay soil (Fig. 1). The coordinates of the research area are 4437'30" — 4419'30"
eastern longitude and 3213'0" — 3157'0" northern latitude. The area covers 466.26 km?,
including agricultural land, residential buildings, rivers, orchards, and bare lands. Kufa district
consists of the Abasia sub-district and Al-Hurria sub-district, Fig (1), and the Euphrates River
and its branches (the rivers of Al-Kufa and Al-Abasia) and their streams include all districts
nearly.
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Figure 1: The location of the study area represents part of the holy city of Najaf, located in
southwest central Iraq

2.2 Data source

Landsat 8 OLI imagery data for the study area were acquired for three periods: July 26, 2013,
July 18,2016, and July 27, 2019, with a resolution of 30 m. All the images were brought to the
Universal Transverse Mercator (UTM) projection, Zone 38N, and World Geodetic System
1984 (WGS-84) datum. Data were analyzed using ERDAS Imaging 2015 and ArcGIS 10.8
software packages. Images were acquired from Earth Explorer's United States Geological
Survey (USGS) website. The diagram of the procedure can be summarized in (Fig. 2).
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Figure 2: The diagram flowchart of the methodology
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2.3 Landsat 8 imagery classification and accuracy

The used image was classified according to the supervised classification approach and the
maximum likelihood algorithm. The four bands that were most effective in differentiating
between each class were composite bands created with ArcGIS 10.8. Residential buildings,
water bodies, orchards, bare lands, and agricultural land were used to categorize the satellite
pictures' land use and cover. The reference data were chosen using Google Earth in conjunction
with ERDAS. In the current study, laminated arbitrary testing samples of 256 pixels were
related to the reference data from Google Earth. Overall accuracy, Producer’s accuracy, User’s
accuracy, and Kappa (k”) statistic are the accuracy assessment measures generated from the
confusion matrix.

The sum ratio of the main transverse numbers (i.¢., the acceptably categorized) and the total
number of pixels in the mistake matrix were used to calculate the classification's overall
accuracy. Producer accuracy (a measure of the error of omission) was calculated by selecting
the fraction of the numeral of pixels correctly classified for a class to the total number of pixels
in the reference data. User’s accuracy is defined (the amount of commission error) as the
fraction of pixels correctly classified for a category to the total number of pixels in that
category. Kappa statistic is considered a standard for accuracy [24] [25]. User Precision
Commission error determines the probability that a pixel represents the class to which it was
assigned, and it was calculated by dividing the number of correctly classified pixels in each
category by the total number of pixels in that category (row total). The overall resolution was
calculated by dividing the total number of correctly classified pixels (the sum of the principal
diagonals) by the total number of pixels tested [26]. Using ERDAS imaging, the kappa
coefficient (KC) is another characteristic coefficient obtained from the error matrix that
considers the pixels that have not been correctly classified outside the main diagonal, with
values ranging from 0 (worst) to 1 (best). From the relationship, the kappa coefficient can be
calculated [27]:

_ NYi_1Si — Xiz1(Siv S4i)
NZ - ?:1(S+l')

kA

Where the Kappa coefficient table is used to measure accuracy.

T, represents the row number of the error matrix, s;;, present observations in row i and column
i (on the major diagonal), s;,, present a total of observations in row i (exposed as marginal
full to right of the matrix), s,; , a total of remarks in column i (shown as marginal total at the
lowest of the matrix), N, a total number of remarks involved in the matrix.

2.4 Change detection

Change detection analyses describe and quantify variations between photographs taken
several times of a similar scene. The categorized photos of the three times can be used to
estimate the area of several land covers and path changes in the data span. This analysis is
highly beneficial for classifying changes in different land use types, such as an increase in built-
up urban areas or a decrease in agricultural land, etc. [28]. Many methods are available to detect
change [28][28], and each differs depending on the sort of images, the planned use of the
variation image, and the change type to be detected. The post-classification comparison
methodology was used in the case study [29] [30] [31]. This method is the only one that allows
from and to classes to be considered for each reformed page, and consents were required to
compare independently categorized images from each relevant date. To intersect various photos
and obtain the results of the change detection.
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3. Result and discussion
3.1 LULC classification and accuracy assessment analysis

According to the classification technique (LULC), patterns such as residential buildings,
water bodies, orchards, agricultural lands, and bare lands were classified, as in the four Figures
3,4,5,6,and 7.

LU/LC 2013 KUFA
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Figure 3: LULC map of Kufa in 2013
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Figure 4: LULC map of Kufa in 2016
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Figure 5: LULC map of Kufa in 2019

From Table 3, in 2013, residential buildings contributed an area of 120.74 km? with a percent
of 26.0%, bare- lands contributed an area of 83.46 km? with a percent of 17.97 while water
bodies area covered 5.52 km? with a percent of 1.19%. Orchards, the most significant area
before agricultural land has been covered, is about 126.49 km?, which contributes 27.24%, and
agricultural land occupies the largest area of 128.20 and 27.61%.

In 2016, residential buildings covered an area of 124.77 km? with a percent of 26.77%; bare
lands contributed an area of 36.37 km? with a percent of 7.80%, while water bodies occupied
5.19 km? with a percent of 1.11%. Orchards have a covered area of about 104.20 km?*
contributing 22.35%, and agricultural land area of 195.61 and 41.96 %.

In 2019, residential buildings occupied an area of 103.85 km? with a percent of 22.36%,
bare lands contributed an area of 67.03 km? with a percent of 14.43while water bodies area
covered 6.52 km? with a percent of 1.40%. Orchards, the most significant area before
agricultural land, covered an area of about 133.86 km?, contributing 28.82%, and agricultural
land occupied an area of 153.14 with a percentage of 32.98%.

3.2 Change detection and Post classification matrix analysis

From Table 4 and maps in Figure 6,7 during 2013-2016, residential buildings increased by
4.04 km?, 0.77% of the total area. At the same time, bare lands were decreased by 47.08 km?,
10.17 % of the total area, which was converted into agricultural lands. The orchard area
decreased by 22.29 km? with a percentage of 4.88%, which transferred into agricultural lands,
and the latter increased by 67.40 km, which is 14.36 % of the total area. In 2016-2019, in the
northeastern part of the study area, the population was evacuated and compensated so that the
residential areas became agricultural and other to bare land. Therefore, residential buildings
decreased by 20.93 km?, 4.41% of the total area. The bare lands increased by 30.66 km? to 6.63
% of the total area. Orchards increased by 29.67 km?, with 6.47 % of the total area due to
agricultural land converted into orchards.
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Figure 6: LULC map of change detection during 2016-2019
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Figure 7: LULC map of change detection during 2016-2019

Tables 1 and 2 are the land use/land cover post-classification matrix. The introductory stage
and the last state of variations were 2013 and 2016, 2016 and 2019, respectively, with a 3-year
interval. Tables 1 and 2 show that in 2013-2016, 17.4 km? of barren lands were converted into
agricultural land, while 31.09 km? was converted into residential buildings. At the same time,
44.45 km? of orchards had been transferred into agricultural lands, and 15.73 km? was
transferred into residential buildings.

A change of dissimilar LULC into an alternative for the interval from 2016 to 2019 was
observed. The total area of agricultural land in 2016 was 194.37 km?, 8.55 km?, and 50.41 was
converted to bare lands and orchards, respectively. At the same time, 17.75 km? of residential
buildings were transferred into the orchard area.
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2013
Agriculture Bare Residential Water
LU/LC classes lands lands Orchards buildings bodies Total
Agriculture 100.08 17.4 44.45 32.29 0.15 194.37
lands
201
016 Bare 0.48 29.37 0.94 5.13 0 35.92
lands
Orchards 18.85 4.93 64.07 14.43 091 103.19
Residential 8.37 31.09 15.73 68.31 0.11 123.61
buildings
Water 0.01 0.01 0.8 0.01 4.34 5.17
bodies
Total 127.79 82.8 125.99 120.17 5.51 462.25
Table 2: Post-classification matrix from 2016 to 2019
2016
Agriculture Bare Residential Water
LU/LC classes lands lands Orchards buildings bodies Total
Agriculture 117.82 0.87 21.24 12.54 0 152.46
lands
2019
Bare 8.55 26.46 2.68 28.83 0.01 66.53
lands
Orchards 50.41 1.49 63.32 17.75 0.43 133.41
Residential 17.3 7.09 14.78 64.14 0.04 103.34
buildings
Water 0.29 0.01 1.17 0.36 4.69 6.51
bodies
Total 194.37 35.92 103.19 123.61 5.17 462.25
Table 3: Area and percentage of LULC in the study area
(2013-2016) (2016-2019)
LU/LC classes Area/ km? Percentage Area/ km? Percentage
2013 2016 2013 2016 2016 2019 2016 2019
Residential 120.74 12477 | 2600 | 2677 | 12477 103.85 | 26.77 22.36
buildings
Bare lands 83.46 36.37 17.97 7.80 36.37 67.03 7.80 14.43
Water bodies 5.52 5.19 1.19 1.11 5.19 6.52 1.11 1.40
Orchards 126.49 104.20 27.24 22.35 104.20 133.86 22.35 28.82
Agriculture lands 128.20 195.61 27.61 41.96 195.61 153.14 41.96 32.98
Table 4: Change detection in Kufa
(2013-2016) (2016-2019)
LU/LC classes Change area km? Change (%) Change area km? Change (%)
Residential buildings -4.04 -0.77 20.93 4.41
Bare lands 47.08 10.17 -30.66 -6.63
Water bodies 0.32 0.07 -1.33 -0.29
Orchards 22.29 4.88 -29.67 -6.47
Agriculture lands -67.40 -14.36 42.47 8.99
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Conclusion

The LULC analysis conducted in Kufa for 2013, 2015, and 2016 yielded categorization
results indicating the presence of five distinct classes: residential buildings, water bodies,
orchards, bare fields, and agricultural land. In the study area, the analyses of LULC changes
during 2013 and 2016 are shown in Figure (6) and Table (4) as follows.
e Residential buildings increased by 4.04 km?, 0.77% of the total area.
e Bare lands decreased by 47.08 km? and 10.17% of the total area was converted into
agricultural lands.
e The orchard's area decreased by 22.29 km? with a percentage of 4.88%, which transferred
into agricultural lands. The latter increased by 67.40 km, 14.36% of the total area, due to the
lack of water bodies.
e Water bodies decreased by 0.32 km?, 0.07 % of the total area.
LULC changes during 2016 and 2019, as shown in Figure (7) and Table (4), are the following.
e The bare lands increased by 30.66 km? to 6.63% of the total area.
e The orchards increased by 29.67 km?, with 6.47% of the total area due to agricultural land
being converted into orchards due to the availability of water bodies.
e The residential buildings decreased by 20.93 km?, with 4.41% of the total area transferred
into agricultural lands.
e Water bodies increased by 1.33 km?, 0.29% of the total area.
Remote sensing data can be utilized to analyze changes in land use and land cover (LULC).
Satellite remote sensing data can provide valuable insights into land cover dynamics and land
use changes, including spatial distribution and potential future trends. The rapid expansion of
urban areas, often surpassing population growth rates, is causing significant concerns among
citizens and public agencies responsible for growth and development. This expansion leads to
the loss of agricultural lands and wetlands, rising infrastructure costs, increased traffic
congestion, and environmental degradation. Remote sensing data is valuable for detecting
changes in places, such as population increase and vegetation, spatially and quantitatively over
the years. Accurate data is crucial for strategic development and conserving our natural
resources and environment. It is indispensable for urban planners and residents alike. Satellite
remote sensing methods offer a cost-efficient option for obtaining additional information,
particularly when financial resources are diminishing.
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