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Abstract 

 

It is commonly stated that truth is only attributed to statements supported by 

factual evidence and logical reasoning. In mathematics, some valid 

mathematical facts exist without any discernible cause, and certain of these facts 

may appear arbitrary and coincidental. Nevertheless, they demonstrate the 

remarkable capacity of the human mind for reasoning and analysis. Experiments 

and practical implementations are carried out in the realm of science and 

physical phenomena to validate the equations used in deriving their outcomes. 

One prominent example of such scientific and physical applications is the field 

of thermodynamics. Differential and integration equations are central 

illustrations that elucidate the concept of randomness in pure mathematics. 

When formulating a random equation with several variables, mainly if the 

equation is of a degree greater than one and has multiple coefficients, it is 

conceivable to have an unlimited number of solutions that may not be feasible. 

This research will demonstrate how to develop a comprehensive understanding 

of the human mind. Specifically, we will explore the formation of relative 

considerations and their use as reference points for solving equations. By doing 

so, we want to address the challenge of dealing with the inherent 

unpredictability of pure mathematics in scientific applications. Relative 

considerations are utilized to create experimental devices that serve as 

references for obtaining desired equation results. Thermodynamics serves as a 

prominent example of this scientific approach, as it demonstrates how relative 

considerations can be employed as references to solve equations and overcome 

the inherent uncertainties of pure mathematics in scientific applications. This 

study aims to introduce, discuss, and analyze many theoretical and stochastic 

concepts and features in the field of science, with a specific focus on physical 

applications and thermodynamics. 

Keywords: Mathematics, Randomness, Thermodynamics, Relative 

Considerations 

 العشوائية في تطبيق الرياضيات البحتة على العلوم

 اسراء عيسى عبد حبيب

 وفاء محمد رضا شاكر

 :الملخص

أن الحقيقة تخُصص حصرًا للتصريحات المدعمة بأدلة لا جدال فيها وتفكير منطقي لا يعُارض. في عالم 
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الرياضيات، تظل بعض الحقائق الرياضية قائمة بصلابة، بلا سبب مميز، حيث تظهر بعض هذه الحقائق 

لبشري المدهشة في كما لو كانت تجريبية وصدفية. ومع ذلك، تعد هذه الحقائق شاهداً على قوة العقل ا

مجالات التفكير والتحليل. يتم إجراء تجارب دقيقة وتنفيذات عملية في ميدان العلوم والظواهر الفيزيائية 

  .لتوثيق المعادلات المستخدمة في استقرار نتائجها

معادلات مثال بارز على تلك التطبيقات العلمية والفيزيائية يتجلى في مجال الديناميكا الحرارية. تعتبر 

التفاضل والتكامل رموزًا بارزة، تسلط الضوء على مفهوم العشوائية في الرياضيات النقية. عند صياغة 

معادلة عشوائية تحمل عدة متغيرات، خاصة إذا كانت درجتها تفوق واحداً وتحتوي على معاملات 

هدف هذا البحث إلى عرض متعددة، يتسنى الانتقال إلى عدد لا حصر له من الحلول قد لا تكون عملية. ي

تطور شامل لفهم العقل البشري بدقة. وبشكل خاص، سنستكشف تكوين الاعتبارات النسبية واستخدامها 

كمراجع لحل المعادلات. من خلال ذلك، نسعى لمواجهة تحدي التعامل مع عدم التنبؤ الذي يترتب على 

رات النسبية لإنشاء أجهزة تجريبية تكون مرجعاً الرياضيات البحتة عند تطبيقها في العلوم. تسُتخدم الاعتبا

للحصول على نتائج المعادلات المرغوبة .تعُد الديناميكا الحرارية مثالًا بارزًا على هذا النهج العلمي، 

حيث توضح كيف يمكن استخدام الاعتبارات النسبية كمراجع لحل المعادلات والتغلب على التحديات 

حتة عند تطبيقها في السياقات العلمية. يهدف هذا البحث إلى تقديم ومناقشة المترتبة على الرياضيات الب

وتحليل العديد من المفاهيم والسمات النظرية والعشوائية في ميدان العلوم، مع التركيز بشكل خاص على 

 .التطبيقات الفيزيائية ومجال الديناميكية الحرارية الشاقة

 ئية، الديناميكا الحرارية، الاعتبارات النسبية: الرياضيات، العشواالكلمات المفتاحية

1. Introduction 

 

This investigation aims to explore the notion of randomness in delighted 

subjects. Consequently, it is necessary to clearly distinguish between 

randomness and non-randomness in science and pure mathematics. This will 

enable us to comprehend the underlying theories and concepts and facilitate the 

identification of relevant factors and experimental methods for addressing the 

issues related to randomness in pure mathematics. Several prominent scientists, 

such as Hilbert, Euclid, Leibniz, Turing, and Whitehead, attempted to address 

this problem using the intuitive method. Hilbert aimed to develop a 

comprehensive formal axiomatic system encompassing all mathematics. Despite 

criticism, Hilbert's approach can be considered a significant achievement, often 

called the "dream of the century" by many. The user's text is "[2]". Hilbert 

identified many essential features a system must possess to be considered 

intuitive. The system must possess inherent clarity, encompassing the 

requirement for an intuitive framework that includes all mathematical concepts. 

Additionally, the system must demonstrate coherence and comprehensiveness, 

ensuring that all axioms and modes of mathematical reasoning we acknowledge 

are derived from it. The user's text is "[3]". Figure (1) illustrates the primary 

factors that render any system axiomatic. 
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Fig. (1): Formal Axiomatic System 

 

Consistency refers to the absence of the ability to prove a statement and its 

negation. Completeness here refers to the requirement that if someone makes a 

statement, they must be able to substantiate it with theories, logical deductions, 

or fundamental principles. The resolution to the issue is to verify or ascertain. 

An algorithm enables you to determine the validity of a given significance. 

Hilbert aimed to include the fundamental branches of mathematics, namely 

Triple Arithmetic, Calculus, and Algebra, into his axiomatic framework [4]. To 

assure consistency when acting, it is necessary to have a mechanical method that 

validates and substantiates the claim of the activity. This procedure must have a 

set of rules. Your formal language consists of a restricted set of symbols and 

regulations. While many mathematical facts may be called "random facts," it is 

widely acknowledged that they are not truly random in the literal sense. Instead, 

their seeming unpredictability stems from our current lack of understanding of 

their underlying reference and actual cause. Thus, mathematical theories exist 

that are proven false, and we subsequently uncover ideas that invalidate and 

reject their validity. However, our ultimate goal in this research is to identify the 

primary approaches employed in addressing problems related to randomness in 

pure mathematical applications [5]. We will accomplish this by conducting a 

comparative analysis of all methods and previous studies to determine the most 

significant among them. 

 

2. Studies and theories 

 

2.1 Gödel's theorem 

 

"The information that is established, organized, and based on facts is never 
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sufficient to fully encompass the entirety of the truth." Mathematics relies 

mainly on numerical values, and researchers initially embraced natural numbers, 

followed by positive integers, negative integers, rational and irrational numbers, 

and, eventually, the concept of imaginary numbers. Refer to Figure 2, depicting 

a number line and the categorizations of numbers[6]. Integers are categorized 

into positive, negative, and zero. Negative integers are represented to the left 

and continue indefinitely towards negative infinity. 

In contrast, positive integers are represented to the right and extend indefinitely 

towards positive infinity on the number line. Rational numbers encompass 

several representations, including decimal fractions, numerators and 

denominators, and integers (1, -2, 0.15, 1/2, etc.). Non-rational numbers, such as 

π and others, are called e numbers. Imaginary numbers encompass negative 

square roots as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2) the number line and the classifications of numbers [6] 
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Self-reference is a concept that occurs in mathematics and possesses significant 

influence. Despite the complexity of the mathematical proof[7], we can create 

an approximate representation of the original form as long as we maintain 

simplicity and accuracy. Gödel asserted that we have theories, proposals, and 

conjectures in mathematics. He emphasized the importance of identifying Gödel 

or referential statements, which state that a particular proposition cannot be 

proven within the existing mathematical system. It is crucial to distinguish 

between a bid that is supportive but unprovable and an assumption that is not 

supportive. The request must be supportive for a proposition or self-reference to 

be considered complete. To accomplish this objective, two measures must be 

implemented. The initial phase involves the creation of a numerical encoding 

system, which is referred to as CGödelIZATION. Here, we shall illustrate. The 

English language consists of twenty-six letters: a, b, c, ..., z. Each letter is 

assigned a numerical value, with a being equal to 1, b being equal to 2, and so 

on. By adhering to precise guidelines, each distinct number can represent a 

particular word. Words can be represented by prime numbers (2, 3, 5, 7, 11, 

etc.) based on the number of letters they include. Certain words can be spoken 

in the following manner[9]: For instance, the term "if" is comprised of two 

characters that may be represented as follows: 

 

IF=22*36=19.552.734.375.000 

 

The second step is to form special equations even if the exponents are large. An 

example of these equations: 

 

2𝑥 + 3𝑦 = 1 

 

2𝑥 + 3𝑦 = 5 

 

𝑥
3 

+ 𝑦
3 

= 𝑧
3 

− 3 

5𝑥
221 

+ 3𝑦
49 

− 47 = 0 

 

Given these equations, some equations can be proven and solved, and other 

equations cannot be established or solved[10]; the first equation cannot be 

proven, while the second equation can be confirmed when: 

 

X=1 and y= 1 

 

As for the first equation, if we add an integer value to the right side and subtract 

an integer value to the left side, we can reach almost proof, Where the scientist 

Stephen Wolfram was able to computerize large numbers of integers up to a 
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billion, Therefore, no matter how immense the power of the X and Y 

transactions is, it becomes easy to solve equations. 

 

2.2 Slippery road theorem 

 

As René Magritte said [11], "Everything hides something we want to see." The 

most prominent example that can clarify this is the law of the area of a circle 

and the law of the circumference of a circle, as 

 

Circumference=2πr 

 

Circle area(A)= πr2 

 

An approximation ratio is a transcendental integer with unlimited decimal 

places. Here, the pi ratio was used as a benchmark, which is unquestionably 

favorable. The reference was determined by the measurement[12]. When 

establishing a law to define the circumference of a circle, which can be readily 

measured using any measuring method, and relating that length to the radius of 

the process, an estimated value of π may be derived. Many ratios in equations, 

including those in engineering and equations of integration and differentiation, 

have followed a similar method[13]. In essence, this approach relies on the 

principles of testing and measuring, making it a highly effective strategy for 

addressing issues related to random numbers. More specifically, it pertains to 

the concept of randomness within pure mathematics. 

 

2.3 Leibniz's theorem of axioms 

 

Leibniz introduced his axiom. In his work, he presented an axiomatic set 

theory[14] known as the Leibniz-Mycielski axiom, LM. This theory involves 

ordered pairs of variables x and y, with an order α that surpasses the orders of x 

and y. The approach also includes a formula φ(v), represented as (Vα, ∈), which 

fulfills the condition φ (x) ∧ ¬φ (y). The closure is equal among the variables 

while considering a defined class function devoid of variables. All sets x must 

have at least two items, denoted as F(x). Leibniz's thesis posits that no separate 

materials can be completely identical [15]. They must necessarily differ from 

each other in at least one feature. The principle of Leibniz asserts that a logical 

link exists between entities, which may be described as a logical connection 

between them. Furthermore, suppose we possess two materials, X and Y, that 

exhibit similarities but diverge in a single feature or variable. In that case, it is 

possible to organize them in a particular manner based on their qualities. 

2.4 Hilbert's theorem 

Hilbert is regarded as the preeminent mathematician, particularly in 

mathematical logic and meta-mathematics. He is recognized as one of the 
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pioneers in developing proof theory and mathematical reasoning. Before delving 

into Hilbert's view, it is necessary to address the concept of axioms. The 

axiomatic technique, often known as axioms, is a formal approach employed by 

science to establish assertions or assumptions known as axioms[18]. The axioms 

are interconnected, forming the foundation for the hypotheses. Criteria for a 

particular system: Hilbert constructed a comprehensive system encompassing all 

fields of mathematics and achieved the aspirations of many with his theory. His 

theory emphasized essential features that must be present for the system to be 

considered intuitive. The system must adhere to axioms, ensuring it is intuitive 

and consistent. It should also be comprehensive, encompassing all accepted 

mathematical axioms and modes of reasoning, which must be inferred. The 

system's intuitiveness is a crucial factor to be taken into account [19]: 

a- consistency         b- complet c- conclusion(decision problem)    

-Consistency means that we are not necessarily able to prove a hypothesis or a 

specific pattern. 

 

-Complete means that you have provided an affirmation to harm or prove it, 

whether by theories, reasoning, or hypotheses [20]. 

- decision problem: The solution to the problem is that you must assert or state. 

The algorithm allows you to determine if there is a specific meaning. There are 

what is known as the twenty-three Hilbert problems[21], which were posed by 

Hilbert and said were difficult to solve but would greatly determine the shape of 

mathematics in the future. These issues included continuity hypotheses, 

consistency of axioms, metric space, whether continuity groups are differential 

or not, whether physics supports the subject of axiomatic theories, the issue of 

central surfaces and Bernard's hypothesis, as well as the foundations of rigor 

and relativity of crystals[22], As well as calculating variables by analytical 

methods and linear differential equations, developing a general method for 

solving problems figuring calculus changes, and this is what we will focus on in 

this research. 

 

2.3.1 Development of random calculus by Hilbert's theorem 

Calculus is inherently distinct from other branches of mathematics due to its 

dynamic Nature, in contrast to the static Nature of other mathematical 

disciplines. In essence, calculus may be defined as the branch of mathematics 

that deals with analyzing motion and examining the principles governing the 

change process. Alternatively, to provide a more formal explanation [23]: 

Calculus encompasses the fundamental operations of differentiation and 

integration, serving as a vital instrument for engineers to ascertain rates of 

change and areas. It serves as the mathematical foundation for addressing 

problems involving variables that vary with time or another reference variable. 

A solid grasp of calculus is indispensable for advancing one's studies and 

cultivating proficiency in solving real-world engineering problems. This will be 
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apparent in the subsequent chapter when we will model physical systems and 

employ differential equations, which describe rates of change. These equations 

will enable us to represent the physical system, analyze it, and find a solution 

under certain conditions.  

This chapter serves as an introduction to the principles of calculus and their 

practical applications in engineering. The subsequent chapter delves into using 

differential equations to represent physical systems and their solutions for 

various inputs. Before the advent of calculus, mathematics was primarily static 

and limited in its ability to describe moving objects. However, most things are 

in constant motion, ranging from electrons within atoms to planets in the 

universe. Calculus, on the other hand, excels in addressing this dynamic Nature. 

It finds relevance in various fields where the significance of mathematics may 

not be immediately apparent. To illustrate the potential of calculus, let us 

consider a seemingly straightforward problem: determining the area of a circle. 

We are already familiar with the formula for calculating the size of a process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(3) shows the circle left over. 

 

Subsequently, in an attempt to acquire more forms and minimize the remaining 

area of the circle, let us explore an alternative approach: dividing the process 

into concentric rings. The width of this rectangle is equivalent to the ring's 
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circumference, which is π2πR. The height is determined by the smaller radius, r 

that you previously selected. Let's designate the variable r as dr, indicating a 

slight variation in radius between adjacent circle rings. What is our current 

situation? We possess a collection of circular rings approximated as rectangles 

and know how to determine their respective areas. As the options get smaller (or 

as the circle is divided into progressively smaller rings), our estimation of the 

ring's area becomes increasingly precise. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(4) the rings of concentric circles  

  

Concentric circles arranged on a graph with the equation: y = 2πR As the value 

of dr decreases, the estimation of the entire area of the process gets increasingly 

precise [24]: 

 

 

 

 

 

 

 

 

 

 

The total areas of concentric circles are represented as the area under the graph. 

 

We know the formula for the area of a triangle, Which in this case would be: 

 

𝐴 =
1

2
 𝑏ℎ    𝑤ℎ𝑖𝑐ℎ 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒: 

 

𝐴 =
1

2
(5)(2𝜋 × 5) =

5(2𝜋 × 5)

2
= 𝜋(5)2  → 𝐴 = 𝜋𝑅2 
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However, how did we arrive at this point? Let us pause and contemplate the 

matter at hand. We encountered a predicament that may be resolved by 

approximating it by the aggregation of several smaller integers, each like π2π×R 

×dr, for R values ranging from 0 to 5. The value dr represents the selected 

thickness for each ring of the circle. There are two crucial aspects to consider in 

this context: Dr serves a dual purpose: it determines the extent of the rectangles 

we are summing up and signifies the intervals between the various values of 

R—the more limited the options for Dr, the more accurate the estimate. 

However, reducing the doctor's size will result in a more precise response. By 

decreasing the value of dr, the approximation of the original problem improves. 

The sum of the areas of the rectangles becomes closer to the area under the 

graph. Therefore, it can be inferred that the exact solution to the original 

problem is equal to the area under this graph. Are these concepts intriguing? 

Now, you may be questioning the rationale of investing effort in a task as 

straightforward as determining the size of a circle. Let us pause to contemplate... 

Given that we successfully determined the area of a circle by rephrasing the 

problem as determining the space beneath a graph, is it feasible to employ the 

same approach for other, more intricate charts? Affirmative, we are indeed 

capable of doing so. Consider, for instance, the graph of the equation y=x^2, 

which represents a parabola. 

Programming a computer to create random numbers is inherently challenging 

due to the deterministic Nature of computers, which often produce predictable 

outputs depending on their programmed instructions. Random Number 

Generators (RNGs) allow computers to have distinct, non-uniform, and 

unpredictable numbers. They are utilized in many practical applications, 

including The study and practice of techniques to secure communication and 

information from unauthorized access or modification. Random numbers play a 

vital role in the cryptographic protection of passwords, web browsers, and other 

online and digital information forms—wallets for digital currencies. Seed 

phrases generated using random numbers are employed in BIP39 standard 

procedures, which are utilized to compute encryption keys for Bitcoin wallets—

computer-generated simulations. Pseudorandom number sequences are 

employed for testing and repeating simulations, such as Monte Carlo 

simulations, to sample things to estimate unknown ratios and regions. Machine 

learning (ML) is a field that focuses on developing algorithms and models that 

enable computers to learn and make predictions or decisions without being 

explicitly programmed. Random numbers and machine learning frameworks 

that do not require a pre-defined model, such as domain randomization (DR), 

are utilized in several practical applications, including robotic Hoover cleaners 

and the Open AI hand dexterity learning project. Random numbers and 

pseudorandom number generators (PRNGs) play a crucial role in game creation, 

encompassing gameplay mechanics and visual elements—computer science. 
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Random numbers play a vital role in several aspects of computer networking, 

such as generating TCP/IP sequence numbers, creating nonces for Transport 

Layer Security, generating password salts, and assigning DNS source port 

numbers—empirical research. Random numbers are utilized to develop 

probability samples from a population and derive statistical inferences from a 

survey. They also determine the appropriate treatment for different physical 

units in an experiment—the study of numbers, quantities, and shapes. Random 

number generators (RNGs) protect against selective bias, rendering them 

valuable for addressing mathematical issues that may seem entirely non-

probabilistic and statistical problems that are challenging to answer by direct 

analysis [26]. 

 

5. Conclusions and Recommendations 

5.1 Conclusions 

1. Understand the concept of a limit and its significance in rate-of-change 

relationships. 

2. Use calculus notation to describe a rate of change (differentiation) and 

understand the significance of the operation. 

3.  Solve engineering problems involving rates of change. 

4. Understand what is involved in the calculus operation of integration. 

5. Solve engineering problems involving integration. 

6. All previous studies and research, even those that contradicted Godel's point 

of view, showed their agreement on the effectiveness of theories of axioms in 

solving the significant problems that we face in the randomness of mathematics. 

7. There are some practical methods for solving the problem of random pure 

mathematics, such as the Silbury Road method, the test and measurement 

method, and the computing software method. 

5.2 Recommendations 

Fractional calculus is an encompassing and expansive form of classical calculus. 

The genesis of calculus is commonly ascribed to Gottfried Leibnitz and Isaac 

Newton, despite the enduring acrimonious argument between the two on the 

true progenitor of calculus. Leibnitz introduced his initial publication on 

calculus in 1684, whereas Newton incorporated calculus into his Principia, 

published in 1687. While the essential calculus concepts had been familiar to 

Greek, Arab, and Persian mathematicians for many years, Leibnitz and Newton 

formulated a comprehensive calculus structure. They developed the fundamental 

theorem of calculus, which establishes the connection between derivatives and 

integrals. Following the advent of calculus, mathematicians promptly saw it as a 

critical study area. In 1695, Guillaume François Antoine, a prominent 

mathematician and the author of the initial French exposition on calculus, 

addressed a letter to Leibnitz inquiring about the consequences of considering 

an actual number as the order of differentiation rather than an integer. Leibnitz 
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responded by stating that this would result in a paradox, which would eventually 

have valuable results. The dialogue between Marquis and Leibnitz is often 

regarded as the inception of fractional calculus. 

Nevertheless, the practical advancement of fractional calculus was delayed until 

1832. Joseph Liouville established the Riemann-Liouville definition of 

fractional derivative, which is currently known as such. This definition is based 

on the Riemann-Liouville fractional integral. 
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