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Abstract 

Arrhythmia serves as a critical indicator of associated cardiovascular diseases 

(CVD) and is widespread globally. For prompt and efficient treatment, it is 

essential to precisely detect arrhythmia. The electrocardiogram (ECG) is 

fundamental in identifying arrhythmia. Deep learning (DL) techniques have 

yielded promising outcomes in the clinical field, thereby enhancing the accurate 

and timely detection of arrhythmia. A novel approach for the identification of 

cardiac arrhythmias from electrocardiogram (ECG) signals is presented in this 

study. Leveraging deep learning techniques, specifically convolutional neural 

networks (CNNs), the effectiveness of the proposed method has been demonstrated 

in accurately classifying various arrhythmia types. Experimental findings exhibit 

that the proposed approach yielded an average accuracy of 97.62% in diagnosing 

arrhythmia. Through the utilization of advanced algorithms and ensemble learning 

strategies, the suggested approach reveals robustness and efficiency in 

distinguishing arrhythmic patterns, thereby contributing to the advancement of 

automated cardiac health monitoring systems. 
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الكشف الفعال عن عدم انتظام ضربات القلب القائم على تخطيط القلب وفقاً لمعلومات التردد الزمني 

 باستخدام نهج التعلم العميق

 علا علي عبود

اجستير في هندسة الحاسوب/الشبكات، جامعة بكالوريوس العلوم. في شبكات تكنولوجيا المعلومات، درجة الم

 المستقبل، بابل

 خلاصة

يعد عدم انتظام ضربات القلب بمثابة مؤشر حاسم لأمراض القلب والأوعية الدموية المرتبطة به وهو منتشر 

على نطاق واسع على مستوى العالم. للحصول على علاج سريع وفعال، من الضروري الكشف بدقة عن عدم 

أمرًا أساسياً في تحديد عدم انتظام ضربات القلب.  (ECG) ت القلب. يعد مخطط كهربية القلبانتظام ضربا

عن نتائج واعدة في المجال السريري، وبالتالي تعزيز الكشف الدقيق  (DL) لقد أسفرت تقنيات التعلم العميق
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دم انتظام ضربات القلب وفي الوقت المناسب عن عدم انتظام ضربات القلب. تم تقديم طريقة جديدة لتحديد ع

في هذه الدراسة. من خلال الاستفادة من تقنيات التعلم العميق،  (ECG) من إشارات مخطط كهربية القلب

، تم إثبات فعالية الطريقة المقترحة في التصنيف الدقيق لأنواع (CNNs) وخاصة الشبكات العصبية التلافيفية

% في 97.62دقة ائج التجريبية أن النهج المقترح حقق متوسط عدم انتظام ضربات القلب المختلفة. تظهر النت

تشخيص عدم انتظام ضربات القلب. من خلال استخدام الخوارزميات المتقدمة واستراتيجيات التعلم 

الجماعي، يكشف النهج المقترح عن المتانة والكفاءة في التمييز بين أنماط عدم انتظام ضربات القلب، مما 

 .أنظمة مراقبة صحة القلب الآليةيساهم في تطوير 

 :: مخطط كهربية القلب، عدم انتظام ضربات القلب، التعلم العميق، مخطط الرسمالكلمات المفتاحية

1.Introduction 

Arrhythmia, characterized by irregular heartbeat patterns, represents a serious 

cardiac condition that can potentially lead to cardiac arrest and fatalities [1]. 

Electrocardiogram (ECG) is widely utilized in the diagnosis and ongoing 

assessment of cardiovascular disorders [2]. Presently, Cardiovascular diseases 

(CVD) lead in rates of illness and death globally, posing a significant threat to 

public health. The World Health Organization (WHO) reports that approximately 

32% of annual deaths are due to CVD [3]. Consequently, the precise and prompt 

diagnosis of arrhythmia is crucial to enhance treatment efficacy and patient 

outcomes. Timely identification of arrhythmia can remarkably decrease the 

likelihood of future life-threatening events [4]. 

Currently, several diagnostic methods are available for detecting arrhythmia, 

including cardiac computed tomography (CT), cardiovascular magnetic resonance 

imaging (MRI) and electrocardiogram (ECG). Among these, ECG is particularly 

valuable as it provides a precise measure of the onset, spread, and recovery of 

cardiac excitation. Its non-invasive nature and cost-effectiveness make ECG the 

most widely utilized tool for detecting arrhythmia in clinical field [5]. 

Electrocardiogram (ECG) recordings are often influenced by various variables, 

necessitating thorough preparation to improve data quality. A common step in 

preprocessing involves reducing noise. In this paper, we employ the discrete 

wavelet transform (DWT) method to achieve noise reduction in ECG data [6]. 

ECG diagnosis based on Machine-learning relies significantly on the extraction of 

features. Traditionally, processes of feature extraction have evolved to incorporate 

both the frequency and time domains of the ECG [7]. Extraction of time domain 

features mainly reflects the dynamic properties of the signal as it progresses but 

has limitations when analyzing non-stationary signals. On the other hand, 

frequency domain feature extraction exposes the frequency characteristics and 

spectral attributes of the ECG, yet it might fail to capture transient signal 

information effectively [8].  Hence, this study places emphasis on the time-

frequency domain, employing visualized wavelet time-frequency diagrams to 
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depict ECG characteristics. This hybrid method adeptly captures a wide array of 

time-frequency domain characteristics in ECGs, establishing a robust basis for 

precise classification in subsequent analyses. With the progress of Artificial 

Intelligence (AI), computerized ECG analysis has emerged as a prominent research 

field. Numerous techniques have been devised to accurately diagnose arrhythmias. 

Previous studies utilized conventional machine learning techniques that depended 

on classification through manually crafted feature extraction. In contrast, deep 

learning-based techniques have demonstrated significant outcomes in ECG 

analysis and classification. 

The proposed system in this study comprises five primary stages: preprocessing, 

feature visualization, feature extraction, feature selection, and classification. In the 

preprocessing stage, artifacts within ECG signals are eliminated using discrete 

wavelet transform (DWT). The subsequent step involves beat segmentation to 

isolate individual heartbeats. Spatial features are then extracted from the visualized 

signals utilizing a Convolutional Neural Network (CNN) applied to scalogram 

transformations. To streamline data and reduce redundancy among features, an 

optimal subset of features is selected using the MRMR (Minimum Redundancy 

Maximum Relevance) algorithm. Finally, the selected features are categorized into 

various groups of cardiac signals using the bagging ensemble learning technique. 

This approach enables effective detection and classification of different types of 

arrhythmias. The performances of our proposed model were evaluated against 

state-of-the-art techniques documented in existing literature. The findings 

demonstrate that the presented method achieves outstanding outcomes in 

arrhythmias detection from ECG. 

2.Related Works 

In [9], the investigators integrated Wavelet Time-Frequency representations with 

the advanced Swin Transformer deep learning-based architecture to automate the 

identification of cardiac arrhythmias. Feature extraction employed the complex 

Morlet wavelet, generating wavelet time-frequency maps to visualize the temporal 

and spectral characteristics of the ECG signals. The Swin Transformer model was 

introduced for classifying purposes, achieving notable accuracy through its 

hierarchical structure and self-attention mechanisms. The experiments 

demonstrated high accuracies of 98.37% and 99.34% for inter-patient and intra-

patient analysis, outperforming existing methodologies documented in the 

literature. 

In [10] authors employed Support Vector Machine and Naive Bayes classifiers for 

predicting arrythmias using MIT-BIH dataset. For analysis, the authors utilized the 

data mining tool WEKA 3.8.5 to classify individuals with and without arrhythmia. 
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Statistical analysis was conducted using IBM SPSS version 21. Using WEKA's 10-

fold cross-validation for train and test, the SVM exhibited better performance than 

the Naive Bayes, achieving an accuracy rate of 88.50% in classification, compared 

to 80.39% for NB. 

In [11] authors present an advanced Ensemble Learning technique called Fine 

Tuned Boosting (FTBO)for arrhythmia detection leveraging multi-lead ECG data. 

The study introduces a novel feature extraction method that employs a sliding 

window sized at 5 R-peaks. The MIT-BIH arrhythmia dataset was used for 

experiments, concentrating on Atrial Fibrillation (AF), Atrial Premature 

Contraction (PAC), and Premature Ventricular Contraction (PVC). Findings 

showed that the presented FTBO model delivered high accuracy, sensitivity, 

specificity across all arrhythmia types. Remarkably, in detecting AF it achieved 

100% sensitivity and specificity and 99% for PVC. Additionally, for PAC 

detection, the presented model attained nearly 96% specificity and sensitivity. 

[12] presents a groundbreaking method by integrating LSTM, CNN and 

Transformer techniques. This fusion enables the extraction of long-range 

dependency, temporal and spatial features from ECG signals, enhancing the 

model's ability to capture comprehensive attributes. The extracted features are 

subsequently combined in an ensemble voting classifier that utilizes three 

conventional base learners, each leveraging deep features. The evaluation on the 

MIT-BIH dataset demonstrate superior performance of the proposed model 

compared to state-of-the-art approaches. The model achieves an impressive 

accuracy of 99.56%, highlighting its efficacy in improving diagnostic accuracy and 

reliability in arrhythmias diagnosis.  

In [13], authors endeavor to develop an automated deep learning-based system 

designed to precisely classify ECG signals into three distinct classes: congestive 

heart failure (CHF), normal sinus rhythm (NSR) and cardiac arrhythmia (ARR). To 

accomplish this, ECG data from BIDMC and MIT-BIH datasets, underwent 

rigorous preprocessing and segmentation before being employed for training the 

models. The evaluation metrics used to assess the model's effectiveness included 

F-measure, recall, precision, sensitivity, specificity, and overall accuracy, derived 

from a multi-class confusion matrix. The results demonstrated that the proposed 

deep learning model achieved an impressive overall classification accuracy of 

99.2%. 

Authors in [14] implemented a robust deep learning model capable of diagnosing 

arrhythmias from a database containing 109,446 samples categorized into five 

classes. The research utilizes deep learning-based methodologies to automate the 

detection of cardiac arrhythmias, addressing bias in waveforms from the MIT-BIH 

arrhythmia database. The dataset's extensive ECG waveforms promise high 

accuracy in disease prediction. The study compares the performance of CNN and 
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ResNet-18 architectures in terms of accuracy. CNN achieves approximately 

97.86% accuracy, while ResNet-18 improves this to 98.14%. Comparative analysis 

with existing techniques underscores the superiority of the proposed model.  

In [15], authors aim to propose a classifier capable of accurately detecting 

arrhythmias in clinical patients' ECG signals. The researchers employed a 

Convolutional Neural Network (CNN) designed to classify five various heartbeats 

within ECG signals. The experiments utilized data sourced from the publicly 

available MIT-BIH database, with a balanced distribution across the five heartbeat 

classes. The proposed CNN model achieved impressive results, demonstrating an 

F1-score of 99.44% and an accuracy of 99.33% in the classification of heartbeats. 

Authors in [16] introduce an integrated deep learning-based model called 2D-

CNN-LSTM, aimed at automating the identification and classification of 

arrhythmias from ECG signals. For the evaluation of the suggested 2D-CNN-

LSTM model, rigorous experiments were performed leveraging the MIT-BIH 

dataset. The outcomes demonstrate high accuracy with approximately 99%, and 

99% accuracy rate. 

In [17], authors have implemented a deep learning methodology that utilizes the 

scalogram obtained from continuous wavelet transform (CWT) to categorize ECG 

signals according to arrhythmia patterns. The CWT transforms the ECG recordings 

into scalograms, which are then applied to train a 2-D Convolutional Neural 

Network. In the presented framework, investigators performed training and testing 

on the CNN to diagnose five various heart rhythms. This method achieved 

impressive performance measures with an average accuracy of 99.65%.  

3.Proposed Method 

This section details the proposed method for detecting cardiac arrhythmias from 

ECG signals. The proposed system consists of five main stages: preprocessing, 

feature visualization, feature extraction, feature selection, and classification. The 

diagram of the proposed method is shown in Figure 1. 
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Figure 1-Diagram of the Proposed Method 
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In the preprocessing stage, artifacts are removed from the ECG signals utilizing 

Discrete Wavelet Transform (DWT). The subsequent step involves the beat 

segmentation. Here, the location of the R peak in each beat of the ECG signal is 

identified, which serves as the reference point for beat segmentation. The beats are 

then segmented based on the location of these R peaks. Subsequently, these signals 

are visualized for the extraction of time-frequency features of ECG signals. Spatial 

features are then extracted from the visualized signals using a CNN (Convolutional 

Neural Network) applied to scalogram transformations. 

Following this, to reduce data dimensionality and eliminate redundancy among 

features, an optimal subset of features is selected using the MRMR (Minimum 

Redundancy Maximum Relevance) algorithm. Finally, the selected features are 

classified into different groups of cardiac signals employing the bagging method, 

allowing detection of different types of arrhythmias. The following sections detail 

the steps of the proposed method. 

 

3.1. Preprocessing 

Various types of noise in the cardiac signal reduce the signal-to-noise ratio (SNR). 

In the preprocessing stage, noise and artifacts are removed from the ECG signal as 

much as possible to increase the SNR. This stage is crucial for the optimal 

performance of the arrhythmia classification system. 

Different types of disturbances and artifacts are present in the ECG signal. 

Examples of considered noise include muscle artifacts, baseline wander, power 

line interference, contact noise, electrode motion artifacts and electromyographic 

artifacts. The preprocessing method in this work is divided into two sections. The 

first phase uses discrete wavelet transform (DWT) to reduce noise in the ECG 

signal. The subsequent phase involves ECG signal segmentation, with each phase 

detailed in the following sections. 

 

3.1.1. ECG Segmentation 

Since each recorded ECG signal comprises numerous beats, these beats must first 

be identified and separated so that each beat can be classified into a specific class 

during the classification stage. After noise removal, the R peaks in each beat of the 

ECG signal are identified as reference points for beat segmentation. To segment a 

beat, 100 samples to the left of the R peak and 99 samples to the right are 

extracted. By selecting 100 samples to the left and 99 samples to the right of the R 

peak, respectively, along with the R peak itself, a beat comprising 200 samples is 
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obtained. The figure 2 shows an example of a normal beat from an 

electrocardiogram signal. 

 

 

Figure 2-A Normal Beat from an Electrocardiogram Signal 

 

 

3.1.2. DWT-based Noise Reduction 

Since DWT is a useful tool for analyzing non-stationary signals, it is employed in 

this research to remove noise from the ECG signal. Wavelet transform enables the 

representation of a signal at multiple scales and provides simultaneous time-

frequency localization. The input signal is decomposed at each stage using low-

pass and high-pass filters, followed by downsampling. The high-pass filter output 

gives the detail coefficients D1, while the low-pass filter output gives the 

approximation coefficients A1. In this study, the ECG signal is decomposed into 

four wavelet levels using the db6 wavelet basis function. During the signal 

reconstruction phase, the first and second level detail coefficients are discarded, as 

most ECG signal noise manifests at these frequencies. The db6 wavelet is chosen 

for its morphological resemblance to the QRS complex of the ECG signal. The 

figure 3 shows an example of a denoised signal using this method. 
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Figure 3- Example of an Extracted Beat - Left: Without Noise Removal - Right: 

With Noise Removal 

3.2.CWT-Based Time Frequency Information Visualization 

Scalogram visually represents the time-frequency characteristics of a signal, used 

for analysis and visualization through Continuous Wavelet Transform (CWT). This 

method allows us to observe how different frequencies of a signal change over 

time, which is particularly useful for analyzing non-stationary signals like ECG, 

where frequencies vary significantly with time. 

The Continuous Wavelet Transform (CWT) for a signal is defined in the following 

equation: 

𝑍(𝑎. 𝑏) =
1

√𝑎
∫ 𝑠(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡      

∞

−∞
                                               (1) 

In the above equation, (t) denotes a signal of finite energy, 𝜓∗ represents the 

complex conjugate for initial CWT function, also the parameters a and b control 

the scaling and translation operations applied to the CWT. 

CWT is calculated by adjusting the parameters a and b continuously, thus enabling 

analysis over different lengths and scales of the signal. CWT exceeds the STFT in 

terms of time and frequency resolution. This is accomplished by employing 

analysis windows of different sizes at various frequencies. Figure 4 demonstrates 

an instance of an ECG signal alongside its corresponding scalogram. 



 

1415 

 

 

Figure 4: An illustration of a ECG signal alongside its corresponding scalogram 

Also Figure 3 shows an example of scalogram images for each F, N, S, U and V 

classes. 

 

Figure 5. example of scalogram images for V, U, S, N, F classes 

 

 

3. 3. CNN-Based Feature Extraction Model 

CNNs represent a widely adopted type of neural architecture. The primary 

distinctions between CNNs and ANNs lie in their architecture and input data. 
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While ANNs utilize numerical values, CNNs process images. An image I 

comprises pixels with dimensions d, h and w. Images are initially resized based on 

their depth, width, and height. The image depth depends on the color 

representation employed. For example, in the rgb colour representation system, 

that employs three colour channels, the depth of network is considered in 3D size.. 

The CNN architecture comprises convolutional, pooling and fully-connected layers 

in sequence. Convolutional layers utilize filters to extract unique features of the 

input images. Through convolutional filters, any pixel 𝐼𝑥,𝑦 from images, 

Accompanied by a filter k (a p × p matrix), is subjected to an operation represented 

by the star symbol *. This operation is independently utilized to each coordinate (x, 

y). 

𝑘 ∗ 𝐼𝑥,𝑦 = ∑ ∑ 𝑘𝑖,𝑗 . 𝐼𝑥+𝑖−1,𝑦+𝑗−1 + 𝑏1

𝑝

𝑗=1

𝑝

𝑖=1

 

(2) 

The bias 𝑏1 is incorporated in the model. To reduce the file size of the image, 

pooling layers are employed. The function ω(.) is employed for assess any pixel 

along with its adjacent pixels, utilizing operations like average calculations, 

maximum or minimum. The function processes each pixel and contributes to the 

downsized images ω(.). This concept will be expressed for clarity as follows 

𝜔(𝐼𝑥,𝑦) = 𝐼𝑥−𝑖,𝑦−𝑗𝑖,𝑗∈{−1,0,1}
max         (3) 

The formula for adjusting image dimensions is given with (w-k)/(s+1) × (h-

k)/(s+1), where s represents the kernel shift. The pervious operations can be 

iterated multiple times before the final fully connected layer, which serves as the 

concluding component of the method structure. This framework is composed of an 

output layer along with several hidden layers 

Figure 6 depicts the architectural design for the presented CNN bagging method. 

The structure incorporates convolutional layers, a fully connected layer and two 

pooling layers. Classification is performed using the outputs from the second 

pooling layer. When processing a scalogram image leveraging the suggested 

Convolutional neural network, the framework provides five possibilities, each 

corresponding to one of the five arrhythmia classes. 

 



 

1417 

 

 

Fig. 6-The structure of the CNN-bagging technique 

3.4. Feature Selection Based on MRMR Algorithm 

Selecting features is the procedure of meticulously selecting a set of features from 

a larger dataset, aimed at removing redundant and irrelevant ones. This strategic 

approach not only reduces the feature’s dimensions and the volume of data needed 

for training process but also mitigates the challenges associated with high 

dimensional data, thereby enhancing algorithmic effectiveness and improving 

generalization capabilities. Furthermore, it accelerates computational efficiency 

and facilitates the interpretability of models. 

The primary objective of the MRMR (Maximum Relevance Minimum 

Redundancy) approach is to maximize the correlation between features and their 

corresponding class labels, while simultaneously minimizing the redundancy 

among features. Mutual information serves as a key metric in the MRMR method 

to quantify the similarity between variables. For two variables X and Y, mutual 

information can be computed using the following equation: 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦∈𝑌𝑥𝜖𝑋

 (4) 

In this relationship: 

p (x, y): Probability density function of X and Y. 

 Maximum relevancy metric 

The metric aiming to maximize the relationships among the features of every class 

and its corresponding label is derived from the equation below: 

𝑀𝑎𝑥 𝐷(𝑆, 𝑐), 𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖; 𝑐)

𝑥𝑖𝜖𝑆

 (5) 

Where: 
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S: features set 

|S|: the size of S-space features set  

xi: individual features 

c: categorizes. 

I (xi, c): mutual information for any features in specific class. 

 

 Minimum redundancy metric 

The metric that seeks to minimize the relationships among features as below 

equation: 

𝑀𝑖𝑛 𝑅(𝑆), 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑖, 𝑥𝑗)

𝑥𝑖,𝑥𝑗 ∈ 𝑆

 (6) 

In real-world scenarios, incremental search models are utilized for discover 

attributes which are nearly optimal. for identifying the optimal subset of features 

(with m-1 features), the Sm-1 subset of features is defined using the equation below: 

 

𝑚𝑎𝑥𝑥𝑗𝜖𝑋−𝑆𝑚−1
[𝐼(𝑥𝑖; 𝑐) −

1

𝑚 − 1
∑ 𝐼(𝑥𝑗; 𝑥𝑗)

𝑥𝑖 𝜖 𝑆𝑚−1

] (7) 

 

3.5 Classification with Bagging Method 

The bagging technique is employed for the classification and detection of cardiac 

arrhythmias in this work. Bagging, or bootstrap aggregating, involves sending 

subsets of the main dataset to every classifier. This implies that every classifier 

processes a segment of the dataset and constructs its system using the subset 

assigned to it. These subsets are selected with replacement, meaning every sample 

has the potential to be chosen repeatedly. Studies demonstrated that this model will 

enhance detection and learning capabilities with high accuracy across various data. 

The overall performance of this technique is illustrated in Figure 7. 
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Figure 7- Classification with Bagging technique 

4. Experimental Results 

This segment assesses the performance of the presented approach employing 

established metrics and compares its effectiveness with other methods. The 

suggested approach was trained using MATLAB (2023a) and needs an NVIDIA 

graphics card with 6 GB of internal RAM. Each class contains 5000 ECG signals, 

resulting in the generation of 5000 scalogram images per class. Automatic 

cropping was used on the standard CWT images to remove any unnecessary white 

space. Subsequently, the resolution was diminished to 227 x 227 x 3 pixels to 

highlight specific regions of interest in the scalogram images. 

In the simulations, 70% of the scalogram images were used for training the CNN. 

Specifically, a total of 17,500 scalogram images were utilized for training the CNN 

network, and 7,500 scalogram images were used to test the network. Each 

scalogram image yields 1000 features that are extracted by the CNN. Utilizing the 

MRMR algorithm, the dimensionality of every feature vector is then decreased to 

500 dimensions. Lastly, these feature vectors are categorized using the bagging 

ensemble learning method. 

Furthermore, the accuracy of classification is assessed through segmenting the 

database into ten folds. Every fold serves as a validation dataset for training and 

testing the method. It is worth noting that the database is segmented into training 

and test sets through a random procedure, and the reported outcomes are the 

averages of 50 program executions. 

4.1 Database 
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This study utilizes the MIT-BIH Arrhythmia Dataset. The data in this dataset 

obtained through electrocardiogram recordings from 25 males ranging in age from 

32 to 89 years, and 22 females aged between 23 and 89 years., approximately 60% 

of whom were inpatients. Due to the anatomical differences among individuals, 

two distinct lead channels, V and II, were used for the ECG signals recording. The 

sampling rate of these signals is 360 Hz and were recorded over 24 hours from 47 

individuals. The database includes 48 half-hour ECG recordings. It features R-peak 

annotations, interpretations of most beats, and classifications of their types. 

Approximately 110,000 beats were analyzed in this dataset. Table 1-5 shows the 

different classes in this database. 

Table 1- five different classes in MIT-BIH database 

Classes 

number 
Description Abbreviation 

1 
Fusion of ventricular and 

normal 
F 

2 Normal N 

3 
Supraventricular 

premature 
S 

4 Unclassifiable U 

5 Ventricular escape V 

4.2. Evaluation Metrics 

In this work, F-score, Precision, Accuracy and Recall are utilized to assess the 

efficacy of the presented approach. The metrics are computed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

(5) 

Precision (P) is calculated as the number of related samples correctly identified to 

the total count of samples predicted as positive. It can be calculated based on 

below equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃 
 

(6) 

Recall (R) is the ratio of related items correctly identified out of all the items that 

are actually relevant. R can be calculated utilizing the following equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(7) 
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The F1 score is widely adopted as an evaluating metric because it balances the 

trade-off between recall (R) and precision (P) metrics. It is calculated by 

determining the harmonically average of precision and recall, as shown in the 

below formula: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑅

(𝑃 + 𝑅)
 

(8) 

In the above equations: 

True Positive (TP): Indicates correctly identified positive instances. 

False Positive (FP): Represents incorrectly identified positive instances. 

False Negative (FN): Indicates incorrectly identified negative instances. 

True Negative (TN): Represents correctly identified negative instances. 

4.3 Evaluating the Training Process 

The accuracy and loss learning curves throughout the 400 epochs of training, are 

depicted in Figures 8 and 9 respectively. Figure 5 demonstrates that the accuracy 

curve increases progressively, indicating the presented system improves with 

experience (learning). Additionally, the loss curve represents the model's error. 

Loss minimization is the primary goal of the proposed method, which is yielded 

through techniques such as gradient descent. Thus, a lower loss indicates better 

model performance. To quantify the loss, the cost function is computed. Figure 9 

exhibits the findings related to the learning phase. According to figure, the loss 

curve decreases as the model trains, indicating that the suggested method is 

effectively learning. Despite slight variations in the learning curves, the loss 

decreases over the long term, and accuracy increases, demonstrating that the model 

is learning effectively. 
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Figure 8- diagram illustrating the improvement in the proposed model's accuracy 

through training 

 

 

Figure 9- diagram depicting the decrease in the presented method’s loss through 

training 

4.4 Evaluation and Result Comparison 

In order to evaluate the effectiveness of the arrhythmia detection method, a 

confusion matrix was used, as shown in figure 10. The outcomes of classification 

for each class are displayed in the confusion matrix. This matrix indicates that the 

suggested method classification function is commendable. 

 

Figure 10- the presented model confusion matrix  

 



 

1423 

 

Figure 11 shows the ROC curve of the proposed method in detecting cardiac 

arrhythmias. This curve is obtained by plotting the True Positive Rate (TPR) 

against the False Positive Rate (FPR), demonstrating the balance between those 

measurements for the model. An optimal model is located towards the top-left 

section of the ROC curve, signifying a high true positive rate (TPR) and a low 

false positive rate (FPR). On the other hand, a suboptimal model is situated 

towards the bottom-right corner of the ROC curve, indicating a low true positive 

rate and a high false positive rate. An indiscriminate classifier would align along 

the diagonal line in the ROC diagram, where the true positive rate (TPR) equals the 

false positive rate (FPR). As shown in Figure 11, the ROC curve of the proposed 

method exhibits a higher TPR and a lower FPR, with its breaking point near the 

upper left-hand section. Therefore, it could be inferred that the suggested system is 

highly accurate in classifying cardiac arrhythmias. 

 

Figure 11- The ROC Curve Generated by the presented method 
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Additionally, a comparison of Precision, Recall, and F-score metrics is presented 

in Figure 12. Since F-score is a metric that balances Precision and Recall, it holds 

greater importance in demonstrating the performance of each method. As observed 

in Figure 12, the F-score for the presented method is 97.62. In contrast, the highest 

F-score after the proposed method belongs to the CNN [21] method with a value of 

95.19. These findings exhibit the presented method’s superiority compared to other 

methods. 

 

Figure 12-The Results Comparison In Terms Of Precision, Recall And F-Score 

The accuracy of cardiac arrhythmia detection has been compared for the proposed 

approach and several existing models in Table 2. Results for the suggested system 

are obtained by averaging results over 30 repetitions of experiments. As shown in 

Table 2, the accuracy metrics for models (LSTM) with (MLP) [19], Unsupervised 

Transformer [20], CNN [21], Random Forest [22], SVM [22], and Graph 

Convolutional Network [23] are 95.0, 89.5, 90.8, 93.8, 96.2, and 96.9 respectively. 

Furthermore, the accuracy of the proposed method is 97.6. These table results 

indicate the efficacy of the presented approach based on accuracy compared to 

other algorithms. 
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Table 2- Comparison of the presented approach with other techniques. 

Accuracy Methodology Author 

95.00 (LSTM) with (MLP)  Sivapalan et al. [19] 

89.50 Unsupervised Transformer  Alamr A et.al. [20] 

90.80 CNN  Cao M et.al. [21] 

93.80 Random forest Gour A et.al. [22] 

96.20 SVM  Gour A et.al. [22] 

96.90 Graph Convolutional Network  He Z. et.al. [23] 

97.62 CWT CNN Proposed 

 

5.Conclusion 

In conclusion, the research conducted on efficient ECG-based cardiac arrhythmia 

detection using deep learning has yielded promising results in the realm of 

automated arrhythmia classification. The proposed method, leveraging 

convolutional neural networks and ensemble learning techniques, has demonstrated 

exceptional performance in accurately identifying various types of arrhythmias.  

Through extensive experimentation and evaluation, the proposed approach 

achieved an impressive accuracy of 97.62%, showcasing the method's ability to 

effectively detect and classify arrhythmia in electrocardiogram signals. The results 

highlight the superiority of the presented approach compared to other state-of-the-

art techniques. 

The utilization of advanced algorithms, such as convolutional neural networks 

trained on a comprehensive dataset of ECG signals, coupled with ensemble 

learning strategies like bagging algorithm, has significantly enhanced the 

efficiency and accuracy of arrhythmia detection. By leveraging the power of deep 

learning and ensemble techniques, the proposed method has paved the way for 

more reliable and timely identification of cardiac arrhythmias, ultimately 

contributing to the advancement of automated cardiac health monitoring systems. 
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