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1. Introduction 
Since the 1950s, numerous studies have examined the 

fatigue performance of composite materials across various 
engineering fields, considering different loading and 
environmental conditions. This includes modelling fatigue to 
analyze fatigue behavior and predict fatigue life [1, 2]. 

The composite material consists of two or more substances 
to give physical properties different from its constituents [3]. 
Some properties that are improved by making composite 
material are: strength [4, 5], high fatigue strength because of 
static strength and its slight decrease with cycle number to 
fracture [6], stiffness [7], slight decrease with several loading 
oscillations [6], weight [8], temperature dependent behavior 
[9], thermal insulation [10], corrosion resistance [11], fatigue 
life [12], low notch sensitivity, low sensitivity to the frequency 
of loading [4]. Hence, the increasing popularity of modern 
high-performance products is not surprising for composite 
material, even though composite are not recent innovations 
where the Bible referenced straw-reinforced bricks in the Old 
Testament [4]. 

The aerospace industry is the leading field for highly 
engineered composite applications [13]. The first airplane took 
its maiden flight no more than a century ago, and composite 
materials have been used to build structural components for 
more than half that time. The first usage dates back to 1940, 
when a main spar on Blenheim aircraft was constructed from 
flax thread skin infused with Phenolic resin, followed by the 
first fibrous composite in 1947. After that, they show a steady 
increase in the usage of composite in aviation, as shown in Fig. 
1 for the composite material used in fixed-wing and rotary-
wing aircraft industries. Today, most rotary blades are made of 
composite [14] after being made of metal blades in the sixties 
of the last century. The use of composite rotor blades lasts at 
least 20,000 hours, while the use of metallic rotor blades lasts 

about 1000 hours due to the difference in fatigue performance 
[4]. 

 
Fig. 1 Composite usage in airbus aircraft [4]. 

Many aircraft parts are made from carbon epoxy and 
aramid epoxy [15], reducing the aircraft's weight and 
increasing payload and economy. Therefore, composite 
material is used rather than metal. Furthermore, because the 
composite material has high fatigue resistance, it enhances the 
stiffness-to-density and strength-to-density ratios [16]. Table 1 
illustrates the specific modulus and strength of materials used 
in aircraft [17]. 

The known behavior of composite materials under fatigue 
loading has evolved significantly with advancements in 
product designs. Carbon fiber/epoxy, in particular, has 
demonstrated excellent fatigue resistance [18] from the early 
stages of composite development, which has been the focus of 
extensive research. Given that composite materials are 
anisotropic [19], a stress system that produces only a minor 
strain in the main direction of the fibers may not significantly 
influence the formation of strains normal to the fiber/resin 
interface or the fibers themselves. However, such damage 
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must be noticed. Therefore, understanding fatigue in 
composites is crucial, as it is essential to identify the 
mechanisms of fatigue damage and the methods for assessing 
the accumulation and progression of this damage. This 
understanding will enable more reliable predictions of 
component lifespan [20]. 

Table 1. Elastic modulus and tensile strength of materials used in aircraft [17]. 

Material 
Modulus of 

elasticity/density 
(GPa/g.cm-3) 

Tensile 
strength/density 

(MPa/g.cm-3) 
Steel (AISI 4340) 25 230 

Aluminum (7075-T6) 25 180 
Titanium (Ti-6Al-4V) 25 250 

E Glass/Epoxy composite 21 490 
S Glass/Epoxy composite 47 790 
Axamid/Epoxy composite 55 890 

HS (High Tensile Strength) 
Carbon/Epoxy composite 92 780 

HM (high modulus) 
Carbon/Epoxy composite 134 460 

 
However, composite materials still have disadvantages that 

must be taken into account during design, like weak 
compressive load resistance, squeezing [21], corrosion 
sensitivity when in applications that have contact with 
aluminum alloys and steel, moisture absorption [22], and 
consequent deterioration of mechanical properties over time. 
However, a suitable design can overcome this disadvantage 
[6]. 

Composite materials can be categorized based on their 
matrix and reinforcement types [23]. According to the matrix, 
there are three main classifications: polymer matrix 
composites (PMCs), metal matrix composites (MMCs), and 
ceramic matrix composites (CMCs). On the other hand, 
composites can be classified by their reinforcement types into 
particle-reinforced composites, short fiber or whisker-
reinforced composites, continuous fiber or sheet-reinforced 
MMCs, and laminate composites [17]. Since laminated 
composite materials are the most extensively studied under the 
influence of fatigue loads, this research will focus specifically 
on composite laminates. 

Replacing metal with composite materials in engineering 
structures makes studying the fatigue phenomena associated 
with composites essential. Unlike metals, which are 
homogeneous [24] and isotropic materials with a single failure 
mode [4], composites exhibit more complex fatigue behaviors. 
While fatigue in metals has been extensively studied for over 
a century, resulting in a comprehensive set of design rules for 
various engineering metals and alloys, the same understanding 
is still developing for composites [20]. Figure 2 and Table 2 
show the reason to use composite rather than metal. 

 
Fig. 2 Strength comparison between various structural metals and polymer 

matrix composite classes showing ranges for (a) tensile strength and (b) 
tensile strength per unit weight [25]. 

Table 2. Comparison between metals and composite laminate. 

Metals Composite laminate 

The fatigue dominant 
timespan is the crack's 
initiation, after initiation 
of  crack the crack will 
propagates from one or a 
few cracks and dominates 
[26]. 

The fatigue-dominant timespan is the crack's 
propagation, where the crack initiation has to 
pass through many stages. The crack initiation 
starts when many microscopic cracks develop 
from Matrix weak, fiber-matrix bonds and 
voids at low cycles. Neighboring fibers stop it, 
which causes load path redistribution due to 
local stiffness degradation and stiffness 
degradation in other regions. The final failure 
occurs when macroscopic cracks accumulate 
when a certain number of microscopic cracks 
saturate the matrix. 
The delamination (damage to the inter-laminar 
matrix) may occur due to inter-laminar matrix 
cracks [26]. 

The direction of 
propagation of these 
macroscopic cracks 
usually propagated 
normal to the principle 
stress direction at the 
crack tip (mode I crack 
propagation) [26]. 

Delamination spreads very quickly between the 
layers due to the absence of inhibitors such as 
fibers in the inter-laminar region; furthermore, 
the fiber-supporting effect in compression 
loading is decreased due to intra-laminar fiber-
matrix deboning and delamination, which leads 
to micro-buckling [27], [28], therefore, the 
fatigue due to inter-laminar damage is 
significant to study [26]. 

Isotropic material, it has 
just one failure mode [4], 
[29]. 

Composite anisotropy makes the fatigue 
analysis sophisticated because there are four 
Independent failure mechanisms in composite 
material caused by fatigue, matrix cracking 
[30], delamination, fiber breakage, and 
interfacial deboning [31]. The complex 
understanding of fatigue in composite material 
comes from stress complex state nonlinear 
behavior, anisotropies and different ways of 
failure. Figure 3 and 4 illustrate the differences 
between fatigue damage and stiffness reduction 
between composites and metals [29]. 

 

 
Fig. 3 Fatigue damage between composite and metals [29], [32]. 

 
Fig. 4 Difference in stiffness reduction between composite materials and 

metal [29]. 
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Most of the research on reviews focuses on a specific topic 
in reviewing the fatigue of composite materials. Like Talreja 
[33] studied the composite material using the strain approach, 
while Burhan and Kim [34] presented a review about modeling 
by the S-N curve for composite materials. Alam et al. [35] 
presented a review on the fatigue of carbon fiber-reinforced 
plastics where the significance of environmental factors on 
fatigue performance and service life was discussed, fatigue and 
the mechanics of cyclically-loaded composites were defined, 
the fatigue response and fatigue properties of CFRP in various 
forms were clarified, and the various methods used to model 
fatigue in CFRP were summarized, while in [36] Mortazavian 
and Fatemi studied the short fiber-reinforced polymer 
composite from the aspect of fatigue behavior and modeling. 
Pascoe [37] presented a critical review of methods for the 
prediction of fatigue delamination growth in composites and 
adhesive bonds, including stress/strain-based models, fracture 
mechanics-based models, cohesive-zone models, and models 
using the extended finite element method. Based on the 
observed macro-scale behavior of test specimens, Bak et al. 
[38] reviewed the fatigue delamination of composite laminate 
using observed phenomenology and computational methods. 
Also, Tabiei and Zhang [39] studied the experimental and 
simulation aspects of fatigue delamination in composite 
laminate. Deng [40] reviewed and assessed laminated 
composite structures fatigue delamination damage. Khan et al. 
[41] showed the effect of mean stress or stress ratio on the 
growth of fatigue delamination in composite materials. Gao et 
al. [42] presented a review on mode I fatigue of fiber-
reinforced polymeric composites, where the variables 
influencing failures were taken into account in relation to fiber 
and matrix breakdowns, A review is conducted on numerical 
modeling techniques for predicting the life of composites 
under fatigue stress, Additionally, included are the testing 
methods utilized to confirm the composite's fatigue 
performance under mode I load. Strategies for extending the 
life of composites under mode I fatigue loading have also been 
compiled. Ansari et al. [43] studied the analysis of fiber-
reinforced polymer composite fatigue damage. Vikram and 
Kumar [44] presented a review on fatigue crack growth and 
the finite element method published since the 19th century and 
identified new research lines, while Vassilopoulos [1] 
presented a review about the history of fatigue in fiber-
reinforced polymer composite laminate in the period between 
1950-2020. Post et al. [45] review the composite material 
under variable loading and assess the current state of the art in 
spectrum loading. It is not surprising that there are many 
reviews about fatigue delamination, as it is the most common 
type of failure in composite laminate [39]. However, in this 
paper, we will focus on providing a general idea about fatigue 
failure and fracture in the macro-mechanical scale of 
composite laminate as a starting point for anyone who wants 
to start research about fatigue in composite. 

2. Fatigue loading 
The repeated load to which the material is exposed in 

structures, vehicles, and machines components [46], can cause 
microscopic physical damage, even to resulting cyclic stresses. 
Under the stress below the ultimate strength of the material, 
microscopic damage can occur and then accumulate under 
continuous cyclic loading [47], which leads to crack initiation 
or damage that leads to component failure. This failure is 

called fatigue [25]. The figure below show the periods of 
fatigue life. 

 
Fig. 5 Fatigue life periods [48]. 

2.1. Fatigue parameters 

Important fatigue parameters must define before the study 
of fatigue. Illustrate in Fig. 6, are as follows: 

• The cyclic stress range: 

∆σ = σmax −  σmin                                                                          (1) 

• The cyclic stress amplitude or alternative stress: 

σa =
 (σmax −  σmin)

2
                                                                      (2) 

• Mean stress: 

σm =
 (σmax+ σmin)

2
                                                                 (3) 

• Stress ratio: 

R =
σmin

σmax
                                                                                  (4) 

Where σmax and σmin are the maximum and minimum stress 
levels, respectively [17]. 

 
Fig. 6 Fatigue parameter [17]. 

There are many ways to apply cyclic loading, as shown in 
Fig. 7 with the value of the stress ratio, where C and T refer to 
compression and tension, respectively. 

 
Fig. 7 Loading types and stress ratio ranges [34], [49]. 
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3. Composite laminate 
In this paper, the focus is on the use of composite laminate, 

where the most research on fatigue loading uses it because it 
has high fatigue resistance. Composite laminates consist of 
two or more fabrics [50], [51] unidirectional, biaxial, or 
multiaxial, the fabric can be oriented in different directions, in 
the fiber direction, unidirectional fabrics have a high modulus 
and strength [52], while in the matrix there are the closest 
fibers packing density and lower fiber undulation, while the 
multiaxial fabrics used reduce the time of production and 
enhance toughness and inter-laminar strength [53]. Some types 
of composite laminates are shown in Fig. 8 and Table 3. 

 
Fig. 8 Laminates: (a) stack-up of unidirectional and (b) biaxial woven 

composite laminates [53]. 

Table 3. Special cases of laminates [54]. 

Composite laminate type example 
Symmetric laminates (plies angle and 

thickness are the same above and below the 
midplane)  

Ex: [0/30/60]  

Cross-Ply laminates (only 0 and 90° plies were 
used)  

Ex: [0/902/0/90] 
 

Angle ply laminates (plies of the same 
material and thickness. only oriented at +θ and 

–θ directions) Ex: [–40/40/–40/40] 
 

Antisymmetric Laminates (the material and 
thickness of the plies are the same above and 

below the midplane, but the ply orientations at 
the same distance above and below the 

midplane are negative of each other) Ex: 
[45/60/-60/-45] 

 

Balanced Laminate (layers at angles other than 
0 and 90° occur only as plus and minus pairs 
of +θ and –θ. The plus and minus pairs do not 

need to be adjacent to each other, but the 
thickness and material of the plus and minus 

pairs need to be the same) 
Ex: [30/40/–30/30/–30/–40] 

 

 

It is important to know the following terms to study 
composite laminate 
• Isotropic: the material has the same mechanical properties 

in all directions. Composite laminates aren't isotropic [55]. 
• Transversely isotropic or quasi-isotropic [56]: the laminate 

have the same stress-strain behavior at all direction of 
material plane due to one plane has same mechanical 
properties at any direction in that plane. 

• Orthotropic: three perpendicular planes have different 
mechanical properties. Therefore, the properties of 
materials different with each direction [57], [58]. All 
unidirectional laminae are separately orthotropic [59]. 
Most laminated composites are orthotropic [60]. 

• Homogeneous: the properties of a material do not change 
at any point in the material [61]. Composite laminates are 
heterogeneous because they consist at least of fiber and 
matrix, while in the study of linear elastic response on the 
macroscopic scale of a composite laminate, the material 
can be classified as homogeneous. This assumption is 
called Smearing of matrix and fiber. 

• Directions of Principal Material: directions perpendicular 
and parallel to the fibers in a lamina, Fig. 9 show the 
difference between lamina and laminate. The directions 
described should be noted, as they may not align with the 
principal stress directions as defined within the framework 
of continuum mechanics [62]. 
 

 
Fig. 9 Difference between lamina and laminate [63]. 

The study of composite generally change with change scale 
of study, Fig. 5 show the different scale of composite material. 
Figure below show the difference between scales. 

 
Fig. 10 The difference between scales in composite material [32], [64]. 

Composite laminate have advantage and disadvantage 
illustrated in Table 4  
Table 4. Advantages and disadvantages of composite laminates used in the 

industry [65]. 

Advantage Disadvantage 

High resistance to impact damage 
[66]. 

Composite laminates are more 
brittle than wrought metals, which 
makes composites much easier to 
damage. 

Have resistance to corrosion 
degradation and fatigue. 

Environmental degradation can be 
exhibited by the matrix. 

High strength-to-weight ratio. Can be weak in transverse 
properties. 

The tailored fiber in different 
patterns can increase efficiency 
and sustain itself under applied 
loads. This directional tailoring 
capability can meet design 
requirements. 

Fabrication and raw materials cost 
and are expensive. 

 

 

Mid-plane  
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3.1. Damage mechanisms in composite laminate 

The damage to composite laminates occurs due to 
heterogeneity. Damage can be classified into two categories: 

1. Intralaminar (inside one ply). 
2. Interlaminar, damage occurs between the plies that lead to 

separation between them [67], [68]. 

Figure 11 show the possible modes of damage and the 
shapes of its. 

 
Fig. 11 Damage mechanisms classification in composite materials [69]. 

The explain of damage of composite material will be 
according to coordinate system of ply below 

 
Fig. 12 Coordinate system of ply. 

3.1.1. Intralaminar damage 

Occur in the matrix, fiber, or interface between them), there 
are different mechanisms of damage in tension and 
compression compared to metals. This is due to the inability of 
the fibers to bear the compression load on their own [67]. 

 Fiber failure: 
• Static load tension: 

1. It occurs when the load is in 1-direction of the ply. 
2. The fiber failure is quasi-ductile. 
3. Start gradually as a result of stiffness degradation 

due to fracture of the weakest individual fiber, then 
lead to whole fiber bundle failure under a higher 
load. 

• Static load compression: 
1. It occurs when the load is in 1-direction of the ply. 
2. Failure occurs like rod buckling, but at the 

micromechanical level. Due to stability losses. 
Because of the low shear stiffness of the material, 
buckling can occur in shear mode, this is called 
micro-buckling, as shown in the Fig. 13. 

 
Fig. 13 Micro-shear-buckling [67]. 

3. The hole's edges are critical areas of micro-
buckling, where buckling occurs in the fiber due to 
a lack of support on the edges, and shear stress leads 
to increased stress near the hole.   

 Matrix failure or IFF (in plane inter-fiber-failure) It is more 
sophisticated, where it separated between the planes of 
max. Load (action plane) and plane of fracture. 
• Static load tension: 

1. It occurs when the load is in the 2-direction of the 
ply. 

2. The plane of fracture is parallel to fiber (the action 
plane and fracture plane fall together) and occurs at 
low strains (about 5%), where there are high 
differences between fiber and matrix modulus. 

• Static load compression: 
1. It occurs when the load is in the 2-direction of the 

ply. 
2. The angle of fracture plane is slightly above 45°. 

• In plane shear loading τ12 
1. The present of  shear stress caused two action 

planes: the 13 plane and the 23 plane, because the 
matrix has the minimum fracture resistance, which 
leads to fracture parallel to the fiber, as shown in the 
Fig. 14. 

 
Fig. 14 Fracture-plane [67]. 

2. The out-of-plane shear stress (13-plane) can show 
the same behavior, while shear in the 23-plane leads 
to fracture due to failure of the matrix in tension in 
the direction under 45° normal to the maximum 
principal stress. 

3.1.2. Intralaminar damage 

Occur due to interlaminar stresses, including normal stress 
σ3 and shear stress τ13 and τ23, it is like to matrix fracture in 
intra-Laminar but with planar propagation. The crack parry's 
absence of fiber can cause delamination due to matrix damage, 
manufacturing defects, and drilling as a result of the push-out 
and peel-up mechanisms shown in the figure below, the areas 
of interlaminer stress such as free edges, curved sections, and 
ply-dropoffs [67]. 
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Fig. 15 Peel-up delamination and push-out delamination [67]. 

Table 5 shows the damage of composite materials under 
fatigue loading. 

Table 5. Composite damage under fatigue load. 

Damage  of cross-ply 
laminate under tension-

tension fatigue [42]. 
 

Matrix and fiber failure 
under mode I  fatigue 

[42] [70]. 

 
1. Initiation of micro-
crack in matrix and fiber 
separation. 
2. The striation and 
hackle per unit length. 
The fiber imprint and 
hackles on the fracture 
surface, where the fiber 
imprints evidence the 
fabric-matrix separation, 
and hackles show the 
appear of shear stress 
state as a result of fiber 
pull-out. The striations 
formed in the fiber-
matrix interface of the 
matrix are the result of 
the extension of micro-
cracks or molecular chain 
breakages [71]. 

 

woven fabric composites, 
under tension-tension 
fatigue loading in the 
weft direction [72]. 

 
 

In their book, Ramesh Talreja and Janis Varna show a 
comprehensive study of damage in different types of 
composite material under different types of fatigue load [73]. 

4. Fatigue modelling 
To study the fatigue behavior and fatigue life, the fatigue 

can be modeled in three different ways, as shown in Fig. 16. 
As mentioned in Fig. 16, the fatigue modeling can be 

classified according to three categories. 
1. Fatigue life model: which includes the use of the S-N curve 

and presents fatigue failure criteria but doesn't take into 
account mechanisms of actual damage. 

2. Phenomenological model: for residual stiffness or strength, 
don't provide the development of damage and include 

macro-stress. Based on empirical criteria, the cycle-by-
cycle change in strength or stiffness can be predicted. 

3. Progressive model: interested in measurable 
manifestations of damage like delamination [74]. 

 
Fig. 16 Classification of fatigue modelling. 

4.1. Fatigue life model 

4.1.1. Stress-life approach 

The oldest and most common way in researches to deal 
with fatigue data since the 19th century, but much research for 
composite materials chose this approach arbitrarily, and in this 
approach cannot distinguish between the initiation and 
propagation of damage in fatigue life [17], [34]. Can benefit 
from this approach when stress and strains are mostly elastic 
[17], and it is used in high cyclic fatigue more than 106 cycles 
[75]. 

This approach used the S-N curve, wöhler curve [17], 
which shows the contact between stress and the number of 
cycles to failure [76]. There is no fatigue limit in composite 
material as a metallic alloy, despite the high fatigue resistance 
of composite material [77]. By fitting the S-N curve (log-log 
plot), the following mathematical equation can be obtained 
[25]. 

σa = C + D log Nf                                                                           (5) 

C, D: Curve fitting constant, can obtain equation below by 
approximating the log-log curve. 

σa = A Nf
 B                                                                                        (6) 

Equation 6 in different form: 

σa = σf
'  (2Nf)

b                                                                                   (7) 

Where:         A = 2b σf
'      ,      B = b 

The effect of stress ratio in another form of stress approach 
equation [1]. 

σmax = σo N b                                                                                   (8) 

Table 6 Illustrate the parameters of eq. (8) in different 
stress ratio in composite material. 

 

 

 

 

Fatigue modelling

progressive damage model

ex.linear elastic 
fracture mechanics 

(LEFM)

Phenomenological models

Damage accumulation

Residual stiffness

Residual strength

Fatigue life model

Stress life approach

Strain life approach
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Table 6. Parameters of eq. (8) in different stress ratio in composite material 
[1]. 

designation of Material Stress ratio σo b 

P2BT-T 
Glass and 

carbon/epoxy 
[± 45/904] 

0.10 
0.50 
0.70 

87.2 
91.4 
83.7 

-0.060 
-0.046 
-0.026 

DD16-C E-glass/polyester 
[90/0/±45/0]s 

10.0 
1.43 
1.10 

480.7 
437.2 
490.7 

-0.068 
-0.021 
-0.020 

UT500/135-T 
Twill-woven UT500 
carbon fiber and 135 

epoxy 

0.05 
0.50 
1.00 

782.2 
676.6 
649.0 

-0.074 
-0.036 
-0.027 

DLJ-T 
Pultruded GFRP 

bonded double-lap 
joint 

0.10 
0.50 
0.90 

38.5 
43.1 
31.7 

-0.083 
-0.075 
-0.031 

  T800S-25 C-T Carbon/epoxy 
[(45, -45)/(0, 90)]s 

0.05 
0.50 
1.00 

1285.1 
1134.6 
994.1 

-0.051 
-0.030 
-0.018 

DD16-T E-glass/polyester 
[90/0/±45/0]s 

0.10 
0.50 
0.90 

732.8 
814.6 
688.2 

-0.102 
-0.094 
-0.045 

DLJ-C 
Pultruded GFRP 

bonded double-lap 
joint 

10.0 
2.00 
1.10 

32.5 
30.3 
30.3 

-0.043 
-0.032 
-0.016 

 T800S-170 °C-T Carbon/epoxy 
[(45, -45)/(0, 90)]s 

0.05 
0.50 
1.00 

757.5 
690.6 
709.7 

-0.093 
-0.065 
-0.058 

QQ1T-T E-glass/epoxy  
[± 45/02]T 

0.10 
0.50 
0.70 

147.6 
156.9 
144.5 

-0.082 
-0.073 
-0.050 

T400/3601-T Satin-woven 
CFRP laminates 

0.10 
0.50 
0.80 

1033.8 
1026.8 
1048 

-0.040 
-0.025 
-0.019 

 
Fazlali et al. [78] highlight the importance of various 

damage mechanisms and their interactions of UD composites 
under tension-tension fatigue while Movahedi-Rad [79] 
studies the damage of angle-ply GFRP laminate under fatigue 
load. Harris [20] presented in his book a comprehensive study 
of composite materials at different scales using a stress 
approach. Burhan and Kim [34] reviewed the S-N curve in 
composite material. Pertuz et al. [80] study the behavior of 
continuous fiber-reinforced thermoplastic composites under 
different types of loads. Zhou [81] studied the behavior of FRP 
composites, using different types of fibers to model fatigue 
behavior using genetic algorithm (GA). Djeghader and Redjel 
[82] presented experimental work to study the behavior of 
random short glass fiber/polyester under a cyclic bending load. 
Park et al. [83] developed a nonlinear formulation of constant 
life diagrams to find a more accurate S-N curve. Ropalekar et 
al. [84] show the development of E-glass epoxy by adding 
graphene oxide (GO) under a flexural fatigue test. Ma et al. 
[85] show the effect of stress ratio, orientation of fiber and 
frequency in various composite materials while Ferdous et al. 
[86] show the influence of stress level, stress concentration and 
frequency on glass fiber- reinforced polymer. Xu and 
Bhamidipati [87] propose a new curve fitting model by adding 
the formulation of equivalent static loading and the equivalent 
number of cycles. Kim and Huang [88] study the behavior and 
fatigue life of polyethylene terephthalate glycol-modified 
(PETG). 

4.1.2. Strain-life approach 

The need to create an approach to predict short fatigue life, 
especially in ductile material, shows the strain-life approach, 
which developed between the 1950-1960. The strain approach 
used (ε-N) curves, which include elastic and plastic strains 

from cyclic stress-strain curves, as a data source for ε-N curve. 
This approach differs from stress approach, where the latest 
used average stresses rather than local strains and local stresses 
and use factors of elastic-stress concentration and 
modifications of empirical therefrom [25]. 

The equation of strain amplitude consists of two parts, 
elastic and plastic strains, as shown in eq. (9). 

εa = εea + εpa                                                                                   (9) 

Where 

εea = 
σa

E
 = 
σf

'

E
(2Nf)

b     ,         εpa = εf
'  (2Nf)

c                            (10) 

By sub. eq. (10) in eq. (9) obtain eq. (11) below. 

εa =
σf

'

E
(2Nf)

b + εf
'  (2Nf)

c                                                              (11) 

Where the σf
'  ,  εf

'  , b and c are material constant. 
Figure 17 shows the regions of the strain life approach, 

including the following regions: 
1. Region I 

• Non-progressive failure. 
• Represented by interfacial debonding and fiber breakage. 

2. Region II 
• Finite life region. 
• Progressive damage. 
• Represented by fiber-bridged cracks. 

3. Region III 
• Region of fatigue limit. 
• The load is low enough to stop the crack growth in matrix 

due to the heterogeneity of the composite materials. 

 
Fig. 17 Strain-life approach for composite materials [32]. 

There is little research about this approach and it needs 
more details with regard to plastic strains [25] and most 
composite material have brittle matrices [89]. 

Talreja [33] adopted the strain approach to study the 
fatigue in unidirectional composites loaded parallel to the 
fibers for each polymer matrix composite, metal matrix 
composite and ceramic matrix composite. Studied 
unidirectional composites loaded inclined to the fibers and 
fatigue in different types of laminates. Where adapted the 
strain approach rather than the stress approach because of the 
following factors: (1) Regardless of the fiber volume fraction, 
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the first cycle fails when the composite strain reaches the 
fiber's failure strain. (2) The matrix fatigue limit determines 
the composite fatigue limit. Because of the fiber limitation, 
even though the composite is being tested under load control, 
the matrix inside the composite is exposed to strain-controlled 
fatigue. Therefore, strain can be used to define the composite 
fatigue limit. 

Eleftheroglou et al. [90] used stochastic modeling and 
structural health monitoring (SHM) data obtained from 
measurements of strain, to get remaining useful life (RUL) 
online in composite materials under fatigue loading by assent 
of strain data, while Kolasangiani et al. [91] used strain-life 
curve in their study to predict the fatigue life of composite 
laminate made from flax-epoxy in different staking sequence. 
Yadav and Thapa [92] develop strain approach by internal 
variable theory on woven glass/epoxy. 

4.2. Phenomenological models 

4.2.1. Damage accumulation 

The present of applications with variable amplitude shows 
the need to appear cumulative or accumulates fatigue damage 
[93] model by Palmgren in 1924, which was called the Miner 
rule [94], [95] represented below. 

��
n
N
�

i
i

= 1                                                                               (12) 

Where the n1/N1 represents the consumption of resistance 
of fatigue as a result of stress amplitude Sa1 when apply n1 
during N1 of fatigue life endurance , the same process repeated 
in next cycles which have different amplitude , the final failure 
occur when (n/N)i become 100% [95]. 

The plot of fatigue damage consists of three regions: the 
rapidly increasing region, the plateau region and the burst-out 
region, which represent final failure, respectively [96], as 
shown in Fig. 18. 

 
Fig. 18 Comparison between accumulation behavior between heterogeneous 

and homogeneous materials [97]. 

Epaarachchi [98] represents many relations in the 
development of Miner rule with suitable for the nature of 
composite materials in glass fiber-reinforced composites. Post 
[45] presented a review of the variable load modeling and last 
developments in this field. Liao et al. [99] study impact 
response and damage accumulation in composite laminate. 
Hassanifard and Feyzi [100] presented an experimental and 
numerical investigation of fatigue damage accumulation in 
composite bolted joints. Kharrat et al. [101] show the effect of 
damage accumulation on local fracture mechanisms acoustic 

signatures in carbon fiber/epoxy. Batsoulas and Giannopoulos 
[102] presented a new theory of accumulation damage based 
on CDM. 

4.2.2. Residual stiffness and residual strength 

Residual stiffness and resided strength, or stiffness and 
strength degradation, is one of the way to predict and model 
fatigue life in composite material. Where the state of actual 
damage is used by the material state damage metric. The 
damage metric in residual strength is when the material's 
residual strength reaches the maximum applied stress level 
during cycles where material failure occurs, while the stiffness 
degradation used to predict its behavior isn't related to 
macroscopic failure. Failure can be expressed in different 
ways, like when reaching the critical level of predetermined 
stiffness degradation, when meeting the minimum stiffness of 
the design requirement of deformation, or by measuring the 
strains of cyclic [103]. 

The disadvantage of residual stiffness and strength is that 
they can't deal with complex patterns of load and fields 
develop multiaxial stress [103]. 

The stiffness degradation curve shown in the figure below 
consists of three stages: stage I, the redaction of stiffness (2-
5%), where the transverse cracks in matrix are developed; 
stage II, additional redaction occurs (1-5%), where take a 
linear pattern, the damage occurs due to edge delamination 
development and the appearance of longitudinal cracks along 
the 0° fiber; stage III, the failure occurs when the first break of 
fiber [104]. The stiffness curve can be plotted by the S-N curve 
and Sc-N (stiffness-controlled curves)[103] . 

 
Fig. 19 Curve of stiffness degradation in fibrous composite materials [104]. 

The following research's used stiffness degradation model, 
Kim [105] to study the sleeve of composite material behavior, 
while Wu [106] studied the behavior of [±45°]2s 
graphite/epoxy. Yadav and Thapa [107] studied the model on 
woven glass fiber/epoxy. Khan et al. [108] modeled on Woven 
Carbon Fabric/Polyester. Koricho et al. model the twill E-
Glass/Epoxy composite under bending fatigue [109]. Zhao et 
al. [110] studied unidirectional composite materials of 
different types of fibers. Herrmann et al. [111] study the model 
of arbitrarily oriented tunneling composites and cracks of 
delamination. Liu et al. [112] modify the model for fatigue in 
wind turbine blades. Carraro and Quaresimin [113] presented 
a framework to study off-axis crack initiation and propagation. 
Drvoderic et al. [114] study crack density in off-axis plies.  

The following researches uses the residual strength model: 
D'Amore [115] aims to find a relation between variable 
amplitude and constant amplitude. Whitworth [116] models 
the behavior of graphite/epoxy composite laminates, while 
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D’Amore et al. [117] model the behavior of carbon fiber-
reinforced composites. D’Amore and Grassia [118] presented 
a comparative study of the use of residual strength to model 
fatigue damage under constant amplitude. 

Beyene and Belingardi presented bending fatigue behavior 
of twill fabric E-glass/epoxy composite [119] were used both 
stiffness degradation and residual strength. 

Wu et al. and Shiri et al. [120], [121] combined between 
damage accumulation and stiffness degradation, respectively, 
while Khan et al. and Suwarta et al. [122], [123] combine the 
strength degradation with damage accumulation.  

4.3. Progressive damage model 

4.3.1. Fracture mechanics approach 

Fracture mechanics approach or linear elastic fracture 
method (LEFM) it was the approach of interest in Irwin (1957) 
and Anderson (1995), where suppose the crack is already 
exists in components and by increasing crack length with the 
number of cycles, the damage can be analyzed. The benefit of 
this approach will be when the cracks are recognized as a result 
of fatigue [76]. 

Paris used the equation correlation between fracture 
mechanics and fatigue in the early 1960s [124], [125], where 
the fatigue crack growth behavior can be expressed by the 
relation between crack propagation rate during the cycle and 
stress intensity factor range. The figure below illustrates the 
process of obtaining this equation [25]. 

 
Fig. 20 Process of the empirical equation (Paris law) [25]. 

Where Paris equation is 

da
dN

 = C (∆K)m                                                                              (13) 

da
dN

 : crack growth rate during cycles 

 ∆K : stress intensity factor range ∆K = F ∆S√πa  

F: shape function, can calculated mathematically or by using 
finite element software's to including complex shape or show 
the influenced of fiber orientation as in this researches [126]-
[128]. 

∆S: stress range. 

a: crack length 

C, m material constant, where m is slope in log-log plot 
between stress intensity factor range and crack growth rate, it 
higher in brittle material than ductile material. Nittur et al. 
[129] provide way to find Paris parameters. 

There are limits to the application of Paris law in fiber-
reinforced composites. Almost all research on composite 
material used the same Paris equation but use change in energy 
release rate rather than stress intensity factor as a result of the 
orthotropic properties of composite laminate, which make it 
difficult to obtain (k) where major failure is delamination at 
least in initial stages [130]. 

It is important to know the relation between the stress 
intensity factor and the energy release rate. 

G = 
KI

 2

E'                                                                                          (14) 

E = E' in plane stress, E = E / (1 - ν2) in plane strain , where eq. 
(12) become [131], [132]. 

da
dN

 = C3(∆G)C4                                                                            (15) 

C3 = C(E')
c4

 

C4 = m/2 

Tables 7 and 8 show different versions of the Paris law by 
different researchers and show the value of the Paris equation 
various with volume fraction, stress ratio, stacking sequence, 
fiber bridging, and all factor effects on crack propagation rate. 

The curve of Paris law typically steepens and looks to 
approach the fatigue crack growth threshold (∆Kth) a vertical 
asymptote at low crack growth rates. ∆Kth represent a bottom 
limit of K below which fracture formation is not typically 
observed. High growth rates can cause the curve to steepen 
once more because of the unstable cracks that start to expand 
quickly right before the test specimen finally fails [25]. As 
shown in Fig. 21. 

 
Fig. 21 the regions of fatigue crack growth [40]. 

There are studies related to fatigue crack growth threshold 
(∆Kth) as in [133]-[135] 
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Table 7. Researches of Paris law relation with stress intensity factor. 

Specimen and 
Material Relation 

Relation parameter 
value 

RF.  Paris Law 
coefficient 

m/cycle 

Paris Law 
exponent 

*CT (ASTM E-
647) specimen of 

Randomly oriented 
short carbon fiber/ 
PEEK(150CA30) 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝐶𝐶 ��∆𝑘𝑘 ⋅ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�
𝑚𝑚

 
 5.43 × 10-20 17.4 [130] 

**Plate of bi-
layered FGMs 

aluminum alloy 
and FGM of 

aluminum alloy 
and alumina 

�
𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

�

= 𝑐𝑐(𝑥𝑥)�∆𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼�
𝑚𝑚(𝑥𝑥)

 
𝑐𝑐(𝑥𝑥) = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑣𝑣𝑣𝑣 
𝑚𝑚(𝑥𝑥) = 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠 

Where 

𝜈𝜈 =
1
𝐿𝐿

ln�
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

� 

𝑠𝑠 =
1
𝐿𝐿

ln�
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� 

Aluminum alloy 

[136] 
 
 

[137] 

10-12 3 

Alumina 

  2.8 × 10-10 10 

Notch and un-
notch plate and 

CT specimens of 
carbon fiber 

laminate 

�
𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

� = 𝑐𝑐(∆𝑘𝑘)𝑚𝑚 

(0°/90°/90°/90°/90°)s 

[138] 
 2.29 × 10-19 4.867 

(45°/-45°)2s 
3.55 x 10-

19 5.84 

***DCB 
specimen of 
carbon/PA6 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝐶𝐶

⎣
⎢
⎢
⎡∆𝐾𝐾 − ∆𝑘𝑘𝑡𝑡ℎ𝑟𝑟

1 −�𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴 ⎦
⎥
⎥
⎤
𝑚𝑚

  2.58 × 10-8 0.6 [139] 

CT specimen of 
PP+SGF 

samples with wt. 
%(10-40)-vol. 
%(3.9-19.4) 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝐶𝐶(𝛥𝛥𝛥𝛥)𝑚𝑚 

Notch L 

[140] 

5.5 × 10-8-
3.7 × 10-10 7.8-9 

Notch T 

CT specimen of 
PP + LGF 

samples with wt. 
%(10-40)-vol. 
%(3.9-19.4) 

3 × 10-8-
2.88×10-13 8.7-11.5 

Notch L 

3.8 × 10-7- 
9 × 10-13 5.3-10.1 

Notch T 
10-9- 

5.9 × 10-14 7.8-13 

Plates with 
center cracks 
made from 

GLARE-2A2/1 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝐶𝐶(𝛥𝛥𝛥𝛥)𝑚𝑚 1.78 × 10- 15 2.97 [141] 

CT specimen of 
Sheet molding 

compound 
(SMC) of 

chopped E-
glass/polyester 

𝑑𝑑𝐴𝐴
𝑑𝑑𝑁𝑁

= 𝐶𝐶�∆𝑘𝑘𝛼𝛼 ⋅ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
𝛽𝛽�

𝑚𝑚
  2.06 × 10-20 11.2 [142] 

 
* CT: Compact tension specimen. 
** FGM: Functionally graded material composite its property various with its 

direction [143]. 
*** DCB: Double cantilever beam. 

 
The fatigue delamination studied with the effect of fiber 

bridging [152]-[156], and influenced of Z-pins [157]-[161]  
and use digital image correlation technique to study it [162]-
[164]. 

5. Numerical modelling 
The fatigue behavior can be simulated by using software's 

based on finite element methods like ABAQUS and ANSYS 
to simulate crack initiation and propagation by means of 
various models, including the virtual crack closure technique 
(VCCT), cohesive zone modeling (CZM), Extended Finite 
Element Method (XFEM) and phase field explain below. 

 

 

 

Table 8. Researches of Paris law relation with strain energy release rate. 

Specimen and 
Material Relation 

Relation parameter value 

RF. Paris Law 
coefficient 

m/cycle 

 Paris 
Law 

exponent 

I-beams of 
carbon 

fiber/epoxy 
(T300/914) 

�
d𝐴𝐴
d𝑁𝑁

�

= 𝐶𝐶𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
1 − � 𝐺𝐺𝑡𝑡ℎ𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑛𝑛1

1 − �𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 �
𝑛𝑛2� 

Unidirectional CFRP 

[144] 
1.17 × 10-28 9.97 

Multidirectional CFRP 

5.62 × 10-18 3.75 

DCB of 
T700/QY811 

carbon/bismaleim
ide prepreg 

�
d𝑎𝑎
d𝑁𝑁

�
𝑎𝑎

= 𝐶𝐶 �
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎)
𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐(𝑎𝑎)

�
𝑚𝑚

 

DCB mode I 

[145] 

Specimen layup with 
interface 

016//(+5/-5/06)s , 0°/5° 
1.8 × 10-5 7.3 

(+45/-45/06)s//(-
45/+45/06)s , +45°/-45° 
0.55 × 10-3 9.1 

(90/0/90/05)s//(90/0/90/0
5s , 90°/90° 

7.8 × 10-7 5.4 

015//(45/45/015) , 0°/45° 

2.1 ×10-6 6.0 

DCB and MMB 
of T700/QY811 

carbon/bismaleim
ide prepreg 

�
d𝑎𝑎
d𝑁𝑁

�
𝑎𝑎

= 𝐶𝐶(𝑔𝑔max(𝑎𝑎))𝑚𝑚 

Mode mixture ratio 
(0.00) 

[146] 

5.5 × 10-4 9.1 
Mode mixture ratio 

(0.25) 
1.6 × 10-5 7.9 
Mode mixture ratio 

(0.50) 
4.0 × 10-5 8.0 
Mode mixture ratio 

(0.75) 
8.3 ×10-5 7.4 

DCB of carbon 
fiber 5HS/RTM6 
epoxy (mode I) 

d𝑎𝑎
d𝑁𝑁

= 𝐶𝐶𝐺𝐺e𝑓𝑓𝑓𝑓𝑚𝑚  

R2(0.75-0.86) 

[147] 4.99 × 10-18-
3.46 × 10-21 

4.73-
5.66 

DCB and *3ENF 
of unidirectional 

carbon-fiber 
prepreg Cytec 
MTM 46 with 

HTS5631 fibers 

d𝑎𝑎
d𝑁𝑁

= 𝑐𝑐 ⋅ 𝐺𝐺𝑚𝑚𝑎𝑎𝑎𝑎
𝑚𝑚  

At mean values of GImax 
Mode I testing 

[148] 1.66 × 10-31 12.40 
At mean values of GImax 

Mode II testing 
1.75 × 10-30 10.26 

DCB of 
carbon/PA6 

d𝑎𝑎
d𝑁𝑁

= 𝐶𝐶∆𝐺𝐺𝑚𝑚 1.03 × 10-10 1.02 [139] 

DCB and 3ENF 
samples of 
glass/epoxy 
laminated 
composite 

d𝑎𝑎
𝑎𝑎𝑁𝑁

= 𝑐𝑐 �
𝐺𝐺Imax(𝑎𝑎)

𝐺𝐺IR(𝑎𝑎)
�
𝑚𝑚

 

mode I 

[149] 
4.47 × 10-5 5.27 

mode II 

13.49 4.0 

DCB of 
IM7/MTM45 
carbon-epoxy 

da
dN

= 𝐶𝐶(∆G)m 

Mixed mode 

[150] 

6.798 × 10-6 4.161 

Mode I 

8.319 × 10-13 2.11 

Mode II 

5.38 × 10-11 1.86 

DCB of 
Thermosetting 
unidirectional 
carbon/epoxy 

M30SC/DT120 

d𝑎𝑎
d𝑁𝑁 = 𝑐𝑐1(∆𝑔𝑔)𝑚𝑚1 

∆𝑔𝑔

= 𝐶𝐶1

⎝

⎛ √∆𝐺𝐺 −�∆𝐺𝐺𝑡𝑡ℎ

��1− 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ∕ √𝐴𝐴�⎠

⎞

𝑚𝑚1

 

R2 = 0.766 

[151] 

1.58 × 10-9 1.96 

R2 = 0.693 

1.84×10-9 1.71 

d𝑎𝑎
d𝑁𝑁

= 𝑐𝑐2�∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒�
𝑚𝑚2

 
∆𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐺𝐺0

𝐺𝐺𝐺𝐺𝐺𝐺(𝑎𝑎 − 𝑎𝑎0)
∆𝐺𝐺 

R2 = 0.852 

8.66 × 10-19 5.90 

R2 = 0.792 

1.75 × 10-18 5.64 

 
*3ENF: Three points End-Notched Flexure specimen. 
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5.1. Virtual crack closure technique (VCCT) 

This model was used in 1977 by Rybicki [165], [166] as 
part of the development of Irwin's crack closure integral, 
which involves modeling the damage to delamination based on 
LEFM to obtain  strain energy release rate and evaluate the 
beginning of crack growth. Figure 22 shows the calculation of 
the strain energy release rate for a 2D model of a crack tip. The 
technique assumes the following hypotheses:  
1. The energy ∆E required to close the crack is equal to the 

energy required to open the crack in the line between nodes 
1 and 2. 

2. Self-similar crack propagation, the crack propagation is in 
the same condition from node 2 to 3, where the opening 
displacements at node 1 (∆u1,∆w1) and displacement after 
crack propagation at node 2 (∆u2,∆w2) are the same. 

The strain energy can be calculated by: 

∆G = 
∆E
∆A

                                                                                      (16) 

Where ∆A is the area of new crack surface, ∆E the total 
energy can be calculated by opening and shear displacement. 

∆E =
1
2
�Fx,2 ∆u1 + Fy,2 ∆w1�                                                     (17) 

Where Fx,2 and Fy,2 shear and opening force. 

Sub. eq. (17) in eq. (16) 

GI = 
1

2∆a1
Fy,2 ∆w1                                                                     (18) 

GII = 
1

2∆a1
Fx,2 ∆u1                                                                     (19) 

Because the thickness equal to one in 2D model lead to    
∆A = ∆a1 [67], [69]. 

 
Fig. 22 VCCT in 2D model. 

5.2. Cohesive zone mdeling (CZM) 

The first develop of CZM was shown by Dugdal [167] 
(1960) and Baren-blatt [168] (1962), where the model was 
used for delamination simulation based on collegial damage 
mechanics. This model combines the principles of fracture 
mechanics and degradation of stiffness, not only the principles 
of fracture mechanics. The method is represented as an 
adhesive layer between laminae to calculate crack initiation in 
this model, the strength failure criteria are used. 

While crack growth is presented in the crack tip front by 
the cohesive zone illustrated in Fig. 23, which shows the 
bonding force reduction between the plies, Fig. 23(b) shows 
the cohesive on traction separation behavior between 
displacement of crack and bonding residual strength, the 
damage change between d = 0, no damage, and d = 1, full 
damage, and the stiffness k reduce based on (1 – d )k [69]. 

 
Fig. 23 CZM, behavior of traction separation [69]. 

The table below shows the difference between VCCT and 
CZM [169]. 

Table 9. Comparison between VCCT and CZM. 

NO. VCCT CZM 

1 Simulate crack growth on 
a known surface of crack 

Simulate crack growth on a known 
surface of crack and can use a 
cohesive element to simulate the 
separation between the faces of the 
element. 

2 Simulate the brittle 
fracture (LEFM) 

Simulate a ductile or brittle fracture 
(LEFM or EPFM) 

3 

This technique doesn't 
need additional elements 
and uses a surface-based 
framework. 

This technique needs to define 
cohesive places that are connected 
and interconnected with the rest of 
the components. 

4 Need pre-crack to simulate 
crack growth 

Can simulate crack initiation and 
propagation without the need to pre-
crack, the crack will initiate when 
the stress of cohesive traction is 
greater than the critical value. 

5 

Propagation of cracks will 
occur when the strain 
energy release rate is 
greater than the fracture 
toughness. 

Propagation of cracks will occur 
based on the model of cohesive 
damage, in which the usually a full 
crack opens, leading to energy 
release equal to the critical energy 
release rate. 

6 Many crack surfaces/ 
fronts enable to included 

Many crack surfaces/ fronts enable 
to included 

 

5.3. Extended finite element method (XFEM) 

Belytschko and Black (1999) [170], [171] show this 
technique is used to simulate crack propagation in the mesh 
without any need to re-mesh due to the ability to incision 
elements into separated parts. In this model, the degree of 
freedom is improved by the use of enrichment functions in the 
vector of displacement in the FE model, which presents the 
nodes surrounding the notch or material interface. The 
technique is shown in Fig. 24 and the equations below. 
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Fig. 24 XFEM technique in present of crack and inclusion [172]. 

uh(X) = uFE(X) + uenr(X)                                                            (20) 

uenr(X) = uH(X) + utip(X) + umat(X)                                           (21) 

uH(X) =�Ni(X) H(X)ai

l

i = 1

                                                          (22) 

utip(X) =� Ng(X)�� Fα

4

α = 1

(X)bg
α�

m

g = 1

                                         (23) 

umat(X) =� Nh(X) Xm(X)ch

n

h = 1

                                                     (24) 

Where, 

uFE: Vector of elasticity displacement. 

uenr: All enrichment function displacement vector. 

Ni(X), Ng(X), Nh(X): nodal shape function of classical FE. 

H(X): Heaviside function (strong discontinuity regard to crack 
partition). 

Fα(X): functions of singularity (field of singularity around 
crack tip). 

Xm(X): weak discontinuity of interface of material. 

ai, bg
α, ch : additional degrees of freedom.  

Sigh function consider Heaviside-Function 

 H(ξ) = � 1         ∀ξ > 0
−1        ∀ξ < 0 

ξ : Function of signed distance, show whether the actual node 
is in side of positive or negative of crack partition [69]. 

Enrichment functions change from isotropic to orthotropic 
material; more details are found in [173]. 

5.4. Phase field 

Phase-field fracture models have proven to be quite 
effective at modeling the initiation, propagation, branching, 
and joining of cracks in brittle and ductile materials that are 
stimulated externally. Phase-field fracture models are quite 

flexible and can encompass many features of the material, such 
as anisotropy, elastoplasticity, viscoelasticity, hyperelasticity, 
piezoelectricity, etc. One of the most prevalent material failure 
processes in structural engineering, fatigue, has recently been 
included in the models. Figure 25 show the ability of phase 
field model. 

The phase field fracture models' governing equations are 
derived from the variational principle of total energy. These 
equations are similar to those of other mathematical models, 
such as the Ginzburg-Landau and Allen-Cahn equations. 
These formulas aid in explaining how cracks develop in 
materials under different circumstances. 

 
Fig. 25 Application of phase field [174]. 

Phase field model numerical implementation has 
undergone substantial development. Researchers such as 
Amor and Miehe have made significant contributions to the 
discretization of the governing equations through the use of the 
finite element method (FEM). 

After determining the increments of displacement and 
fracture phase field variables, the Newton-Raphson approach 
is frequently employed to update the variables in the phase 
field model [175].  

Table below show different research used numerical 
modelling. 

Table 10. Research of numerical modelling. 

Numerical modeling method References 
VCCT [176-180] 
CZM [4, 181-194], [195] 

XFEM [136, 196-200] 
XFEM + CZM [201] 
XFEM + VCCT [202] 
VCCT + CZM [203] 

Phase field [204-208] 
 

There more details of simulation by using FE model in 
[37], [40], [175] and [175]. 
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6. ASTM used to find composite property and fatigue 
behavior  

The heterogeneous composite material required many tests 
to find mechanical properties, listed below, with ASTM 
required to model fatigue life and behavior. 

Table 11. ASTM for composite materials properties and fatigue testing. 

ASTM Description References 

D6115-97 
Fatigue delamination growth (mode i) 
onset of unidirectional fiber-reinforced 
polymer matrix composites 

[209] 

E647 Measurement of fatigue crack growth rates [210] 

D3479/D34
79M-12 

For tension-tension fatigue of polymer 
matrix composite materials, [211] 

D 6873 Bearing fatigue [212] 

D5528 
Measure of interlaminar fracture toughness 
(mode I) of unidirectional fiber-reinforced 
polymer matrix composites. 

[213] 

D7905 

Measure of the interlaminar fracture 
toughness (mode II) of unidirectional 
fiber-reinforced polymer matrix 
composites 

[214] 

D6671M-06 

Measure of interlaminar fracture toughness 
(mixed mode I-mode II) of unidirectional 
fiber reinforced polymer matrix 
composites 

[215] 

D 3039 In plane tension (EX, EY, VXY, STX, STY) [216] 

D7291 Out of plane tension (EZ, STZ) [217] 

D 6641 In plane compression (ECX, ECY, VCXY, 
SCX, SCY) [218] 

D 3410 Compression test with unsupported gage 
section by shear loading [219] 

 
Table 12. shear test for composite material [220]. 

 Uniform 
shear 

All 
stress 
state 

Shear 
strength 

Shear 
modulus Ref. 

Short beam 
shear 

(D2344) 
  ×  [221] 

Isipescu D 
5379 × × × × [222] 

± 45 tension 
shear D 3518   × × [223] 

2 rail shear D 
4255   × × [224] 

3 rail shear D 
4225   × × [224] 

Double notch 
shear D 3846   × × [225] 

Tube torsion 
D 5448 ×  × × [226] 

V-notched 
rail shear D 

7078 
× × × × [227] 

 
7. Conclusions 

Fatigue in composite material is considered a tremendous 
challenge because of the numerous influences on it, including 
matrix and fiber material, volume fraction, orientation of fiber, 
moisture content, porosity, rate of applied stress and strain, 
stress ratio and frequency, which make the numerical 
simulation is difficult due to the need for an empirical base 
before simulation, which leads to cost-ineffectiveness. 

The study of composites is different from scale to scale, 
which increases the difficulty of modeling and the number of 

tests required for it, due to its heterogeneity. Eliasson [32] 
presented a good framework to study composite fatigue at 
different scale lengths. 

Almost all studies of fatigue in composites used the stress 
approach, while the rest of the approaches had limit studies, 
where the strain approach is more suitable for low-cycle 
fatigue. Almost all studies by fatigue crack growth method 
study the delamination failure as the most common failure in 
composite laminate, while there are limit application for 
failure by fracture. 

The numerical modelling by phase field show good result 
comparison to XFEM, where the latest has no ability to 
simulate branching of crack, and consider XFEM better than 
VCCT and CZM which have specific path. 

Still the study of fatigue and modeling it spearheaded with 
of composite development material, like useing Nano material 
as in [228-231] or including more details in composite like 
influenced of stitch density [232-234], effect on holes on it 
[235, 236], add viscoelasticity effect [237], study delamination 
migration [238], etc. 
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