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1. Introduction 
Ball bearings are essential components for carrying the 

load-elements in rotating machines, and their faults can cause 
high risk to the entire machine. Accordingly, it has been found 
that machine learning can increase the life of machines and 
provide save environment to the laborers while working. 

Defects in bearings usually appear in the form of vibration 
signals as disturbances in the time and frequency domains. The 
disturbance occurs as a result of forces produced when some 
defects show up in the ball or the race of bearings such as pits, 
scratches or slots [1]. Vibration signals carry the dynamics of 
malfunctions in rotating machinery; therefore, they can be 
employed to detect faults [1-3]. Every rotating machine has a 
unique vibration signature. The aspects of measured vibration 
signals have information regarding the machine’s condition 
and most of the mechanical faults [4, 5]. Consequently, several 
efficient methods have been suggested for finding the 
diagnostic features (DFs) related with the aspects of vibration 
signals that helps diagnosing accurately faults such as the 
adaptive feature extraction method for bearing fault diagnosis 
[6]. Diagnosis based on artificial intelligence induces advances 
in the field of machinery failure detection technology, which 
can efficiently analyze the collected data and provide reliable 
diagnostic results automatically [7]. Among the various 
intelligence methods, deep learning (DL) has attracted much 
attention and been used in a variety of fields [8]. Convolutional 
neural networks (CNNs) are a division of the deep learning and 
have made it possible to recognize the patterns in large inputs 

such as raw signals or images by extracting characteristic 
features. In this regard, Zhang et al. [9] adopted CNN to train 
raw 1-D temporal vibration signal data as the input into a 2D 
image for bearing faults diagnosis. Zhang et al [10] found a 
new technique for training a CNN and used it for diagnosing 
bearing faults. The raw and noisy vibration signals under 
different loading conditions were used as the inputs of the 
CNN in order to show the robustness and high accuracy of the 
proposed technique. The features, which were extracted by the 
CNN from the signals, were also visualized and explained. In 
a similar study, Huang et al. used deep decoupling CNN to 
detect compound faults [11]. Wang et al. [12] used the images 
produced from multiple sensor fusion that map different fault 
features into the CNN to diagnose faults in the wind power rig. 
In Hoang and Kang’s [13], gray-scale vibration images were 
extracted from 1-D vibration signals and used as inputs to the 
CNN in fault diagnosis of rolling element bearing. Udmale et 
al. used the kurtogram images as the input to a CNN to 
facilitate the task of identifying the dominant features that 
represent the bearing faults [14]. Another study conducted by 
Udmale et al included using the DL sequence models to 
analyze the kurtogram sequential data to eliminate the feature 
selection exercise in the diagnosis of rolling element bearing 
faults [15]. Jiang et al. proposed a method named dual 
attention dense convolutional network to handle some 
deficiencies of the CNN [16]. Azamfar et al. applied transfer 
learning (TL) with 1D CNN model to diagnose gearbox faults 
[17]. Cao et al. proposed the temporal convolutional network 
with residual self-attention mechanism to predict the 
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remaining life of roller bearings. Their method can learn both 
time-frequency and temporal information of signals [18].  

In this study, the measured vibration signals are processed 
using reverse dispersion entropy (RDE) method. Then, 
colored-coded maps are extracted from the RDE and used as 
an input to the convolutional neural network (CNN). The main 
goal of the current research is to diagnose accurately two types 
of faults (pit and slot) located at various positions (inner race, 
outer race, and ball element) of a ball bearing (KOYO 1205 
C3 type) running at constant speeds (25 Hz and 30 Hz). 

2. Theoretical overview 
2.1. Vibration signal properties 

     Due to the wide-range applications of transients or non-
stationary vibration signals, a lot of researchers characterize 
these vibration signals and study deeply their behavior, for 
instance Al-Raheem [19] and Antoni and Randall [20]. These 
signals can be described using the following equation: 

 x (t) =�Ar S (t − Tr) + n(t)
r

                                                     (1) 

Where:  
Ar : represents the amplitude that varies with time due to the 
fluctuation of the applied force.  
Tr : is the impacting time of rth order (Tr = r T + τr),  
T : stands for the average fault time.  
τr : is the fluctuation that occurs during the fault time owning 
to the variation in speed or slippage in bearings. 
S(t) : refers to the waveform initiated by non-stationary events 
which describe the decaying ringing, and n(t) identifies the 
additive background noise. S(t) can be estimated as follows. 

S(t) = e−ξωnt cos��1 − ξ 2 ωnt + φ�                                          (2) 

Where:  
ξ : indicates to the damping ratio, ωn : refers to the natural or 
ringing frequency, and φ : represents the phase angle or 
shifting angle as a response to the excited force. 

2.2. Entropy 

The entropy can be defined as  H = − ∑ pi ln pii  which is 
usually used in the thermodynamics and signal processing 
sciences. In signal processing science, entropy was first 
defined by Shannon as an irregularity or uncertainty 
measurement and hence refers to the amount of useful 
information. A higher entropy indicates that the amount of 
irregularity or uncertainty is high while the amount of 
information is low. Conversely, if the entropy value is small, 
the information is high, whereas the level of irregularity or 
uncertainty is low. The stationary signal could be described as 
any system in an equilibrium state. If the entropy level is low, 
this gives a sign that there is a transient event or non-
stationarity in the vibration signal. In addition to the signal 
processing field, entropy has been employed in other fields 
including thermodynamics, physics, and economy [21]. Even 
though Shannon entropy can successfully determine the 
amount of information in a signal, it does not tell anything 
about the organization of the information and the relation 
between the entropy and time.  

To study the rate of change of entropy in any process, some 
generalizations of Shannon’s theorem are introduced such as 
Kolmogorov–Sinai entropy and Rényi entropy [21]. However, 
the applications of these techniques to measure the complexity 
of limited length and noisy signals were not so successful. To 
tackle the deficiencies of some of the complexity measurement 
algorithms, approximate entropy (ApEn) and sample entropy 
(SamEn) were introduced [22-24]. (ApEn) was formulated 
with the same philosophy of Kolmogorov-Sinai entropy but 
with improved performance. Low (ApEn) value indicates that 
the system is persistent, repetitive, and predictive. Richman 
and Moorman [23] have found that (ApEn) is biased and 
heavily affected by data length and the results are not 
consistent due to dependency on filtering level. Therefore, 
they introduced sample entropy (SampEn) as an alternative to 
(ApEn). Although (SampEn) is powerful, it is computationally 
demanding especially for long signals [25]. Another regularity 
indicator that is conceptually simple and computationally fast 
is the PE [26]. However, PE considers the ordinal structure of 
the signal and does not take into account the mean value of the 
amplitudes, nor the differences between the values. Recently, 
the dispersion entropy [25], which will be discussed soon, is 
introduced as an alternative to PE. 

2.3. The Infogram 

One of the most serious limitations of the kurtogram is that 
kurtosis decreases as the repetition rate of transients increases 
[22]. An example is when the transients become too frequent 
such that they overlap each other. The other shortage of the 
kurtogram is that when the transients are so spaced such that 
there is one impulse event in the entire record, in which case 
the kurtosis is maximal. This is the reason why the kurtogram 
is highly sensitive to impulsive noise. For these (and other) 
reasons, Antoni proposed the Infogram as an alternative to the 
kurtogram. 

Given a time series signal x(n), the SE, u(n; fk, Δf ), is the 
instantaneous energy flow, at a given instant nΔt, frequency fk, 
and frequency resolution Δf which is the amplitude squared of 
the complex envelope [22]: 

 u�n; fk, Δf � = � � x(i) w(i − nR)e − j2πki/Nw

Nw + nR

i = nR

�

2

                    (3) 

Where: Nw is the processing block size or STFT window size, 
Δf = Fs/Nw, fk = k Δf, w(n) is the window function, and R 
determines overlapping percentage between successive 
blocks. 

Despite the envelope can be evaluated by different 
techniques such as FIR filter of fast kurtogram [24], STFT 
imposes flexibility in the selection of window size and, hence, 
frequency resolution. With the development of very efficient 
algorithms to calculate the STFT such as the fastest Fourier 
transform in the West (FFTW), the calculations complexity is 
not a matter of concern. Antoni [22] proposed definition of the 
entropy by interpreting the squared instantaneous energy flow, 
normalized by its average, as probability distribution. To 
obtain analogy with SK, Antoni proposed using negative of the 
entropy or negentropy. The spectral negentropy ΔIu (f, Δf ) of 
the squared envelope is given by: 

ΔIu(f, Δf ) = 〈
u(n; f, Δf )2

〈u(n; f, Δf )2〉
ln �

u(n; f, Δf )2

〈u(n; f, Δf )2〉
�〉                      (4) 
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Where: 

〈u(n; f, Δf)2〉 =
1
L
� u(n; f, Δf )2
L − 1

n = 0

  is the average of the squared 

energy. Similarly, spectral negentropy in the frequency 
domain can be defined using SES. 
U(α; fk , Δf ), which is the Fourier transform of u(n; fk , Δf ) 

ΔIU(f, Δf ) = 〈
U(n; f, Δf )2

〈U(n; f, Δf )2〉
ln �

U(n; f, Δf )2

〈U(n; f, Δf )2〉
�〉                     (5) 

The maximum value of SE negentropy ΔIu(f, Δf) 
corresponds to an impulse in the SE while minimum value 
corresponds to a sinusoidal SE (i.e., cyclostationary signal). 
This is the inverse behavior of the SES negentropy ΔIU (f, Δf). 
Therefore, both ΔIu (f, Δf) and ΔIU(f, Δf) are used jointly in 
order to detect energy fluctuation in different types of signals. 
Hence, the average negentropy ΔIρ(f, Δf) is proposed by 
Antoni [22]: 

ΔIρ(f, Δf ) = ρΔIu (f, Δf ) + (1 − ρ)ΔIU (f, Δf )                         (6) 

where ρ is taken as 0.5 to comply with Hirschman’s 
entropic uncertainty principle. The quantities ΔIu(f, Δf),    
ΔIU(f, Δf), and ΔIρ(f, Δf ) when represented in the (f, Δf ) plane 
as color-coded map constituting the (SE infogram), (SES 
infogram), and the (average infogram), respectively [22]. 

2.4. Dispersion entropy 

Sample entropy and permutation entropy are widely used 
as indicators of time series fluctuation [27-30]. Although PE is 
computationally fast and simple, it does not consider the 
differences between amplitudes values, therefore important 
information could be lost. On the other hand, sample entropy 
is a computationally demanding algorithm. As an alternative 
to these two entropies, dispersion entropy, which can tackle 
the aforementioned limitations, is introduced by Rostaghi and 
Azami [25]. DE is faster than PE and can track the amplitude 
variation in the signal. Moreover, DE sensitivity to noise and 
minor fluctuations is adjustable through the selection of the 
number of classes and embedding dimension [25]. Dispersion 
entropy is derived from Shannon entropy and symbolic 
dynamics or dispersion patterns [31]. The concept of symbolic 
dynamics is devised from coarse-graining of the time series, 
i.e., transforming the measurements into a new signal with few 
different elements by a certain nonlinear mapping process. 
Hence, the dynamics of a signal can be studied by tracking the 
distribution of the symbolic sequences or dispersion patterns. 
Indeed, some minor details may be lost, but some invariant 
dynamic properties can be kept and detected more easily. In 
order to understand how DE works and compare it with PE, 
the steps required to obtain the DE for a time series x(n), will 
be provided first. 

Step 1: Mapping the data to a new time series using normal 
cumulative distribution function: 

 y(n) = 
1
2
�1 − erf �−

x'(n)
√2

��        n = 0, 1, 2,                          (7) 

Where: erf(.) represents error function, x'(n) is the signal x(n) 
normalized to zero mean and unity variance, and the resulting 
data y(n) is ranging from 0 to 1.  

Step 2: Map y(n) to a new data z(n) ranging from 1 to c: z(n) 
= round (c y(n) + 0.5), where c is the number of classes. 

Step 3: Choosing the embedding dimension m, which 
represents the number of successive classes taken at a time, 
and time delay d, the number of possible dispersion patterns is 
equal to cm, πi = {π1, π2, π3, …} where i = 1, 2, 3 … cm. 
Dispersion patterns correspond to vectors whose values are 
combinations of classes taken m at a time. Many researchers 
[6, 25-32, 33] recommended using the number of classes c 
between 4 and 8, delay d = 1 and m between 2 and 5. 

Step 4: Using a step of d, scan z(n) progressively to find 
vectors that match each dispersion pattern and count the 
number of occurrences for each pattern. The number of vectors 
that can be extracted from the signal is equal to L – (m – 1) d. 
Hence, find the probability of each pattern πi: 

 p(πi) =
Number of occurance of πi 

L − (m− 1) d
                                          (8) 

Where: p(πi) is the probability of each pattern πi, L is number 
of samples, m is embedding dimension, and d is delay time. 

Step 5: Calculate the dispersion entropy DE (not required for 
RDE): 

DE = −� p(πi) log (p(πi))
cm

i = 1

                                                       (9) 

When all the elements of a signal are mapped into one 
class, the signal is perfectly predictable and, hence, has 
minimum entropy that equals zero. On the opposite side, if all 
possible dispersion patterns exist and have the same 
probability, then, the signal is unpredictable and has maximum 
entropy value that equals ln(cm). As a numerical example, 
suppose we have three classes c = 3, embedding dimension      
m = 2 and delay d = 1. The number of possible dispersion 
patterns is 32 = 9, πi = {π1, … π9} with π1 {1, 1}, π2 {1, 2}, π3 
{1, 3}, π4 {2, 1}, π5 {2, 2}, π6 {2, 3}, π7 {3, 1}, π8 {3, 2}, π9 
{3, 3}. 

Let us assume a time series which is mapped into z(n) = [3, 
1, 2, 3, 3, 2, 1, 1, 2, 2, 1, 3, 3, 3]. The number of samples is      
L = 14 and the number of vectors that can be extracted is                 
L – (m – 1) d = 13. When z(n) is scanned for patterns, the 
number of occurrences of the pattern π1 is found to be 1,      
p(π1) = 1/13. Similarly, other probabilities are found to be  
p(π2) = 2/13, p(π3) = 1/13, p(π4) = 2/13, p(π5) = 1/13,             
p(π6) = 1/13, p(π7) = 1/13, p(π8) = 1/13, and p(π9) = 3/13. 

Hence,     DE = −� p(πi) ln p(πi) = 2.0981
i

 

It is clear that DE tracks the transitions that occurred in the 
values of the sequence and it distinguishes between different 
values. On the contrary, PE considers the ordinal structures of 
the signal irrespective of what the values are. For example, the 
sequences [34, 35] and [36, 37] have the same permutation 
pattern “01” which indicates that the first value is less than the 
second one. Furthermore, if there exist two or more elements 
that have the same value in a sequence, the pattern will be 
determined by their index in ascending order. For these 
reasons, some important information may be lost. 

 



35               H. A. Alhajjaj and J. K. Alsalaet / Basrah Journal for Engineering Sciences, Vol. 25, No. 1, (2025), 32-41                                  

2.5. Reverse dispersion entropy 

Dispersion entropy is to Shannon entropy and cannot be 
used directly to measure the non-stationarity of the signal. 
Hence, reverse DE is used, which is analogous to negentropy. 
Instead of negating Shannon entropy to obtain an indicator that 
is directly proportional to information content, the distance 
from the white noise is used. RDE combines the advantages of 
both DE and reverse permutation entropy RPE [38]. It is 
defined as the distance of signal probabilities from the white 
noise probability. The white noise has equal probability p(πi) 
for all patterns. Since there are cm patterns and the total 
number of vectors is L – (m – 1) d, the probability of any 
pattern for a white noise signal is given by: 

Pwns (πi) = 
L − (m − 1)d

C m

L − (m − 1)d
 = 

1
C m                                           (10) 

Where: statistically, the RDE can be recognized as the square 
deviation of the probability function p(πi) from the white 
noise probability, which can be expressed as follows: 

RDE =��P(πi) −
1

C m�
2C m

i = 1

=�P(πi)
2 −

1
C m

C m

i = 1

                       (11) 

For a white noise signal, the RDE is minimum and 
approaches 0. Whereas, when the signal is constant and, hence, 
there is only one pattern, the RDE approaches (1 – 1/cm). 
Therefore, the normalized RDE, which accounts for the 
number of patterns cm, can be calculated as follows: 

RDE = 
1

1 − 1
Cm

 �P(πi)
2 −

1
C m

C m

i = 1

                                             (12) 

The normalized RDE value ranges from 0 for pure white 
noise to 1 for a constant value signal. Any signal with 
predictable behavior will exhibit a high RDE, whereas a 
random unpredictable signal will show a small value of RDE. 
The normalized RDE will be used throughout the paper. It is 
worth mentioning that Step 5 of DE calculation is not needed 
to calculate the RDE. The complete flowchart of RDE 
including DE is shown in Fig. 1. 

 
Fig. 1 the flowchart of reverse dispersion entropy (RDE) including 

dispersion entropy (DE). 

2.6. Application to vibration signal 

The SE calculated from eq. (3) can be interpreted as 
instantaneous energy flow of the signal filtered with a filter of 
center frequency f and bandwidth Δf. Like spectral negentropy 
which is used by Antoni [22], the RDE can be used to obtain 
the time domain RDEgram which quantifies the dynamics of 
the SE and it will be denoted by RDEu (f, Δf). Likewise, the 
RDE can be applied to the SES to obtain the frequency domain 
RDE gram, denoted by RDEU (f, Δf). Shortly, it will be shown 
that both the time domain and frequency domain spectral RDE 
grams are required to understand signal behavior, hence a 
weighted average RDE can be used: 

RDEρ(f, ∆f ) = ρRDEu(f, ∆f) + (1 − ρ) RDEU(f, ∆f)              (13) 

Table 1 compares between negentropy and RDE 
expressions for some signals. In this table, signals are sampled 
at Fs, δΔf stands for a temporal impulse of width 1/Δf and ΠΔf 
stands for a rectangle of width Δf and unity amplitude. The 
same assumptions of Antoni [27] regarding the shape of the 
spectrum for different signals are adapted here for comparison. 
r = Fs/Δf, K the number of pulses for Dirac comb, N is the 
period between each two successive pulses, L = KN. The 
details of these expressions are provided in the proof of           
eq. (12). The parameters of RDE method are c = 4, m = 2, and 
d = 1. For Dirac comb function, the values of RDE in the time 
and frequency domain can be calculated from the following 
equations: 

 σ(L, K, r) =
1

1 − 1
Cm

��
L − 1 − 2K − K(r − 1)2

L − 1
� + 2 �

K
L − 1

�
2

+ 

�
K(r − 1)

L − 1
�

2

−
1

Cm�                                                                      (14) 

Where: L is the length of the points, and, K = L/N is the number 
of pulses, and r is the pulse width.  

Equation (14) is proved in the proof of eq. (12), whereas 
some of the values are calculated as in Table 1. It can be seen 
from that for White Complex Gaussian Noise (WCGN) the 
RDE is 0 while it is 0.4228 for negentropy. This suggests that 
RDE can handle noise better than negentropy. For a sinusoidal 
SE (cyclostationary vibration signal), the time domain RDE is 
generally small and depends on the frequency of the sinusoid 
and ranging from 0.23 for very low frequency (1 cycle in the 
entire length) to 0.1 for high-frequency SE. However, using 
time domain RDE, just like time domain negentropy, is not a 
good idea for this type of signal. On the other hand, the 
frequency domain RDE approaches its maximum value for 
such signals due to the fact that there is only one impulse in 
the SES. 

For Dirac comb (pulse train) SE with pulses spaced at N, 
the SES is also pulse train spaced at K = L/N according to 
Fourier transform properties. It can be easily shown that, for 
certain temporal spacing N, the RDE does not depend on the 
total length L. In fact, the time domain RDE, like the time 
domain negentropy, is a function of N only (when considering 
certain r). However, the RDE is less sensitive to spacing 
changes. For example, when L = 4000 and r = 1, if N is 
changed from 10 to 1000, the negentropy change will be 300% 
while, the RDE change is only 156%. This implies that RDE 
is less susceptible to the rate of repetition of transient events.  
Figure 2 shows the time domain Dirac comb RDE as a function 
of spacing N for total length L = 4000. 
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Table 1 Negentropies and RED expressions for some singles. 

 

 
Fig. 2 RED of Dirca comb as function of comb spacing. 

2.7. Implementation 

Step 1: The SE of the signal, u(n;  f, Δf ), is extracted using eq. 
(3). To ensure proper energy flow sampling and prevent 
information loss, the value of overlapping parameter R is 
chosen as R = Nw/4 except at the zero frequency and Nyquist 
frequency where it is taken as Nw/2 [22]. Normally the Fast 
Fourier Transform (FFT) or equivalent algorithm is used to 
calculate SE. The window length is changed over a number of 
selected values to provide variable bandwidth Δf. 

Step 2: The SE signal u(n; f, Δf) at a given frequency and 
frequency resolution is processed using RDE algorithm to find 
the time domain RDE u(f, Δf ), which can be represented by a 
color-coded map RDEgram.  

Step 3: The SE signal is DFT-transformed to obtain squared 
energy spectrum U(α; f, Δf ) which is processed by RDE to 
obtain frequency domain RDEU(f, Δf). Efficient FFT algorithm 
such as FFTW can be used for this purpose. The RDEgram for 
RDEU(f, Δf ) can be constructed. 

Step 4: The combined RDEgram can be evaluated according 
to eq. (13).    

Step 5: FIR filters are designed using the data obtained from 
RDEgrams. The FIR filter has center frequency corresponding 
to the regions of highest RDEgram value and filter bandwidth 
is set to twice the corresponding frequency resolution; 
Bandwidth = 2Δf. 

Step 6: Vibration signal is filtered using the filter designed in 
Step5 to reveal the transients in the signal. The spectrum of the 
filtered signal can also be obtained after rectifying or squaring 
the filtered signal to obtain the envelope. The flowchart of the 
proposed method is shown in Fig. 3. 

 
Fig. 3 Flowchart of the used method. 

3. Experimental work   
3.1. Experimental rig 

In this work, the experimental rig consists of electrical 
motor, gear box, sensors, bearing loader, bearing, data 
acquisition and computer as shown in Fig. 4. 

 
Fig. 4 Experimental rig used in this work. 
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3.2. Ball bearings 

In this work, ball bearings type (KOYO 1205 C3) was used 
and the specifications of this ball bearing, the ball bearing 
consists of three parts as shown in Fig. 5.  

  
Fig. 5 Ball bearings type (KOYO 1205 C3). 

3.3. Experimental procedure 

The experimental procedure of this work is: 

1. Select the ball bearing specimen test (intact, pit, slot and 
scratch) and install the ball bearing in the experimental rig. 

2. Select the rotation velocity of the electrical motor. 
3. The experimental acceleration wave from the vibration 

sensor (accelorameter) for four to six time steps and each 
time step = 100 sec, and save the wave in computer. 

4. Use the signal tool program to convert the wave from time 
domain into frequency domain. 

5. Convert the saved data into color photos using reversed 
dispersion entropy (RDE) that is programing using Matlab 
program. 

6. Save the color photos for each type of defects and then use 
it in the CNN program. In CNN program, 70% of the total 
color photos are used in training process of CNN, while, 
the 30% of the total color photos are used in testing process 
of CNN or checking the CNN results. The specifications of 
PC computer using in conversion process and the time 
spend to convert 100 sec of data is about 63 min with 
overlap about 90%. The time consume for conversion 
process reduces a new computer with following 
specifications is used: 

4. Results and discussion  
In this work, the experimental and theoretical results 

explained and discussed. This section is divided into two parts 
according to the rotational velocity used in this work 30 and 
25 Hz.  

Table 2 lists the max. RDE gram (Normal) values and the 
corresponding spectral frequency and bandwidth for normal 
bearings at 30 and 25 Hz, respectively. It is found that the 
maximum RDE occurs at 1200 Hz spectral frequency. In 
addition, a general except for readings with frequency 300 Hz 
is noticed. Figures 4 and 5 show the RDE gram for normal ball 
bearing at 30 and 25 Hz. 

Table 3 lists the max. RDE gram (inner) values and the 
corresponding spectral frequency and bandwidth for normal 
bearing at 30 and 25 Hz for bearing kay 1296 C3. It is found 
that the maximum RDE occurs at 1200 Hz and 14000 Hz 
spectral frequency and a general except for reading with 
frequency 300 Hz and 2000 Hz when the rotational speed is 30 
and 25 Hz, respectively. Figures 6 and 7 show the RDE gram 
for bearing with inner pit fault at 30 and 25 Hz. 

For the outer race pit case, the maximum RDE occurs at 
1200 and 16000 Hz spectral frequency and a general except 
for reading with frequency 300 and 3000 Hz at 30 and 25 Hz 

respectively. Figures 8 and 9 show the RDE gram for bearing 
with Outer pit fault at 30 and 25 Hz. 
For the ball pit case, Table 4 shows in detail the max. RDE 
gram (ball) values and the corresponding spectral frequency 
and bandwidth for normal bearing at 30 and 25 Hz for bearing 
kay 1296 C3. It is found that the maximum RDE occurs at 
1200 and 17000 Hz spectral frequency and a general except 
for reading with frequency 300 and 4500 Hz, respectively. 

For CNN, Fig. 10 shows the training progress for pitting 
fault at 30 Hz. It is clear that after 80 iterations, the training 
accuracy starts to stabilize and the loss becomes very small. 
From confusion matrix in Fig. 11, it is clear that the CNN 
achieved accuracy of 100%. In the other word, Fig. 12 shows 
the training progress for pitting fault at 25 Hz. It is clear that 
after 80 iterations, the training accuracy starts to stabilize and 
the loss become very small. From confusion matrix in Fig. 13, 
it is clear that the CNN achieved accuracy of 100%. 

Table 2 the max. RDE gram (Normal) values and the corresponding spectral 
frequency and bandwidth for normal bearing at 30 and 25 Hz for bearing 

koyo 1205 C3. 

30 Hz 25 Hz 
Block 

Number Max RDE Spectral 
Freq. 

Bandwi
dth 

Block 
Number 

Max 
RDE 

Spectral 
Freq. 

Bandwi
dth 

1 0.15173 1000 1000 1 0.16976 1200 1200 
2 0.15968 1200 1200 2 0.16342 1200 1200 
3 0.15514 1000 1000 3 0.1627 1200 1200 
4 0.15824 1200 1200 4 0.15859 1200 1200 
5 0.16316 1200 1200 5 0.15466 1200 1200 
6 0.16492 1200 1200 6 0.16167 1200 1200 
7 0.1633 1200 1200 7 0.16065 1200 1200 
8 0.16433 1200 1200 8 0.1582 1200 1200 
9 0.17222 1200 1200 9 0.15597 1200 1200 
10 0.16863 1200 1200 10 0.15705 1200 1200 
11 0.16817 3000 428.571 11 0.16374 1200 1200 
12 0.16415 3000 428.571 12 0.16207 1200 1200 
13 0.1701 3000 428.571 13 0.16656 1200 1200 
14 0.1536 3000 428.571 14 0.16468 1200 1200 
15 0.16723 3000 428.571 15 0.16767 1200 1200 
16 0.15924 3000 428.571 16 0.16735 1200 1200 
17 0.15542 3000 428.571 17 0.16657 1200 1200 
18 0.15072 3000 428.571 18 0.16791 1200 1200 
19 0.15072 3000 428.571 19 0.16368 1200 1200 
20 0.15729 3000 428.571 20 0.17426 1200 1200 
21 0.14943 3000 428.571 21 0.15053 300 300 
22 0.13996 1200 6000 22 0.12773 300 300 
23 0.14517 3000 500 23 0.1456 1200 300 
24 0.15161 3000 500 24 0.16032 1200 300 
25 0.14853 3000 428.571 25 0.16369 1200 300 
26 0.15173 3000 429.571 26 0.17831 1200 300 
27 0.15579 3000 430.571 27 0.1925 1200 300 
28 0.15589 3000 375 28 0.21685 1200 300 
29 0.16302 3000 428.571 29 0.22369 1200 300 
30 0.16696 3000 429.571 30 0.15053 300 300 
31 0.14943 3000 428.571 31 0.14074 1200 1200 
32 0.13996 12000 6000 32 0.14352 1200 1200 
33 0.14517 3000 500 33 0.1487 1200 1200 
34 0.15161 3000 500 34 0.14255 1200 1200 
35 0.14853 3000 428.571 35 0.14286 1200 1200 
36 0.15173 3000 428.571 36 0.14638 1200 1200 
37 0.15579 3000 428.571 37 0.14933 1200 1200 
38 0.15589 3000 375 38 0.14615 1200 1200 
39 0.16302 3000 428.571 39 0.15626 1200 1200 
40 0.16696 3000 428.571 40 0.15204 1200 1200 

 

  
 

 

Fig. 6 the RDE gram for bearing with normal pit fault at 30 Hz. 
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Fig. 7 the RDE gram for bearing with normal pit fault at 25 Hz. 

Table 3 the max. RDE gram (Inner) values and the corresponding spectral 
frequency and bandwidth for normal bearing at 30 and 25 Hz for bearing 

koyo 1205 C3. 

 

 

Fig. 8 the RDE gram for bearing with inner race pit fault at 30 Hz. 

 

Fig. 9 the RDE gram for bearing with inner race pit fault at 25 Hz. 

Table 4 the max. RDE gram (Outer) values and the corresponding spectral 
frequency and bandwidth for normal bearing at 25 Hz for bearing kay 1296 C3. 

30 Hz 25 Hz 
Block 

Number Max RDE Spectral 
Freq. Bandwidth Block 

Number Max RDE Spectral 
Freq. Bandwidth 

1 0.14712 5142.85 1714.28 1 0.13851 16000 4000 

2 0.15041 5142.85 1714.28 2 0.13813 16000 4000 

3 0.15119 5142.85 1714.28 3 0.13985 16000 4000 

4 0.15202 5142.85 1714.28 4 0.13885 16000 4000 

5 0.14871 5142.85 1714.28 5 0.1403 16000 4000 

6 0.14914 5142.85 1714.28 7 0.14876 16000 4000 

7 0.14918 5142.85 1714.28 8 0.14662 16000 4000 

8 0.1458 5142.85 1714.28 9 0.14551 16000 4000 

9 0.14866 5142.85 1714.28 10 0.14029 16000 4000 

10 0.15195 16000 4000 11 0.15085 15000 3000 

11 0.1512 5142.85 1714.28 12 0.15197 16000 4000 

12 0.15166 4800 1200 13 0.13688 16000 4000 

13 0.15039 4800 1200 14 0.13662 16000 4000 

14 0.15225 5142.85 1714.28 15 0.13431 16000 4000 

15 0.14914 5142.85 1714.28 7 0.14876 16000 4000 

16 0.14993 5142.85 1714.28 16 0.13222 16000 4000 

17 0.15162 5142.85 1714.28 17 0.12898 16000 4000 

18 0.15152 5142.85 1714.28 18 0.12739 16000 4000 

19 0.15326 4500 1500 19 0.1256 16000 4000 

20 0.15382 4500 1500 20 0.12576 16000 4000 

21 0.15225 5142.85 1714.28 21 0.15113 16000 4000 

22 0.14968 4800 1200 22 0.15125 16000 4000 

23 0.15277 5142.85 1714.28 23 0.13596 16000 4000 

24 0.14893 5142.85 1714.28 24 0.1362 16000 4000 

25 0.15198 5142.85 1714.28 25 0.13375 16000 4000 

26 0.15213 5142.85 1714.28 26 0.13397 16000 4000 

27 0.15045 5142.85 1714.28 27 0.1298 16000 4000 

28 0.1507 5142.85 1714.28 28 0.12852 16000 4000 

29 0.15306 5142.85 1714.28 29 0.12436 16000 4000 

30 0.15135 5142.85 1714.28 30 0.12838 16000 4000 

31 0.17452 4000 4000 31 0.14102 16000 4000 

32 0.17252 4000 4000 32 0.13972 16000 4000 

33 0.16535 4000 4000 33 0.1413 16000 4000 

34 0.20912 4000 4000 34 0.14197 16000 4000 

35 0.20807 16800 2400 35 0.13839 16000 4000 

36 0.20875 16800 2400 36 0.13618 16000 4000 

37 0.19356 16800 2400 37 0.13164 16000 4000 

38 0.199 16800 2400 38 0.13496 16000 4000 

39 0.20732 16800 2400 39 0.13142 16000 4000 

40 0.20362 16800 2400 40 0.13049 16000 4000 

 

 

Fig. 10 a sample of the outer pitting RDE gram. 

30 Hz 25 Hz 
Block 

Number Max RDE Spectral 
Freq. Bandwidth Block 

Number Max RDE Spectral 
Freq. Bandwidth 

1 0.10946 3857.142 214.2857 1 0.15472 4500 1500 
2 0.11602 3857.142 215.2857 2 0.15134 4500 1500 
3 0.1207 5625 375 3 0.15174 4500 1500 
4 0.12806 5625 375 4 0.15199 4500 1500 
5 0.11429 3857.142 214.2857 5 0.14987 4500 1500 
6 0.11115 3857.142 214.2857 6 0.15039 4500 1500 

7 0.11111 3857.142 214.2857 7 0.15042 4500 1500 

8 0.11239 3857.142 214.2857 8 0.14775 4800 1200 

9 0.11662 3857.142 214.2857 9 0.15039 4500 1500 

10 0.10998 3857.142 214.2857 10 0.14719 4500 1500 

11 0.15896 18000 2000 11 0.14887 1714.285 1714.285 

12 0.15994 17142.85 1714.285 12 0.15377 1714.285 1714.285 

13 0.16255 16800 1200 13 0.15229 1714.285 1714.285 

14 0.16401 16800 1200 14 0.15089 1714.285 1714.285 

15 0.16133 16800 1200 15 0.14967 1714.285 1714.285 

16 0.16429 16800 1200 16 0.14749 1714.285 1714.285 

17 0.15967 6000 6000 17 0.15012 2000 2000 

18 0.15752 6000 6000 18 0.15061 1714.285 1714.285 

19 0.15864 6000 6000 19 0.14367 1714.285 1714.285 

20 0.15991 16800 1200 20 0.14909 1714.285 1714.285 

21 0.12419 3857.142 214.2857 21 0.15259 1714.285 428.5714 

22 0.12628 3857.142 214.2857 22 0.15407 1714.285 428.5714 

23 0.11789 5625 375 23 0.15331 1714.285 428.5714 

24 0.12316 5625 375 24 0.15218 1714.285 428.5714 

25 0.11566 5625 375 25 0.14557 1714.285 428.5714 

26 0.11982 3750 250 26 0.14005 5750 250 

27 0.12412 3857.142 214.2857 27 0.1408 5750 250 

28 0.11733 3750 250 28 0.14123 5750 250 

29 0.12222 3857.142 214.2857 29 0.14135 6000 1500 

30 0.12416 3857.142 214.2857 30 0.13634 5750 250 

31 0.12403 3857.142 214.2857 31 0.1364 14000 1000 

32 0.12599 3857.142 214.2857 32 0.1459 14000 1000 

33 0.11742 5625 375 33 0.14209 14000 1000 

34 0.12396 5625 375 34 0.14063 13714.28 857.1429 

35 0.11987 3857.142 214.2857 35 0.14063 14000 1000 

36 0.11805 3750 250 36 0.15393 14000 1000 

37 0.1218 3750 250 37 0.15393 13714.28 857.1429 

38 0.11827 3857.142 214.2857 38 0.14914 13714.28 857.1429 

39 0.12441 3857.142 214.2857 39 0.15845 13714.28 857.1429 

40 0.12388 3857.142 214.2857 40 0.1491 4800 1200 
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Fig. 11 the RDE gram for bearing with outer race pit fault at 25 Hz. 

 
(a) 

 
(b) 

Fig. 12 the training progress for pitting fault at 30 Hz. 

Figure 13 shows the confusion matrix at 30 Hz composes 
four types of input data (normal bearing, defects at ball, defects 
at inner race, defects at outer race) and four types of output 
data. The green boxes represent the intersection between the 
input and output data of the same defect type, while the pink 
boxes represent the intersection between different defect types. 
The intersection happened between the same defect types, 
which is the ball in this case with 25% or 295 images. 

 
Fig. 13 Confusion matrix at 30 Hz. 

 
(a) 

 
(b) 

Fig. 14 the training progress for pitting fault at 25 Hz. 
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Fig. 15 Confusion matrix at 25 Hz. 

7. Conclusions 
Based on the current work, it could be concluded that the 

using a combination RDE-gram and CNN is an efficient 
technique to predict the catastrophic failure produced in ball 
bearings before occurring. The accuracy of prediction 
approaches a level of 100 % for predicting the pit faults at 
different locations such as inner ring, outer ring, and the ball 
element. Accordingly, this is of high importance in the 
industry to save human life and avoid the high cost ensuing 
from replacing the machines which can be destroyed as a result 
of accumulative faults of bearing. For these reasons, the 
demands on such tools have been increased highly in the 
nowadays. 
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