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Abstract  

The increasing intricacy of practical optimization challenges in engineering, 

logistics, and data science has led to the extensive use of evolutionary and swarm-

intelligence metaheuristics. Yet these methods often suffer from premature 

convergence and poor diversity when exploring high-dimensional or multimodal 

landscapes. Deterministic chaotic functions—exemplified by logistic, sine, tent, 

and Chebyshev maps—offer ergodic, sensitive, and topologically mixing 

sequences that can be seamlessly integrated into metaheuristic operators to 

enhance both exploration and exploitation. In this survey, we first introduce the 

mathematical foundations of chaos theory and categorize the principal chaotic 

maps used in optimization contexts. We then systematically review their 

incorporation into two major algorithmic families: Swarm-intelligence 

techniques (e.g., Particle Swarm Optimisation, Ant Colony Optimisation), 

evolutionary algorithms (e.g., Genetic Algorithms, Differential Evolution), where 

chaos has been used to population initialisation, mutation and crossover 

strategies, and adaptive parameter management, where chaotic sequences 

modulate inertia weights, pheromone updates, and positional updates. 

For each category, we synthesize benchmark results demonstrating 

improvements in convergence speed, solution accuracy, and robustness against 

local optima. We also discuss practical implementation issues—including map 

selection, parameter calibration, and computational overhead—and highlight 

promising future directions such as hybrid chaos-driven frameworks and domain-

specific applications in robotics, wireless sensor networks, and machine learning. 

Keywords 

Chaotic maps · Metaheuristic optimization · Evolutionary algorithms · Swarm 

intelligence · Chaos theory. 
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1. Introduction 

The pursuit of efficient optimization techniques is a fundamental challenge across 

scientific and engineering domains, including operations research, artificial 

intelligence, manufacturing, and communications. Many real-world problems—

such as resource allocation, scheduling, network design, and machine learning 

parameter tuning—are inherently nonlinear, high-dimensional, and multimodal, 

often lacking analytical gradients or exhibiting discrete variables [1][2]. In such 

contexts, metaheuristic algorithms have emerged as indispensable tools due to 

their flexibility, robustness, and minimal reliance on problem-specific 

information. 

Metaheuristics are high-level frameworks designed to guide subordinate 

heuristics in exploring complex search spaces and approximating global optima. 

Among these, evolutionary algorithms (EAs) and swarm intelligence algorithms 

are two of the most prominent categories, both drawing inspiration from natural 

phenomena [2-4]. Evolutionary algorithms, Evolution Strategies (ES), Genetic 

Algorithms (GAs) and Differential Evolution (DE) are examples of methods in 

which genetic variation and natural selection 18 i.e. by repeated application of 

selection, crossover and mutation to populations of candidate solutions have 

inspired these methodologies. Some of the swarm intelligence algorithms are 

Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO) and 

Artificial Bee Colony (ABC). emulate the collective behaviors observed in social 

organisms, leveraging simple interaction rules among individuals to discover 

optimal solutions collectively [1]. 

Despite their widespread adoption and proven efficacy, both evolutionary and 

swarm-based metaheuristics are prone to several intrinsic limitations. Chief 

among these are premature convergence, where the search stagnates at 

suboptimal solutions due to loss of population diversity, and the exploration-

exploitation trade-off, which governs the aptitude algorithm in effectively 

balancing the international search (survey) with fine-tuning near promising 

regions (exploitation) [2][5]. Other challenges include sensitivity to parameter 

settings, inefficiency in highly rugged or dynamic landscapes, and difficulty in 

escaping from local optima. These shortcomings can significantly compromise 

algorithmic performance, particularly for large-scale or highly complex 

optimization tasks. 
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To address these limitations, researchers have increasingly turned to chaos theory 

as a powerful enhancement strategy. Chaotic systems, though deterministic and 

governed by nonlinear dynamics, produce behavior that appears random and 

complex—yet is fully determined by precise mathematical rules [6]. Core 

characteristics of such systems—ergodicity, sensitivity to initial conditions, and 

topological mixing—ensure thorough exploration of the search space and 

generate pseudo-random sequences that maintain structured diversity [6][7]. 

Studies have demonstrated that substituting traditional random number 

generators with chaotic maps, such as the logistic, tent, or Lozi maps, 

significantly enhances the effectiveness of evolutionary operators and population 

initialization, thereby improving convergence behavior and avoiding premature 

stagnation (e.g., in chaotic-enhanced Genetic Algorithms for nonlinear equations 

and chaos-driven Differential Evolution variants) [6]. 

The application of chaotic functions such as the logistic map, tent map, sine map 

or Chebyshev map in evolutionary and swarm intelligence algorithms has given 

birth to a new class of "chaos-enhanced" metaheuristics. These chaos related 

strategies are incorporated into different steps of some meta-heuristic algorithms, 

including adaptive parameter control, crossover, mutation, population 

initialization, and dynamic control of exploration and exploitation. The final 

outcome is a more robust, flexible and effective search process that can 

successfully traverse complex fitness landscapes and avoid premature 

convergence 7. Numerical comparisons through benchmark and real-world test 

problems have demonstrated that embedded chaotic metaheuristics can provide a 

rapid convergence to high-quality solutions and superior overall performance in 

many cases 9. 

Due to the increasing body of work and the rapid evolution of this 

multidisciplinary field, a review is needed to enable the identification of effective 

strategies, to recognise research areas needing further development, and to collect 

lessons learned. This introduction describes the general motivations, theoretical / 

technical foundation, practical implementation, benchmark outcomes as effects 

of the application of chaotic function-based techniques in evolutionary and 

swarm-based optimization algorithms. With an in-depth overview, this volume is 

intended as a reference for researchers and practitioners in the field of 

metaheuristic and swarm intelligence optimization. 
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The organizational assembly of the research is as follows:: Section 2 reviews 

theoretical foundations of deterministic chaos and common chaotic maps. Section 

3 Theoretical Foundations of Metaheuristics: Evolutionary and Swarm 

Algorithms Section 4 surveys chaos-enhanced evolutionary and swarm 

algorithms. Section 5 discusses comparative performance analyses, 

implementation considerations, and open challenges. Section 6 concludes the 

survey and outlines future research directions. 

2. Theoretical Foundations of Deterministic Chaos and Common 

Chaotic Maps 

Deterministic chaos describes a class of dynamic systems governed by nonlinear 

deterministic equations whose solutions exhibit behavior that appears random, 

yet arises from deterministic processes. Despite the absence of true randomness, 

chaotic systems demonstrate high sensitivity to initial conditions, a property 

famously encapsulated by the “butterfly effect” [10]. This sensitivity, together 

with topological mixing and dense periodic orbits, gives rise to rich, complex 

dynamics that are neither wholly predictable nor strictly stochastic. Figure 1. 

Shows sorting the chaotic systems. 

 

Figure 1: classification of chaotic systems 

 

Coupled 
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2.1. Key Properties of Chaotic Systems 

Three principal properties distinguish chaotic systems from other dynamical 

processes: ergodicity, sensitivity to initial conditions, and topological mixing. 

Ergodicity ensures that chaotic orbits cover the accessible phase space densely, 

supporting diversity in candidate solutions. Sensitivity to initial conditions leads 

to exponentially diverging outcomes, enabling diverse and uncorrelated 

sequences. Topological mixing ensures that any region of phase space will 

eventually overlap with any other, promoting global exploration and discouraging 

premature convergence [10]. 

2.2. Mathematical Representation 

Chaos is commonly studied using discrete-time dynamical systems, or maps, 

which iteratively update a variable according to a nonlinear function: 

𝑥𝑛+1 = 𝑓(𝑥𝑛) 

Where (𝑓) is a nonlinear transformation and 𝑥0 is the initial condition. For 

suitable choices of 𝑓 and 𝑥0 , the sequence exhibits chaotic behavior [10]. 

2.3. Common Chaotic Maps 

Metaheuristic optimisation has made substantial use of a number of simple but 

effective chaotic maps.  Among the notable examples are the tent map and the 

logistic map, sine map, and Chebyshev map. These maps provide a range of 

ergodic and mixing behaviors and have become standard tools for introducing 

chaos into optimization algorithms [10][11]. 

• Logistic Map: 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) 

where r∈[3.56995,4] produces chaos. The widely used of logistic map is due to 

ease and well-characterized behavior. 

• Tent Map: 

𝑥𝑛+1 = {
𝜇𝑥𝑛,                    𝑥𝑛 < 0.5
𝜇(1 − 𝑥𝑛), 𝑥𝑛 ≥ 0.5 

 

with μ=2 for fully chaotic dynamics. 

• Sine Map: 
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𝑥𝑛+1 = 𝜆 𝑠𝑖𝑛(𝜋𝑥𝑛) 

where λ≈1 ensures chaoticity. 

• Chebyshev Map: 

𝑥𝑛+1 = 𝑐𝑜𝑠(𝑛 cos−1( 𝑥𝑛)) 

These maps share the ability to produce sequences that, while entirely 

deterministic, exhibit properties reminiscent of random noise—an asset in 

stochastic search and optimization. By leveraging these properties, researchers 

have successfully integrated chaotic maps into evolutionary and swarm-based 

metaheuristics to promote diversity, avoid stagnation, and enhance global search 

capabilities. 

The deterministic nature of chaotic maps ensures repeatability, which is desirable 

for scientific experimentation and algorithm benchmarking. At the same time, 

their pseudo-random characteristics enrich the stochastic processes underlying 

metaheuristics, helping algorithms escape local optima and achieve superior 

performance across a wide array of optimization problems [10][11]. 

3. Theoretical Foundations of Metaheuristics: Evolutionary and Swarm 

Algorithms 

Metaheuristics Challenging optimisation problems can be approached by high-

level algorithmic blueprints called metaheuristics, which apply adaptive and 

stochastic mechanics to control subsidiary heuristics. Metaheuristics are 

grounded in their ability to efficiently explore high-dimensional and potentially 

non-convex solutions spaces, and therefore are particularly suited for practical 

problems where standard optimization techniques are inapplicable or 

computationally intractable 1. The classification of metaheuristic algorithms is 

illustrated in Figure 2. 
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Figure 2: classification of metaheuristic algorithms 

  

3.1. Evolutionary Algorithms 

The principles of natural evolution found in Darwinian process: variation, 

selection and inheritance are the foundation of evolutionary algorithms (EAs). 

Each candidate solution that an EA keeps in memory is a point in the search space. 

Through pseudo-natural selection (more able individuals getting higher chances 

to reproduce), recombination or crossover (exchange of information between 

solutions), and mutation (introduction of randomness), the population evolves 

from one generation to the next. EAs can trade off the two goals of the exploration 

(search of new regions of the space) and exploitation (refinement of possible 

solutions), due to the combination of these operators 13 and 14. 

Mathematically, EAs are modeled as Markov processes, where the population at 

each generation depends probabilistically on the previous generation’s state and 

applied operators. This stochastic framework allows EAs to escape local optima 

and, with appropriate diversity-preserving mechanisms, to converge to global 

optima with high probability, especially as the number of generations increases 

[14][15].  
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3.2. Swarm Intelligence Algorithms 

The aggregated and distributed behaviour of natural systems such as colonies of 

insects, shoals of fish, and flocks of birds are theoretical basis for swarm 

intelligence (SI) algorithms. Opposed to EAs, the general idea behind SI 

algorithms is that primitive local rules, social interactions and adaptive behaviors 

lead to emergent global intelligence 3 and no specific genetic operators are 

applied. Particle Swarm Optimisation (PSO), for example, combines the best-

known positions of its neighbours with those of its own to modify the position of 

every agent (or particle) in search space. This mechanism can be seen as a 

dynamic system whose behavior is governed by the interplay of cognitive and 

social components, leading to self-organization and adaptive search [3][16]. 

Similarly, in Ant Colony Optimization (ACO), artificial ants construct solutions 

incrementally, guided by pheromone trails that encode collective learning. 

Theoretical studies show that ACO can be formalized as a stochastic process 

converging to high-quality solutions under [17]. 

3.3. Exploration–Exploitation Balance 

A central theoretical principle in both EAs and SI algorithms is the balance 

between exploration (diversifying the search to discover new regions) and 

exploitation (intensifying the search near high-quality solutions). This trade-off 

is managed via algorithm parameters (e.g., mutation rate in EAs, inertia weight 

in PSO, pheromone evaporation in ACO) and is essential for avoiding premature 

convergence and confirming vigorous presentation crossways varied optimizing 

landscapes [1][12]. 

3.4. Convergence and Performance 

While the stochastic nature of metaheuristics precludes deterministic guarantees 

of global optimality, theoretical analyses using Markov chains, dynamical 

systems, and probability theory have provided valuable insights into their 

convergence behavior and robustness. Properly designed metaheuristics, 

particularly those with diversity maintenance and adaptive mechanisms, can 

approach global optima with high probability over time [3][18]. 
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4. Surveys chaos-enhanced evolutionary and Swarm algorithms  

In recent years, advanced meta-heuristic and swarm intelligence algorithms have 

achieved significant progress in solving complex optimisation problems such as 

the Travelling Salesman Problem (TSP). Some of the important works in this 

aspect are summarized in Table1. Tubishat et al. combined singer chaotic map to 

enhance spatial diversity and Simulated Annealing (SA) for local search 

exploitation. [19] introduced an improved Sine Cosine Algorithm (ISCA). 

Compared with traditional SCA and other optimisation methods, the hybrid SCA 

technique proved to be applied with higher accuracy as well as significant feature 

selections for Hadith text classification and benchmark datasets. To enhance the 

search ability of the solution space, Aydilek et al. 20] used a hybrid firefly and 

particle swarm optimisation method, enhanced by chaotic maps. The method 

extracts random parameters from 10 different chaotic mappings with the purpose 

of enhancing local optimal avoidance and explorative capability. Compared to 

canonical and hybrid approaches, and puzzle benchmarks, we obtained successful 

and reliable results for CHFPSO. The Agglomerative Greedy Brain Storm 

Optimization (AG-BSO), proposed by Wu and Fu [21] integrates a heuristic 

crossover operator, exchange rules to enhance the efficiency of the proposed 

algorithm, hierarchical agglomeration to improve the convergence property and 

a greedy approach to maintain population diversity. When tested with TSP cases 

AG-BSO performed better than conventional BSO and other heuristic algorithms 

in terms of accuracy, speed of optimization and robustness. By using a chaotic 

neurone, sine function, linear matrix, etc., Cui et al. [22] introduced a new model 

for chaotic neural networks. Energy function of Travelling salesman problem 

(TSP) is formulated by a simple-rich chaotic dynamics, and the practical 

effectiveness of the proposed model is verified by the implementation with 

FPGA. To solve TSP, Palominos and Vera [6-1] recently proposed using a hybrid 

GA that incorporates the local search in the process of their working. [23] studied 

chaotic searches in MBO. These approaches significantly improved on the quality 

and runtime efficiency of solutions to difficult combinatorial optimisation 

problems by injecting chaos into the worker and early solution generation phases. 

Lawah et al. [24] have devised and optimised cryptographic S-boxes using 

discrete chaotic maps and the GWO. Strong cryptographic and secure S-boxes 

could also be generated as a result of the larger solution space and robustness of 

the hybrid method. QCBOA was introduced by Prasanthi et al. [25] and provides 

a refined version of the original butterfly optimisation procedure, whose features 

employ ingredients from quantum computing and chaos theory. For benchmark 
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functions and real-world limited optimisation problems, contrastive action 

between chaos mapping and quantum wave-based searching method accelerated 

the convergence and improved the accuracy. Long, Min, and Longlong Wang 

[26] suggested a new S-box design way by employing the improved artificial bee 

colony (ABC) algorithm with a discrete chaotic map. First, an unifromly 

distributed population of S-box is initiated by OBO, in which chaotic sequences 

are generated by a mutually-coupled logistic map. To achieve the second phase 

of optimization process for the S-boxes and to improve the cryptographic 

strength, in enhanced ABC method, Gaussian mutations and dual transposition 

operations are employed. The good resistance to a cryptanalytic attack is 

guaranteed by the significance of nonlinearity and differential uniformity of the 

fitness function. Based on the experimental results, the proposed method can 

generate S-boxes of higher security (nonlinearity, avalanche effect, bit 

independence; resistance against both linear and differential attacks) as compared 

to various state of the art methods. A physical education course scheduling 

scheme with an improved chaotic genetic algorithm (CGA) was proposed in 

literature [27]. It adopts a 2D matrix as crossover and mutation, real number 

encoding for solutions representation, and chaos function to initialize population 

and mathematical transformation of scheduling restrictions and factors such as 

instructor, course, room and time slot. The combination allows to avoid local 

minima and strengthen the capability of searching globally. Experimental 

evidence shows that improved CGA exhibits superior efficiency, robustness, and 

resource requirement over standard genetic algorithm and other optimization 

methods, and therefore is a useful and flexible mechanisms to solve complex 

scheduling problems in education. A novel population-based meta-heuristic 

algorithm, that inspired by the chaotic dynamics, called chaotic evolution 

optimization (CEO) algorithm is introduced in this paper [28]. The way the two-

dimensional discrete memristive map evolves in a chaotic manner provided the 

principal inspiration for CEO. The CEO approach is based on a theoretical model 

that generates random search directions for evolutionary algorithms through the 

compounding of a hyperchaotic attribute of the memristive map. The CEO is 

subsequently formed by integrating the crossover and mutation mechanisms of 

the DE framework. The application of combining various chaotic maps in 

different stages of MOEAs, in navigating NSGA-II framework, is again 

considered in the present study [29]. They systematically incorporate 10 different 

chaotic maps (e.g., logistic, tent, and cat maps) by the authors in three main 

algorithmic process steps: population initialization, crossover, and mutation. This 
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article evaluates the effect these changes have on both convergence and diversity 

for popular benchmark multiobjective problems (ZDT series) and over a wide 

range of experiments. The findings indicate that chaotic maps significantly 

improve the performance of MOEA, especially with regard to problems that 

involve complex Pareto fronts or local optima. The cat map is very good in the 

difficult cases. 

Table 1: Summary of Recent Metaheuristic Algorithms Enhanced with Chaotic 

Systems and Their Application Domain 

Author(s) 
Metaheuristic Method 

Used 

Chaotic Algorithm 

Used 

Application / Case 

Study 

Tubishat et al. 

[19] 

Enhanced Sine Cosine 

Algorithm (ISCA) + 

Simulated Annealing 

Singer chaotic map 

Feature selection for 

Hadith text 

classification, 

benchmarks 

Aydilek et al. 

[20] 

Hybrid Firefly and 

Particle Swarm 

Optimization (CHFPSO) 

Ten different 

chaotic maps 

Benchmark 

optimization problems 

Wu and Fu 

[21] 

Agglomerative Greedy 

Brain Storm 

Optimization (AG-BSO) 

Not specified (focus 

on greedy & 

clustering) 

Traveling Salesman 

Problem (TSP) 

Cui et al. [22] 
Chaotic Neural Network 

Model 

Linear matrices, 

sine functions, 

multiple chaotic 

neurons 

TSP optimization 

(FPGA implementation) 

Palominos et 

al. [23] 

Marriage in Honeybees 

Optimization (MBO) 

Chaotic methods (in 

initialization & 

worker phases) 

Traveling Salesman 

Problem (TSP), 

combinatorial 

optimization 

Lawah et al. 

[24] 

Grey Wolf Optimizer 

(GWO) 

Discrete chaotic 

maps 

Cryptographic S-box 

design and optimization 

Prasanthi et al. 

[25] 

Quantum-Chaotic 

Butterfly Optimization 

Algorithm (QCBOA) 

mapping the Chaos, 

quantum wave-

based exploration 

Benchmark & real-

world constrained 

optimization 

Long, Min, & 

Longlong 

Wang [26] 

Improved Artificial Bee 

Colony (ABC) 

Algorithm 

Intertwining logistic 

map 

Cryptographic S-box 

optimization 

Study [27] 

Improved Chaotic 

Genetic Algorithm 

(CGA) 

Chaotic mapping 
Physical education 

course scheduling 

Paper [28] 

Chaotic Evolution 

Optimization (CEO), 

Differential Evolution 

framework 

Memristive 

hyperchaotic map 
Benchmark functions 
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Study [29] 

Multiobjective 

Evolutionary Algorithms 

(MOEAs, NSGA-II) 

Ten chaotic maps 

(logistic, tent, cat, 

etc.) 

ZDT benchmark 

problems 

(multiobjective 

optimization) 

 

5. Discussion the performance analyses, implementation considerations, 

and open challenges. 

The integration of chaotic systems into evolutionary and swarm intelligence 

algorithms has attracted considerable interest due to their potential to overcome 

longstanding limitations such as premature convergence and lack of diversity. 

Comparative studies consistently show that chaotic maps—when properly 

embedded in algorithmic operators—can significantly boost the performance of 

metaheuristics across a variety of benchmark and real-world problems [30][31].  

Often, empirical benchmarks show that swarm-based algorithms (like Particle 

Swarm Optimisation and Ant Colony Optimisation) and chaos-enhanced 

evolutionary algorithms (like Genetic Algorithms or Differential Evolution) 

outperform their canonical counterparts, especially on multimodal, high-

dimensional, or deceptive search spaces. By employing chaotic sequences for 

population initialization, parameter control, and operator selection, these 

algorithms tend to achieve: 

- Improved convergence speed: Chaotic dynamics help the population 

rapidly escape local optima and traverse the search space more effectively. 

- Enhanced solution quality: Higher diversity and pseudo-randomness in 

search steps result in more robust exploration and, often, better final 

solutions. 

- Greater robustness: Chaos-based methods are less likely to get trapped in 

suboptimal regions and often display more consistent performance over 

multiple runs [32]. 

However, comparative performance is highly sensitive to the choice of chaotic 

map, the method of integration, and problem characteristics. For example, logistic 

and tent maps are frequently effective, but map selection may need to be tailored 

to the specific optimization scenario [33]. 

While the potential benefits of chaos-based enhancements are substantial, their 

successful implementation requires careful attention to several practical aspects: 
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- Selection and tuning of chaotic maps: Not all chaotic maps yield the same 

improvement; parameter settings (e.g., initial conditions, control strictures) 

must be sensibly selected to ensure wanted ergodic and mixing properties. 

- Algorithmic embedding: Chaos can be introduced at different stages (e.g., 

initialization, mutation, crossover, velocity update), and its impact depends 

on where and how it is embedded [33]. 

- Computational overhead: Although chaotic maps are computationally 

inexpensive, improper integration can increase algorithmic complexity or 

introduce numerical instability. 

- Repeatability and randomness: While chaos offers deterministic pseudo-

randomness, the reproducibility of results requires that initial conditions 

and parameters be documented and controlled [10]. 

Despite their promise, chaos-enhanced metaheuristics present several open 

challenges: 

- Theoretical understanding: The mechanisms by which chaos improves 

exploration–exploitation balance remain incompletely understood; there is 

a need for deeper theoretical analysis and modeling [32] 

- Automated map and parameter selection: Developing adaptive or self-

tuning schemes for map and parameter selection would further improve the 

generality and usability of chaos-based methods. 

- Hybrid and dynamic approaches: Combining multiple chaotic maps, or 

dynamically switching between maps during runtime, could lead to further 

performance gains but introduces new design complexities. 

- Real-world applications: Most studies focus on benchmarks; more work is 

needed to validate chaos-enhanced algorithms on large-scale, noisy, or 

dynamic real-world problems. 

- Integration with other techniques: Synergizing chaos with other 

enhancement strategies—such as adaptive parameter control, hybridization 

with other metaheuristics, or the incorporation of machine learning 

techniques—remains an open research area [32]. 

 

6. Conclusion and Future Work 

The incorporation of chaotic maps into swarm intelligence and evolutionary 

algorithms was examined in this investigation, highlighting how chaos can 

significantly enhance convergence speed, solution quality, and robustness. While 
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the use of chaotic functions helps overcome issues like premature convergence 

and lack of diversity, the choice of chaotic map, integration method, and 

parameter tuning remain critical factors affecting performance. Future research 

in this area should focus on several promising directions: Developing self-

adaptive and dynamic chaos integration strategies that can automatically adjust 

chaotic maps and parameters according to the problem landscape and search 

progress. Conducting more comprehensive theoretical analyses, possibly using 

tools from dynamical systems and probability theory, to better explain the 

underlying mechanisms of chaos-enhanced metaheuristics. Expanding empirical 

validation to include large-scale, real-world, noisy, or dynamic optimization 

problems to demonstrate practical benefits. Exploring hybrid frameworks that 

combine chaotic systems with other intelligent optimization techniques, such as 

machine learning-based control, to further boost performance. Overall, chaos-

based improvements represent a valuable and still-evolving direction for the 

metaheuristic optimization community, with significant potential to address 

increasingly complex problems across engineering, science, and industry. 
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