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1. Introduction 
Vibration and (AE) signals in machines are common 

indicators of potential malfunctions that can adversely affect 
the performance of rotary equipment. Various faults can occur 
during mechanical operations that generate vibration and (AE) 
signals with distinct characteristics. Therefore, early detection 
and prediction of mechanical failures are vital for ensuring 
safety and minimizing expenses. Machine learning and signal 
processing technologies enable more accurate predictions of 
faults such as bearing defects, shaft misalignment, and disk 
imbalances, making proactive maintenance more feasible. 
Mangurul and Jung [1] used an adaptive deep convolutional 
neural network (ADCNN) and a 2D visualization tool to 
describe the health status of the bearing. Initially, wavelet 
packet transform (WPT) was applied to measure each sub-
domain by forming the degree of defectiveness ratio (DDR), 
an innovative evaluation tool for diagnosing bearing faults. 
Qian [2] developed an adaptive overlay CNN (AOCNN) for 
fault diagnosis to directly process unprocessed one-
dimensional vibration signals. The adaptive convolutional 
layer and the real-time pooling Root-Mean-Square (RMS) 
layer are designed to handle the transformation differences. 

In contrast, the overlay layer helps alleviate the inherent 
marginal issues commonly encountered by Convolutional 
neural networks (CNNs) for diagnosing bearing faults. RUYI 
Huang et al. [3] using multi-stack capsules as a separation 
classifier to identify and separate complex faults successfully. 
Jiedi et al. [4] reduced the size of the computed data while 
preserving all the error information and create a deep neural 
network based on stacked sparse autoencoders using an 
unsupervised learning process and a fine-tuning method to 

detect hidden discrimination in the obtained data. Wei et al. [5] 
used deep (CNNs) with Wide First-layer Kernels (WDCNN). 
Raw vibration signals are used as input in this method, and 
extra input samples are generated using data augmentation. 
The model employs broad kernels in the first convolutional 
layer to extract features and decrease high-frequency noise. 
Sandeep et al. [6] proposed method combines the kurtogram 
and (CNN) for fault categorization. The kurtogram measures 
the time-frequency energy density dispersion, and its results 
serve as the CNN's input feature vector. This 2D feature vector 
is then fed into the CNN for fault classification. Sandeep et al. 
[7] used deep learning sequence models (SM) and the 
kurtogram. For a clear picture of the faults, the SM uses the 
kurtogram as a sequential data set to diagnose the problem. 
Wei et al. [8] used (CNN) with Training Interference (TICNN) 
to address the issue with fault diagnostics that may be resolved. 
Lu´ıs et al. [9] used a convolutional neural network on 
temporal input signals and combined it with additional static 
features predicting faulty engines. Damage prediction employs 
vast amounts of unbalanced data from signals associated with 
internal engine excitation, or structure-borne noise. It 
considers the imbalance of the data using informative mini 
batches during training. Duy and Hee [10] worked on the 
structure of deep CNN for diagnosing bearing faults. Vibration 
signals are directly employed as input data. This fault 
diagnosis system operates automatically and doesn't require 
feature extraction methods. Huaqing et al. [11] integrate multi-
sensor data fusion with a bottleneck layer-optimized 
convolutional neural network (MB-CNN). Use a conversion 
approach that combines data to produce images from vibration 
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signals from several sensors with richer details than from a 
single sensor. 

Zhang et al. [12] used a CNN architecture and a signal 
image as input to detect bearing faults intelligently. With 
training, CNN, a potent feature extractor and classifier, 
through training, CNN can discover which features are best 
suited for the categorization assignment. Fed with signal 
images, CNN is quite good at identifying the periodic features 
of the vibration signals. Zhuyun et al. [13] apply a novel deep 
learning-based approach for bearing fault diagnosis, 
combining CNN and Cyclic Spectral Coherence (CSCoh) to 
determine the fault characteristics of each fault type. (CSCoh) 
is first employed as a preprocessing phase, extracting several 
discriminative features early on. A CNN is then used for 
additional feature learning and categorization. Yudong Cao et 
al. [14] presented a Temporal Convolutional Network with 
Residual Self-Attention mechanism (TCN-RSA), a novel deep 
prognostic network for rolling bearing Remaining Useful Life 
(RUL) prediction under various operating circumstances. The 
TCN-RSA acts as a hidden feature extractor, calculating the 
marginal spectrum of bearing vibration signals as input. TCN-
RSA learns high-level representations from the data input by 
stacking many temporal convolution blocks. Xiong et al. [15] 
have suggested a new network, WPT-CNN, for rolling bearing 
end-to-end intelligent defect diagnosis. WPT-CNN 
innovatively incorporates the Wavelet Packet Transform 
(WPT) for time-frequency analysis within a conventional deep 
neural network architecture, efficiently combining domain 
expertise in defect diagnostics with deep learning methods. 
Chen and Lee [16] discussed the analysis of vibration signals 
using convolutional neural networks (CNNs), incorporating 
tool wear detection, diagnosis of bearing faults, and evaluation 
of machining surface roughness. For regression and 
classification applications, One-dimensional CNNs (1DCNN) 
and two-dimensional CNNs (2DCNN) are utilized with 
various input types, including raw signals and time-frequency 
spectrum images obtained through short-time Fourier 
transform. Cheng et al. [17] used a unique model based on 
continuous wavelet transform and local binary convolutional 
neural networks (CWT-LBCNN); the input vibration signal 
adaptively extracts features, enabling automatic fault 
diagnosis of the rotating machinery (RM). Unlike traditional 
CNNs, the CWT-LBCNN replaces the conventional 
convolutional layer with a local binary convolution layer, 
allowing for faster training and more excellent resistance to 
overfitting. Liang et al. [18] presented Wavelet Transform, 
Generative Adversarial Networks, and convolutional neural 
network (WT-GAN-CNN) for rotating machinery, a unique 
and highly accurate fault detection technique that integrates 
CNNs, (GANs), and (WT).  The three key components of the 
(WT-GAN-CNN) technique is outlined. To begin, WT takes 
one-dimensional raw time-domain signals and uses them to 
extract features of images based on time and frequency.  
Second, more training picture examples are produced by 
GANs. Ultimately, the constructed CNN model is employed to 
detect faults in rotating machinery using the generated real and 
false training time-frequency images. Altaf et al. [19] used a 
single microphone to record the audible sound of the machine 
being tested, and various statistical, spectral, and Spectro-
temporal data were then extracted. A variety of machine 
learning approaches, that is, classifiers like K-nearest neighbor 
(KNN), support vector machine (SVM), kernel linear 
discriminant analysis (KLDA), and sparse discriminant 

analysis (SDA), are then used to assess the chosen features. 
Based on simulation results, defects such as ball faults, inner 
race, and outer race defects it is classified. Amini et al. [20] 
utilized (AE) envelope analysis to identify faults in train axle 
bearings. To make a comparison, they recorded two types of 
datasets: one from freight wagons with intentionally defective 
axle bearings and the other from a custom-built test rig in a 
laboratory setting. Li et al. [21] applied (AE) technology, 
combined with vibration signals, SVM, and wavelet packet 
decomposition, to detect and classify faults in aero-engine 
bearings. The method first used wavelet packet decomposition 
to break down the original vibration signal into various 
frequency bands. Next, the energy values of each frequency 
band were extracted as feature vectors. Finally, these feature 
vectors were input into an SVM for fault detection and 
classification. Bahedh et al. [22] introduced a revolutionary 
two-dimensional color-coded map termed the normalized-
diagnostic-feature-gram (NDFgram) alongside a deep (ANN) 
to create a diagnostic method that is independent of rotational 
speed. They utilized this technique for bearing flaw analysis to 
evaluate its efficacy. Specifically, First, acquired bi-frequency 
spectral coherence (SCoh) data, and second, computed 
diagnostic features (DFs) by synthesizing the SCoh data 
throughout the spectral frequency domain utilizing the center 
and range of frequencies. Subsequently, they illustrated the 
DFs on a two-dimensional map, positioning them relative to 
the center and frequency resolution, and employed stacked 
maps for diverse defect features to formulate the analytical 
models. Finally, the characteristic model was trained, and 
bearing defects were identified using a pre-trained (CNN). The 
efficacy of the proposed approach was compared with other 
methods that use different input characteristics for CNN. The 
results showed that the proposed method achieved a 100% 
success rate and 98.16% accuracy for constant-speed tests, 
with a defect analysis accuracy of 98.56% for the second type 
of ball bearing. Overall, the proposed methodology 
outperformed others in terms of diagnostic accuracy. Najim 
and Alsalaet [23] utilized envelope analysis characteristics as 
inputs for (ANN) to tackle a cross-domain learning issue.  
addressed three principal cross-domain challenges, types of 
roller bearings, rotational velocities, and loading 
circumstances, by deriving supplementary characteristics at 
fundamental defect frequencies from the original signal 
through the envelope method. They employed three varieties 
of roller bearings, three rotational velocities, and three fault 
classifications to replicate all cross-domain jobs 
experimentally. The data for a certain bearing type under 
designated operating conditions were utilized to train the 
ANN, while data from other bearing types were employed to 
assess the method's efficacy. Under stable load conditions, the 
average success rate for Koyo bearings was recorded at 99.5%, 
the average accuracy for NU bearings at 98.33%, and the 
average accuracy for the faulty bearing kit at 97.3% 

2. Theoretical background 
2.1. Kurtogram 

The Kurtogram is a powerful fourth-order spectral analysis 
tool used to generalize SK for a given vibration signal x(n). 
The SK method identifies a series of transients and their 
impacts in the frequency domain by selecting an appropriate 
frequency band. For each frequency component of x(n), the 
corresponding SK value is calculated to characterize the 
transients of x(n) as a function of frequency [7]. 
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The kurtosis coefficient has been widely applied for 
detecting bearing faults and is derived from time-domain data. 
The variance of a zero-mean signal (a signal without a DC 
component) is the mean square value, equivalent to the square 
of the root-mean-square (RMS) value. AC-coupled 
accelerometer signals are inherently zero-mean. However, a 
rectified waveform has a nonzero average value. In such cases, 
the variance is expressed as: 

σ2 =
1
N

� (x(ti) − μ)2
N

i = 1

                                                                   (1) 

Where, N is the number of data points in the sequence, and μ 
represents the average value. 

The kurtosis coefficient is a fourth-order statistical 
measure normalized by the square of the variance and is 
calculated as: 

 γ =
1
N

�
(x(ti) − μ)4

σ4

N

i = 1

                                                                     (2) 

High values of γ indicate significant deviations from the 
RMS value [24]. 

2.1.1. Mathematical derivation of the Kurtogram 

To obtain the Kurtogram, follow these steps: 

1. Spectral Kurtosis (SK) Definition 

Spectral Kurtosis SK(f) is defined as: 

 SK(f) =
E[∣X(f, t)∣4]

(E[∣X(f, t)∣2])2 − 2                                                          (3) 

Where: 

 X(f, t) is the Short-Time Fourier Transform (STFT) of the 
signal x(t), E[⋅] denotes expectation (statistical mean),          
∣X(f, t) ∣4 and ∣X(f, t) ∣2 represent the fourth and second power 
of the magnitude spectrum, respectively [25]. 

2. Filtering and the Wavelet Packet Transform (WPT) 

• The signal is decomposed into multiple frequency bands 
using a wavelet packet decomposition or Finite Impulse 
Response (FIR) filter banks. 

• The decomposition follows a dyadic tree structure, where 
each level refines the frequency resolution by splitting 
bands further [26]. 

3. Kurtosis Computation for Each Band 

• The time-domain signal from each frequency band is 
extracted. 

• The kurtosis of each filtered signal is computed as: 

Kx =
E[(x − μ)4]

σ4                                                                             (4) 

 where: μ is the mean of x, σ is the standard deviation of x. 

• The optimal frequency band is the one with the maximum 
kurtosis value, indicating the presence of impulsive 
(fault-induced) features [27]. 

A kurtogram is a visual representation of a signal that 
illustrates the energy distribution across various frequency 
levels. This analysis is typically performed using methods such 
as wavelet transform or spectrum analysis. In Matlab, the 
kurtogram is generated using a specialized kurtogram 
function, which analyzes the signal.  

The kurtogram function requires the input signal segment 
and the segment length (number of samples) to produce the 
visual output. The resulting graph displays the energy density, 
or kurtosis, across different frequency bands. 

Figures 1 and 2 show the samples of the obtained 
diagnostic patterns for the Koyo 1205 bearing for acoustic 
emission and vibration data by the kurtogram with (a) normal, 
(b) outer race, (c) inner race, and (d) ball defect. At speed 15 
Hz, 25 Hz, 30 Hz, and 35 Hz respectively. 

 
Fig. 1 Outputs kurtogram of state (AE). 

 

Fig. 2 Outputs kurtogram of state vibration. 

2.2. A Deep learning neural network 

The structure of a Deep Learning Neural Network is 
summarized in this section, with more detailed explanations 
available in a Deep Learning Neural Network is a multi-stage 
neural network composed of three primary stages: the filter 
stage, the convolutional layer, and the pooling layer. These 
stages are designed to extract features from input data. 
Additionally, the classification stage, implemented as a multi-
layer perceptron, is typically used for final prediction. Each 
layer in the network has specific functionalities, which are 
detailed below. 

2.2.1. Convolutional layer 
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The convolutional layer processes input regions by 
applying filter kernels, followed by an activation unit to 
produce output features. Each filter kernel extracts specific 
local features from input regions, effectively capturing spatial 
hierarchies. In this layer, K l and b l denote the weights and 
biases of the l-th filter kernel, and xj

l (t) represents the j-th input 
region in the l-th frame. The convolution operation is 
expressed as: 
yj

 l(t) = Kl xj
l(t) + bl                                                                         (5) 

2.2.2. Activation layer 

After convolution, the activation function is critical in 
introducing non-linearity, enhancing feature representation, 
and improving learning capabilities. The Rectified Linear Unit 
(ReLU) is widely used because it accelerates convergence and 
simplifies backpropagation adjustments. The formula for 
ReLU is: 

yj
 l(t) = max �0, f �yj

 l(t)��                                                              (6) 

Where, f(yj
l(t)) is the convolution output, and yj

l (t) represents 
the activation result. 

2.2.3. Pooling layer 

The pooling layer is essential for reducing the spatial size of 
feature maps, which decreases the computational requirements 
and enhances invariance to input transformations. A common 
operation is max pooling, defined as: 

pi
 l + 1(t) = max

i ∈ [j − W + 1, j + W]
qi

 l(t)                                                       (7) 

Here, qi
l(t) refers to the value of the i-th neuron, W is the 

width of the pooling region, and pi
(l + 1) (t) represents the neuron 

value after pooling. 

2.2.4. Batch normalization 

Batch Normalization (BN) is a technique that minimizes 
internal covariance shifts, thereby accelerating training. 
Typically placed after the convolutional or fully connected 
layer and before activation, (BN) normalizes the input                 
x = x(1) , x(2),…, x(n) as: 

x�(i) =
x(i) − μ
√σ2 + ϵ

                                                                                   (8) 

y(i) = γ x�(i) + β                                                                                 (9) 

Where, μ and σ2 represent the mean and variance of the 
input, γ and β are learnable scale and shift parameters, and y(i) 
is the normalized output. Batch Normalization ensures 
stability and improves network performance by reintroducing 
learned scales [5]. 

2.2.5. AlexNet 

AlexNet is a sophisticated (CNN) for image processing and 
classification. It utilizes interconnected layers to extract 
features from input images and make classification decisions. 
Therefore, in this study, structured initially with five 
convolutional layers and two fully connected layers, AlexNet 

was designed for categorizing images into 1000 classes based 
on the ImageNet dataset. The final architecture is shown in 
Fig. 3. Also, the CNN architecture is implemented in Table 1. 
The network has been partially modified for the current 
classification task, which involves four classes. 

The original input size for AlexNet is 227 × 227 × 3 (RGB 
channels). Since the RGB images in this task have dimensions 
875 × 656 × 3, they are resized to fit the required input size. 
Preprocessing through zero-centered normalization is applied 
to reduce data variance and enhance performance. 

 
Fig. 3 The architecture of the modified AlexNet was used for classification 

in this research. 

The network begins with the first convolutional layer, 
which has 96 filters of size 11 × 11, a stride of 4, and no 
padding. This reduces the image dimensions to 55 × 55 × 96 
and extracts basic features like edges and patterns. A ReLU 
activation function introduces non-linearity by converting 
negative values to zero, accelerating the learning process. 
Cross-channel normalization is applied to reduce inter-channel 
variance and improve training stability. Dimensionality is 
further reduced using max pooling with a 3 × 3 filter and a 
stride of 2, simplifying data while preserving essential 
features. The second convolutional layer consists of two 
groups of 128 filters, each sized 5 × 5 with 2 × 2 padding. This 
layer extracts more complex features, like corners and intricate 
patterns. Similar operations (convolution, ReLU, 
normalization, and pooling) are repeated across the subsequent 
convolutional layers. The third, fourth, and fifth convolutional 
layers contain 384, 384, and 256 filters, respectively, with 
smaller 3 × 3 filters and strides to capture finer details. Another 
pooling operation 3 × 3 in the fifth layer reduces dimensions 
to 6 × 6 × 256, preparing the data for the fully connected layers. 
The network then includes three fully connected layers, each 
with 4096 nodes. These layers convert spatial data into a linear 
representation and integrate the extracted features. Dropout is 
used during training to randomly disable some connections, 
reducing overfitting and enhancing generalization. The 
Softmax layer converts the output into probabilities 
corresponding to the classification categories. The final output 
has dimensions 1 × 4, with each value representing the 
probability of a particular class. The class with the highest 
probability is chosen as the final prediction. This structured 
network processes tasks sequentially, starting with basic 
feature extraction (e.g., edges), advancing to complex features 
(e.g., structures), and culminating in classification. 

2.3. Analysis parameters and methodology for signal 
processing using the Kurtogram 

In signal analysis using the Kurtogram, several parameters 
play a critical role in identifying and analyzing distinct patterns 
within a signal. 
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The Kurtosis Coefficient serves as a measure of the 
sharpness or peakedness of data, indicating the presence of 
impulsive signals or sudden changes, such as faults. By 

calculating Kurtosis across various time-frequency bands, 
regions with the most distinct patterns can be pinpointed. 
 

Table 1. The architecture of the applied CNN. 

Type Dimensions Details 
Input data (RGB image) 227 × 227 × 3 Zero-centered normalization 
Convolutional 55 × 55 × 96 96 11 × 11 × 3 filters, stride of [4 4], and zero-padding of 0, 0, 0, 0 
ReLU 55 × 55 × 96  
Cross-channel normalization       55 × 55 × 96  
Max pooling 27 × 27 × 96 3 × 3 max pooling, stride of [2 2], and padding 0, 0, 0, 0 
Convolutional 27 × 27 × 256 2 groups of 128 5 × 5 × 48 filters, stride of [1 1], and zero-padding of 2, 2, 2, 2 
ReLU 27 × 27 × 256  
Cross-channel normalization       27 × 27 × 256  
Max pooling 13 × 13 × 256 3 × 3 max pooling, stride of [2 2], and padding 0, 0, 0, 0 
Convolutional 13 × 13 × 384 384 3 × 3 × 256 filters, stride of [1 1], and zero-padding of 1, 1, 1, 1 
ReLU 13 × 13 × 384  
Convolutional 13 × 13 × 384 2 groups of 192 3 × 3 × 192 filters, stride of [1 1], and zero-padding of 1, 1, 1, 1 
ReLU 13 × 13 × 384  
Convolutional 13 × 13 × 256 2 groups of 128 3 × 3 × 192 filters, stride of [1 1], and zero-padding of 1, 1, 1, 1 
ReLU 13 × 13 × 256  
Max pooling 6 × 6 × 256 3 × 3 max pooling, stride of [2 2], and padding 0, 0, 0, 0 
Fully connected 1 × 1 × 4096  
ReLU 1 × 1 × 4096  
Dropout 1 × 1 × 4096  
Fully connected 1 × 1 × 4096  
ReLU 1 × 1 × 4096  
Dropout 1 × 1 × 4096  
Fully connected 1 × 1 × 4  
Softmax 1 × 1 × 4  
Classification output 1 × 1 × 4 4 classes in the output 

 

The process involves dividing the signal into multiple 
analysis levels, each further subdivided into smaller frequency 
bands. The optimal level is determined by identifying the 
maximum value of Kurtosis, denoted as Kmax. 

Another key parameter is the window length, which refers 
to the duration of the signal segment under examination. The 
accuracy of the analysis depends on the window length: shorter 
windows yield higher temporal resolution, while longer 
windows offer greater frequency resolution. The ideal window 
length is selected based on analysis outcomes. 

Bandwidth represents the range of frequencies being 
analyzed. The signal is split into distinct frequency bands, and 
Kurtosis is computed for each band to identify the one with the 
most significant information. The center frequency of this 
optimal band is then determined and used to design a filter that 
focuses on the most meaningful frequencies. 

To ensure accuracy, noise removal is a crucial step. The 
Kurtogram helps isolate bands containing valuable signal 
information while minimizing noise interference. 
Additionally, the type of window function, such as Hanning or 
Hamming, is chosen to enhance spectral analysis and reduce 
distortions from window edges. 
Steps for signal analysis using Kurtogram: 
1. Signal decomposition: the signal is broken down into 

various analysis levels using methods like filter banks or 
wavelet packet decomposition. 

2. Kurtosis calculation: Kurtosis is calculated for each time-
frequency band, and the maximum value Kmax is identified. 

3. Optimal level selection: the level corresponding to the 
highest Kmax is selected for further analysis. 

4. Bandwidth and center frequency determination: the 
bandwidth and center frequency of the band with the most 
distinctive signal are established. 

5. Filtering: a filter is designed to target the optimal 
bandwidth, extracting the meaningful signal while 
reducing noise. 

6. Analysis of the filtered signal: the filtered signal is 
examined to detect faults or extract useful features. 
This systematic approach allows for precise fault detection 

and feature extraction by focusing on the most significant 
time-frequency components of the signal. The complete 
diagnostic approach can be summarized in Fig. 4 block 
diagram of the approach. 
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Fig. 4 Block diagram of the proposed diagnosis approach. 

3. Experimental setup 
3.1. Description of machinery fault simulator (MFS) 

It is a device used in an effective and direct way for the 
purpose of examining and diagnosing faults in rotating 
machines. It was manufactured with complete precision to 
ensure smooth diagnosis without any harmful interference to 
the received signals, as shown in Fig. 5 available at the 
University of Basrah, College of Engineering, which consists 
of a variable frequency alternating electric motor with a power 
of one horsepower and a frequency of 60 Hz, accompanied by 
an AC motor control unit that allows changing the speed. To 
measure the rotational speed, a tachometer equipped with an 
LCD screen is used. The device also includes steel shafts with 
diameters of 3/4 inch and 1 inch, with the shaft size adjusted 
to suit the dimensions of the bearing being studied. A disc is 
fixed in the middle of the shaft by two clamping rings. During 
the test, a normal bearing is placed in the coupling side housing 
(flexible coupling) and a test bearing with certain errors on the 
other side. A, B, and K 4366 accelerometer, serial number 
0931214, with an industrial microphone model 426E01 is 
installed on the test bearing side to capture the sound and 
vibration signals together and send them to the IDAC-245 data 
acquisition device, which collects the vibration and sound data 
and sends them to the computer, where the data is then 
analyzed to obtain information. The main components used in 
generating the sound and vibration signals as shown in Fig. 5 
include the following: 

1. Electric motor. 
2. Tachometer. 
3. AC control unit. 
4. Flexible coupling. 
5. Normal bearing. 
6. Test bearing. 

7. 5 kg disc placed in the middle of the shaft. 
8. Industrial microphone to measure the sound signals. 
9. Accelerometer to capture the vibration signals. 
10. Data acquisition device IDAC-245. 

 
Fig. 5 MFS components. 

Used one good and three faulted bearings (BSF, BPFO, BPFI). 
The 378B02 industrial microphone in Fig. 6 from PCB 

Piezotronics is a half-inch pre-polarized condenser 
microphone tailored for acoustic measurements in industrial 
and research settings. Equipped with a built-in preamplifier 
and Transducer Electronic Data Sheet (TEDS) technology, it 
facilitates seamless automatic identification and calibration 
when paired with compatible devices. Renowned for its 
precision and reliability, the 378B02 is widely used in 
industrial acoustic measurements, research experiments, and 
environmental noise analysis applications. The physical 
characteristics of this microphone are given in Table 2 [28]. 

 
Fig. 6 industrial microphone. 

Table 2. Physical properties of microphone model 378B02. 

378B02 Prepolarized Free-Field Microphone System 

Normal Microphone diameter in (mm) 1/2 (12) 

Sensitivity at 250 Hz (± 1.5 dB)  mV/Pa (dB re 1 V/Pa) 50 (-26) 

Frequency range (± 2 dB) Hz 3.75 – 20000 

Frequency range (± 1 dB) Hz 7 – 10000 

Cartridge thermal noise (Microphone) dB[A] re 20 μPa 15 

Inherent noise with 426E01 preamp dB[A] re 20 μPa 15.5 

Harmonic distortion limit: 3% dB re 20 μPa 147 

Distortion limit with 426E01 preamp dB re 20 μPa 137 
 
3.2. The double-row self-aligning ball bearing 

A double-row self-aligning ball bearing is a type of rolling 
element bearing designed to accommodate misalignment and 
shaft deflection, making it well-suited for applications 

 

Input sound signal                                                                     Input vibra�on signal                                                   

Pre-Whitening                                                                            

Divide into N-Blocks                                                                            

Kurtogram at 
Normal, BPFO, 
BPFI, and BSF 

                                                                    

Combined Kurtogram 

CNN Training 
Valida�on and 
Tes�ng 
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involving high vibration or misalignment. In this study, the 
self-aligning bearing model 1205, manufactured by Koyo, is 
deemed critical due to its role in facilitating more precise and 
comprehensive experiments. This bearing's significance is 
further emphasized as datasets collected at 1200 rpm serve as 
the training data for all proposed diagnostic techniques, with 
fault detection relying on classifiers trained on these datasets. 
Additionally, the 1205 bearing offers ease of assembly and 
disassembly, even when parts sustain damage. Figure 7 
illustrate the bearing and its individual components. 

               
Fig. 7 Shows the Koyo 1205 bearing in its assembled state. 

The manufacturer calculated bearing fault frequencies for 
3/4" bore rotor bearings. Bearing fault frequencies, also 
referred to as bearing characteristic frequencies, are 
determined by the dimensions and specifications of the 
bearing. These frequencies can be obtained from the 
manufacturer or calculated using bearing equations. Figure 8 
shows the cross-section of the self-aligning ball bearing, while 
Table 3 provides the dimensions of the Koyo 1205 bearing 
along with the calculated bearing frequencies.      

 
Fig. 8 Cross-sectional view of the self-aligning ball bearing. 

Table 3. Koyo 1205 bearing dimensions and calculated fault frequencies. 

Dimensions Value Unit 
B, Width 15 mm 
D, Outer diameter 52 mm 
d, Inner diameter 25 mm 
Ball diameter 7 mm 
Number of balls per row 12 - 
Defect location Fault frequency per revolution 
BPFO 4.891 
BPFI 7.11 
BSF 2.57 

 
3.3. Experiment procedure 

1. Select the experimental bearing sample that contains 
defects and install the experimental bearing in the fault 
simulation device. 

2. Determine the required rotation speed in the test. 
3. Start the engine after ensuring all safety requirements and 

ensure that all installation tools are safe. 

4. Read the sound and vibration wave from the sound sensors 
(industrial microphone) and vibration (accelerometer) for 
a period estimated at 10 seconds via the (IDAC-245) 
device used to read the waves. 

5. Save the read data in the computer and turn off the power 
to the engine to end the test. 

6. Analyze the data using the signal tool program see Fig. 9, 
where convert the waves obtained during the test from the 
time domain to the frequency domain. 
 

 
 

7. After converting the data to the frequency domain, we use 
the envelope analysis to ensure the appearance of the 
frequencies required for the type of defect in the bearing. 

8. After ensuring that all the required frequencies appear, use 
the SK to convert the saved data into two-dimensional 
color images that are later programmed using the Matlab 
software. 

9. After saving the two-dimensional color images for each 
type of defect, whether inner, outer, or compound, they are 
used in the CNN program to classify each type of defect, 
where 70% of the total color images are used in the training 
process, while 30% of the total images are used for CNN 
authentication or checking the CNN results. 

4. Results and discussion  
In this paper, the theoretical and experimental results will 

be discussed and explained. The results will divide into two 
parts based on the data acquisition method. The first part of the 
results will include the results obtained from the sound sensor, 
where four types of bearings were used, three defective and 
one healthy, with four different speeds, which are 15 Hz, 25 
Hz, 30 Hz, and 35 Hz, respectively. Also, 1600 images were 
used in the CNN for classification purposes, where 70% of the 
images were used for training purposes and 30% for 
verification purposes, as shown in Fig. 10, where the training 
took about 118 minutes and 36 seconds, and the number of 
complete training cycles was 6 Epochs, the total number of 
repetitions was 672, the number of repetitions in each cycle 
was 112, and the maximum number of repetitions reached was 
672, where the verification process was done every 3 
repetitions. The model reached an accuracy of 92.50% on the 
validation data, indicating good model performance. As for 
training performance, the graph shows that the training 
accuracy starts very low (around 20%) in epoch 1 and reaches 
around 95-98% as training progresses. This indicates that the 
model is learning patterns from the training data efficiently, 
reflecting a good network structure and an appropriate learning 
rate. The loss starts at a very high value (more than 4 in epoch 
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1), but quickly drops to below 0.1 in epoch 6. The sharp drop 
at the beginning is normal, as the model tries to adjust its initial 
weights. As for validation performance, the validation 
accuracy improves similarly to the training accuracy, reaching 
92.5%, which is an excellent value compared to most models. 
The relative match between the training and validation curves 
indicates that the model does not suffer from problems such as 
overfitting or underfitting. As for the validation loss, it drops 
very quickly at the beginning, but slows down in improvement 
as the cycles progress. In the end, the loss is very low, 
indicating good convergence. As for the comparison between 
training and validation, there are minor differences as there is 
not much difference between the loss and accuracy of training 
and validation, which means that the model does not just 
memorize the training data, but generalizes its performance to 
new data. This indicates that the balance between the number 
of layers, the number of nodes, and other parameters is well-

tuned. Stability in the last epochs in epochs 5 and 6, observe 
stability in performance (consistency in accuracy and loss), 
indicating that the model has reached the final learning stage 
and there are no more significant improvements. As for the 
statistical analysis of the final performance, the final validation 
accuracy of 92.5% means that 92.5% of the predictions on the 
validation data were correct and is high enough to be used in 
most applications. This is very good, especially if the domain 
in which the model is applied is completely insensitive to 
errors. The low final loss value indicates that the model is very 
good at predicting the correct values, as the difference between 
the predictions and the actual results is small. The variance in 
training accuracy compared to validation accuracy shows a 
very small difference, which means that the model does not 
suffer from the problem of overfitting. 
 

 
Fig. 10 Training progress results for sound data at four different speeds, namely 15 Hz, 25 Hz, 30 Hz, and 35 Hz, respectively. 

A confusion matrix in Fig. 11 is derived from analyzing an 
acoustic signal for diagnosing rotating machinery faults. The 
matrix illustrates the model's performance in classifying four 
operational conditions: ball, inner, normal, and outer. The 
classification accuracy is measured based on the number of 
correctly classified samples versus misclassifications. 
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Fig. 11 Confusion matrix. 

The relative values in each matrix cell reflect the model's 
precision and ability to distinguish between different fault 
types accurately, notice that in the first row, the total number 
of samples for the ball category was 109 samples, where the 
classification accuracy for this category was 92.7%, i.e. 101 of 
the samples were classified correctly, and 7.3%, i.e. 8 of the 
samples were classified incorrectly, as follows: 4 of the 
samples, i.e. 0.8%, were incorrectly classified as being from 
the inner category, and 0.8%, i.e. 4 of the samples were 
classified as being from the outer category. As for the general 
targeted accuracy for this category, it was 84.2%, and the error 
rate was 15.8%. As for the second class, we note that the total 
number of samples for the inner category was 124 samples. 
The accuracy for this inner category was 90.3%, i.e. 112 
samples were classified correctly, and the error rate was 9.7%, 
i.e. 12 of the samples were classified incorrectly, and 2.3%, i.e. 
11 of the samples were incorrectly classified as a ball, and 
0.2%, i.e. 1 of the samples were incorrectly classified as outer. 
As for the general targeted accuracy for this category, it was 
93.3%, and the error rate was 6.7%. As for the third class, 
notice that the total samples for the normal category were 128 
samples, where the accuracy for this category was 93%, i.e. 
119 samples were classified correctly, and the error rate was 
7%, i.e. 9 samples were classified incorrectly, as follows: 5 
samples, i.e. 1%, were incorrectly classified as ball, 0.2%, i.e. 

1 of the samples were incorrectly classified as inner, and 0.6%, 
i.e. 3 of the samples were incorrectly classified as outer. As for 
the general targeted accuracy for this normal category, it was 
99.2%, and the error rate was 0.8%. As for the fourth class, 
notice that the total number of outer samples is 119 samples, 
where the accuracy for this class was 94.1%, meaning 112 of 
the samples were correctly classified, and the error rate in the 
classification was 5.9%, meaning 7 of the samples were 
incorrectly classified, as follows: 0.6%, meaning 3 of the 
samples were incorrectly classified as ball, 0.6%, meaning 3 
of the samples were incorrectly classified as inner, and 0.2%, 
meaning 1 of the samples were incorrectly classified as 
normal. As for the targeted accuracy for this class, it was 
93.3%, and the error rate was 6.7%. From the matrix, we notice 
that the total accuracy of the model is 92.5%, and the error rate 
is 7.5%. The model is generally accurate, and the performance 
on all classes is very good. The highest accuracy was for the 
99.2% normal class, and the lowest accuracy was for the 
84.2% ball class. 

The second part explain for the results obtained from the 
vibration sensor, where four types of bearings were used, three 
defective and one healthy, with four different speeds, which 
are 15 Hz, 25 Hz, 30 Hz, 35 Hz, respectively, and 1600 images 
were used in the CNN for classification purposes, where 70% 
of the images were used for training purposes and 30% for 
verification purposes, as shown in Fig. 12, where the training 
took about 2 hours and 27 seconds, and the number of 
complete training cycles was 6 epochs, the total number of 
iterations was 672, the number of iterations in each cycle was 
112, and the maximum number of iterations reached was 672, 
where the verification process was done every 3 iterations. The 
model achieved a very high accuracy 94.38% with a low and 
stable loss. The model's performance on the training data (blue 
line) and the verification data (black dots) is very close, which 
is a positive indicator because the model does not suffer from 
overfitting or underfitting. The simple oscillation in the 
validation accuracy, it is shown that the data is not completely 
identical between training and validation, which is normal, and 
means that the model handles the complexity of the data well. 
The loss decreases rapidly in the beginning epoch 1 and 2, 
indicating that the model quickly learned the basic patterns in 
the data. As we progress in later epochs from epoch 4 to 6, the 
loss decrease slows down, indicating that the model is 
approaching saturation i.e. learning everything that can be 
learned from the current data. In the end, the model performs 
excellently and its indicators are positive in terms of accuracy 
and loss. It can be considered ready for practical application 
based on the high validation accuracy.
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Fig. 12 Training progress results for vibration data at four different speeds, namely 15 Hz, 25 Hz, 30 Hz, and 35 Hz, respectively.

Figure 13 shows a confusion matrix is derived from 
analyzing a vibration signal to diagnose rotating machinery 
faults. The matrix illustrates the model's performance in 
classifying four operational conditions: ball, inner, normal, 
and outer. Classification accuracy is measured based on the 
number of correctly classified samples versus 
misclassifications. The relative values in each matrix cell 
reflect the model's precision and ability to distinguish between 
different fault types accurately. From the first-row notice that 
the model's accuracy in predicting the ball is 90.8%, meaning 
that 90.8% of the predictions in which the model said the ball 
were correct, while the percentage of the sample that was 
classified among all the actual samples of the same category is 
90%. Also, for the inner category, the model's prediction 
accuracy for the inner category is 95.7%, while the actual 
percentage among all the samples of the same category is 
93.3%. As for the normal category, the model's prediction 
accuracy is 94.5%, while the actual percentage among all 
samples is 100%, meaning that the model never made a 
mistake in identifying the normal category.  

Fig. 13 Confusion matrix. 
 

As for the outer category, the model's prediction accuracy 
was 96.6%, while the actual percentage among all samples was 
94.2%. In general, the overall accuracy of the model is 94.4%. 
This indicates that the model is generally strong, especially in 
classifying categories such as outer and normal. Errors are 
present, but they are limited and concentrated among 
categories with great similarity such as ball and inner. 

5. Conclusions 
The proposed approach involves gathering vibration and 

sound data under both healthy and faulty bearing conditions, 
extracting relevant features, and training a model to identify 
various bearing states. The findings demonstrate that using 
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CNN with vibration data achieves notably higher classification 
accuracy. The models are tested on four bearing conditions 
three faulty and one healthy and CNN combined with data 
from both sensors consistently delivers superior performance 
in terms of classification accuracy, precision, and other 
metrics. The results highlight that leveraging vibration and 
sound signatures with CNN allows for early and accurate 
detection of bearing issues. This capability is critically 
important in the industry, as it can save lives and reduce the 
high costs associated with machine failures caused by 
cumulative bearing damage. Consequently, the demand for 
such diagnostic tools has surged significantly in recent times. 
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