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Abstract 

Audio-based emotion recognition has emerged as a critical field in artificial 

intelligence (AI) for enabling intelligent systems to understand and respond to 

human emotions in real time. This study presents a comparative analysis of 

traditional machine learning (ML) and deep learning (DL) models for speech 

emotion recognition (SER) using the Toronto Emotional Speech Set (TESS) 

database. The methodology involved a comprehensive audio preprocessing 

pipeline, including noise reduction, silence removal, and feature extraction using 

Mel-Frequency Cepstral Coefficients (MFCCs), spectral centroid, bandwidth, and 

zero-crossing rate (ZCR). Five models were implemented: Support Vector 

Machine (SVM) and Random Forest (RF) as traditional approaches, and Deep 

Neural Network (DNN), Convolutional Neural Network (CNN), and Gated 

Recurrent Unit (GRU) as deep learning approaches. The results demonstrated that 

deep learning models, particularly the DNN, achieved superior performance with 

an F1-score of 0.97, effectively capturing both spectral and temporal variations in 

emotional speech. In contrast, SVM and RF showed moderate performance, 

excelling in classifying well-separated emotions but struggling with overlapping 

classes. The findings highlight the potential of DL-based SER systems to enhance 

human–AI interaction in applications such as mental health monitoring, smart 

assistants, and adaptive learning environments. 

Keywords Audio Emotion Recognition; Speech Emotion Recognition (SER); 

Machine Learning; Deep Learning; DNN; CNN; GRU; Support Vector Machine 

(SVM) 
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انزعشف عهى انًشبعش انصٕرٍخ كًدبل ثبنغ الأًٍْخ فً انزكبء الاصطُبعً، إر ًٌُكٍّ الأَظًخ انزكٍخ يٍ  ثشص

فٓى انًشبعش انجششٌخ ٔالاسزدبثخ نٓب آٍَبً. رمُذو ْزِ انذساسخ رحهٍلًً يمبسَبً نًُبرج انزعهى اَنً انزمهٍذٌخ ٔانزعهى 

 .(TESS) عذح ثٍبَبد يدًٕعخ رٕسَزٕ نهكلًو انعبطفًانعًٍك نهزعشف عهى انًشبعش انكلًيٍخ ثبسزخذاو لب

ٔرضًُذ انًُٓدٍخ خظ أَبثٍت شبيم نًعبندخ انصٕد يسجمبً، ثًب فً رنك رمهٍم انضٕضبء، ٔإصانخ انصًذ، 

، ٔيشكض انطٍف، ٔعشض (MFCCs) فشٌكٌُٕسً سٍجسزشا-ٔاسزخشاج انسًبد ثبسزخذاو يعبيلًد يٍم

ٔانغبثخ  (SVM) ٔطجُمّذ خًسخ ًَبرج: آنخ انذعى انًزدّ .(ZCR) شيانُطبق انزشددي، ٔيعذل انعجٕس انصف

، (CNN) ، ٔانشجكخ انعصجٍخ انزلًفٍفٍخ(DNN) كًُبْح رمهٍذٌخ، ٔانشجكخ انعصجٍخ انعًٍمخ (RF) انعشٕائٍخ

ثخ ّٕ كًُبْح نهزعهى انعًٍك. أظٓشد انُزبئح أٌ ًَبرج انزعهى انعًٍك، ٔخبصخً  (GRU) ٔانٕحذح انًزكشسح انًج

، حٍث َدحذ فً انزمبط كم يٍ 0..7ثهغذ  F1 ، حممذ أداءً يزفٕلبً ثذسخخ(DNN) انشجكخ انعصجٍخ انعًٍمخ

أداءً  SVM ٔRF الاخزلًفبد انطٍفٍخ ٔانضيٍُخ فً انكلًو انعبطفً. فً انًمبثم، أظٓش كمٌ يٍ ًَٕرخً

فً انزعبيم يع انفئبد  يزٕسطًب، حٍث رفٕلب فً رصٍُف انًشبعش انًُفصهخ خٍذاً، نكًُٓب ٔاخٓب صعٕثخ

انمبئًخ عهى انزعهى انعًٍك فً رعضٌض انزفبعم ثٍٍ الإَسبٌ  SER انًزذاخهخ. رجُشص ْزِ انُزبئح إيكبَبد أَظًخ

 .ٔانزكبء الاصطُبعً فً رطجٍمبد يثم يشالجخ انصحخ انعمهٍخ، ٔانًسبعذٌٍ الأركٍبء، ٔثٍئبد انزعهى انزكٍفٍخ

؛ انزعهى اَنً؛ (SER) شبعش انصٕرٍخ؛ انزعشف عهى انًشبعش انكلًيٍخانزعشف عهى انً:الكلوات الوفتاحية

؛ آنخ (GRU) ؛ ٔحذح انزحكى فً انزٕخCNNٍّ ؛ شجكخ(DNN) انزعهى انعًٍك؛ انشجكخ انعصجٍخ انعًٍمخ

 .(SVM) انًزدٓبد انذاعًخ

1. Introduction 

A large part of human emotional intelligence and effective communication 

involves recognizing and understanding emotional signals in social situations 

(Saarni, 1999). Integrating emotional intelligence within artificial intelligence (AI) 

is now becoming an important research topic, especially in the development of 

speech emotion recognition (SER) systems that assist in making the human–

computer interaction more natural and context-aware [3, 4]. Voice is a palate of 

emotional expression; slight variations in pitch, timbre, and intensity express 

nuanced emotional states without requiring visual input[1]. Hence, it renders 

audio-based emotion recognition as extremely appropriate for on-line usage where 

face info might be absent or suspicious[2]. 

Initial studies in the field of SER depended on manually created acoustic features 

like pitch, energy, and Mel-Frequency Cepstral Coefficients (MFCCs), which then 

paired with classical ML models, for instance, Support Vector Machines (SVM) 

and Random Forest (RF). While these strategies showed initial success in 

controlled environments, they frequently faced difficulties respectively, to 

generalize in the real world institute of noise, mixture of emotions, and varied 

linguistic expressions [3]. 
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Since deep learning (DL) has emerged as a very promising area of artificial 

intelligence research, the SER landscape has been shaped by deep-learning-based 

models that can automatically learn set of hierarchical feature representations 

based on either the raw audio signals or their spectrogram representations. Local 

spectral patterns are captured efficiently by convolutional neural networks (CNNs), 

while temporal dependencies – which are essential for dynamic emotion detection 

– can be modeled easily by gated recurrent units (GRUs) and other recurrent 

architectures. Recent studies have shown that especially the fusion of shallow 

feature-based and deep end-to-end learning achieves state-of-the-art recognition 

performance and robustness against noise & variations of the input language[3, 4, 

5]. 

However, there are still many challenges such as the non-generalization of the 

models across languages and cultures, the need to detect mixed emotions, and the 

ethical issue of performing speech processing that happens over sensitive voice 

data. They need to be tackled to make them applicable to real-world scenarios like 

mental health monitoring, emotion-aware virtual assistants, and adaptive e-learning 

systems[6]. 

In this context, this study aims to perform a comparative analysis of the classic ML 

models (SVM and RF) and DL models (DNN, CNN, and GRU) for the task of 

audio based emotional recognition, by utilizing the Toronto Emotional Speech Set 

(TESS) as a reference dataset. Thus, in this work, analyzes model performance in 

terms of accuracy, precision, recall, and F1-score, thereby demonstrating that deep 

learning architectures have the potential to achieve superior and context aware 

emotional recognition capabilities[7]. 

2. Related Works 

Speech Emotion Recognition (SER) is a key element of affective computing and 

human–AI interaction, and has attracted considerable research efforts over the last 

decade. In the early research years, hand-engineered acoustic features together with 

traditional ML (e.g.,SVMs, RFs) [1,2] were the workhorse of the field. For 

instance, Eyben et al. presented the Open SMILE toolkit that allows the extraction 

of audio features for emotion recognition in real-time. Related works such as [8] 

performed an analysis of paralinguistic signals to further strengthen robustness in 

noisy conditions. 

With the evolution of deep learning (DL), models capable of end-to-end learning 

from raw or spectrogram-based audio signals have outperformed traditional ML 
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approaches. Trigeorgis et al. proposed a CNN-RNN architecture that achieved 

significant improvement over handcrafted feature-based pipelines. Furthermore, 

[9] demonstrated that hierarchical CNNs could capture nuanced emotional 

expressions with high accuracy. GRU- and LSTM-based networks have also 

been widely employed to handle temporal dependencies, improving recognition of 

complex emotional transitions. 

In addition to unimodal audio approaches, multimodal methods integrating audio 

and visual features have shown enhanced performance, especially for ambiguous 

or blended emotions. Chung et al. achieved improved accuracy using audio-

visual fusion for real-time lip reading and emotion recognition. However, such 

approaches are often resource-intensive and less suitable for real-time applications 

in constrained environments[10]. 

Despite these advancements, several gaps persist, including limited generalization 

to multilingual or spontaneous speech, difficulty in handling blended emotions, 

and unresolved ethical concerns regarding the use of voice data. These challenges 

underline the need for robust, lightweight, and privacy-aware SER systems 

suitable for real-world deployment. 

A summary of key related studies is provided in Table 1, highlighting their 

methodologies and outcomes. 

Table 1 – Summary of Key Related Studies in Speech Emotion Recognition 

Researcher  Methodology Key Contribution/Result 

[11] OpenSMILE feature 

extraction 

Enabled real-time acoustic feature 

extraction 

[12] Paralinguistic signal 

analysis 

Improved robustness in noisy 

environments 

[13] CNN-RNN end-to-end 

model 

Outperformed traditional ML pipelines 

[14] Hierarchical CNN Captured nuanced emotional expressions 

[15] Audio-visual fusion Enhanced accuracy in complex emotional 

scenarios 

3. Methodology 

The proposed methodology for audio-based emotion recognition follows a 

structured pipeline that integrates data acquisition, preprocessing, feature 
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extraction, model implementation, and performance evaluation. A unified 

approach combining traditional machine learning (ML) and deep learning (DL) 

models was adopted to conduct a comparative analysis of their performance in 

speech emotion recognition. 

3.1 Dataset 

This study utilizes the Toronto Emotional Speech Set (TESS), which contains 

approximately 2,800 audio recordings representing seven emotional classes: 

happy, sad, angry, fear, surprise, disgust, and neutral . TESS was selected for its 

high-quality recordings, balanced class distribution, and suitability for ML 

and DL applications. All audio files are stored in .WAV format at 44.1 kHz, 

enabling robust feature extraction and model training. 

3.2 Preprocessing 

The preprocessing stage aimed to enhance audio quality and prepare data for 

feature extraction. It involved the following steps: 

1. Mono Conversion – Standardized all recordings to a single channel. 

2. Resampling – Adjusted the sample rate to 16 kHz for consistency and 

computational efficiency. 

3. Noise Reduction & Silence Removal – Applied spectral subtraction to suppress 

background noise and removed non-informative silent segments. 

4. Normalization & Framing – Standardized signal energy and segmented audio 

into frames of 20–40 ms to preserve temporal patterns. 

This stage ensures that only emotionally informative segments are used for 

analysis. 

3.3 Feature Extraction 

To represent emotional cues numerically, the following acoustic features were 

extracted: 

 Mel-Frequency Cepstral Coefficients (MFCCs) – Represent the spectral 

envelope of human speech. 

 Zero-Crossing Rate (ZCR) – Captures the sharpness and noisiness of the audio 

signal. 

 Spectral Centroid & Bandwidth – Indicate the distribution and spread of 

signal energy. 
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 Pitch and Energy – Represent the fundamental emotional tone and arousal 

intensity. 

Additionally, spectrograms were generated for input to CNN models, enabling 

image-based pattern recognition. 

3.4 Model Implementation 

Five models were implemented to evaluate the comparative performance of ML 

vs. DL approaches: 

1. Support Vector Machine (SVM) – Classifies feature vectors using 

hyperplanes. 

2. Random Forest (RF) – Aggregates multiple decision trees to improve 

generalization. 

3. Deep Neural Network (DNN) – Learns hierarchical representations from 

acoustic features. 

4. Convolutional Neural Network (CNN) – Processes spectrograms to capture 

local spectral patterns. 

5. Gated Recurrent Unit (GRU) – Models temporal dependencies in emotional 

speech. 

Each model was trained using stratified train-test splitting to maintain class 

balance, and hyperparameter tuning was applied to optimize performance. Data 

augmentation techniques (time stretching, pitch shifting) were applied to improve 

generalization and mitigate overfitting. 

3.5 System Workflow 

The workflow of the proposed emotion recognition system is illustrated in 

Figure 1, highlighting the sequential stages from raw audio to final emotion 

classification. 
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Figure 1 – Workflow of the Proposed Speech Emotion Recognition System 

        Raw Audio Input 

                │ 

        ┌───────▼────────┐ 

        │  Preprocessing │  (Noise Reduction, Silence Removal, Normalization) 

        └───────┬────────┘ 

                │ 

        ┌───────▼────────┐ 

        │ Feature Extraction │  (MFCCs, ZCR, Spectral Features) 

        └───────┬────────┘ 

                │ 

        ┌───────▼───────────────┐ 

        │ Model Training & Testing │  (SVM, RF, DNN, CNN, GRU) 

        └───────┬───────────────┘ 

                │ 

        ┌───────▼────────┐ 

        │ Emotion Output │  (Happy, Sad, Angry, etc.) 

        └────────────────┘ 

4. Results and Discussion 

The performance of the five implemented models—SVM, RF, DNN, CNN, and 

GRU—was evaluated using the TESS dataset with standard classification metrics: 

accuracy, precision, recall, and F1-score. Results highlight the significant 

differences between traditional ML and deep learning (DL) models in 

recognizing emotions from audio signals. 

4.1 Model Performance Overview 

Table 2 summarizes the comparative performance of the models on the test dataset. 

Table 2 – Comparative Performance of ML and DL Models on TESS Dataset 

Model Accuracy Precision Recall F1-Score 

SVM 0.87 0.86 0.85 0.85 

RF 0.88 0.87 0.86 0.86 

DNN 0.97 0.97 0.97 0.97 

CNN 0.95 0.95 0.94 0.94 

GRU 0.96 0.95 0.95 0.95 
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4.2 Analysis of Results 

1. Deep Learning Dominance – As expected, DNN, CNN, and GRU 

outperformed SVM and RF, achieving F1-scores above 0.94. 

o DNN achieved the highest overall performance (0.97), confirming its ability to 

learn high-level feature abstractions from MFCCs and other acoustic features. 

o GRU performed exceptionally well due to its temporal modeling capability, 

capturing emotional transitions within speech sequences. 

2. CNN Strength in Spectral Features – CNN excelled at high-energy emotions 

(e.g., anger, surprise) by effectively detecting local spectral variations from 

spectrograms. 

However, CNN underperformed slightly in low-arousal emotions such as sadness 

and neutral compared to GRU. 

3. Traditional Models Limitations – While SVM and RF achieved moderate 

results (F1 ~0.85), they struggled with overlapping emotional classes due to their 

lack of temporal context modeling. 

These models, however, remain computationally efficient and suitable for 

resource-constrained applications. 

4.3 Comparative Performance Visualization 

The difference between ML and DL approaches is illustrated in Figure 2, which 

shows the clear performance gap in terms of F1-score across all models. 

Figure 2 – Comparative F1-Scores of ML vs. DL Models 

F1-Score 

1.0 ┤                            █ DNN (0.97) 

0.9 ┤                 █ GRU (0.95) █ CNN (0.94) 

0.8 ┤       █ RF (0.86) █ SVM (0.85) 

0.7 ┤ 

    └──────────────────────────────────────── 

       SVM     RF      CNN      GRU      DNN 

 

4.4 Discussion and Insights 

The results confirm that deep learning models are the preferred choice for audio-

based emotion recognition, especially in real-world scenarios requiring 

robustness to acoustic variability. 

Key findings include: 
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 DNN is optimal for balanced datasets and static acoustic features. 

 GRU is particularly effective for time-dependent emotional patterns. 

 CNN provides high performance for spectral variations, but combining it 

with GRU could further enhance sequential emotion detection. 

 Traditional ML models can serve as lightweight alternatives in low-resource 

environments, but their limited generalization remains a constraint. 

These insights suggest that hybrid architectures combining spectral and 

temporal deep models could achieve even higher reliability in future work. 

5. Conclusion and Future Work 

In this research, a comparative study of ML and DL models for audio emotion 

recognition was proposed on the TESS dataset. The implementation of an 

exhaustive methodology that included audio preprocessing, utterance-level 

acoustic feature extraction, and classification with five different models which are 

SVM, RF, DNN, CNN, and GRU. 

DNN outperformed all other deep learning models in term of F1-score (0.97), 

followed by GRU (0.95) and CNN (0.94), as seen from the experimental results. 

Models more adept at capturing spectral and temporal emotional patterns, thereby 

facilitating robust high- and low-arousal emotion recognition. In comparison, other 

ML models (SVM and RF) also achieved moderate performances and were better 

fitted for lightweight applications where the focus is on faster predictions over 

higher accuracy. 

The results highlight the promise of deep learning for deployment and real-world 

emotion recognition in applications such as mental health tracking, adaptive 

learning environments, customer engagement, and human–AI interaction. 

Future work will focus on: 

1. Expanding the system to multilingual and spontaneous speech datasets to 

improve generalization. 

2. Exploring hybrid CNN-GRU architectures to combine spectral and temporal 

feature modeling for enhanced performance. 

3. Incorporating privacy-preserving mechanisms to address ethical concerns 

related to voice data processing. 

4. Developing real-time implementations for deployment in smart assistants 

and emotion-aware IoT applications. 
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By bridging audio processing, affective computing, and deep learning, this 

study contributes to the advancement of emotionally intelligent AI systems 

capable of natural, context-aware human–machine interaction. 
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