
95 

 

NTU Journal of Engineering and Technology (2025) 4 (2) : 95-104 

DOI: https://doi.org/10.56286/ntujet.v4i2   

 

 

Predicting Obesity Levels Based on Lifestyle and Activity 
Patterns 
 

Iman Nozad Mahmood1 , Swash Sami Mohammed2  
1Kirkuk General Education Directorate, Kirkuk, Iraq, 2Technical Engineering College – Kirkuk, 

Northern Technical University, Mosul, Iraq. 

imanmahmood821@gmail.com, swash.sami23@ntu.edu.iq 

 

 

Article Informations                        A B S T R A C T 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE: 

https://creativecommons.org/licenses/by/4.0/  

 
 

Obesity is a growing global health concern driven by genetic, behavioral, 

and environmental factors. Machine learning (ML) offers potential for 

predicting and classifying obesity, however data accessibility and model 

scalability present challenges. This study evaluates various machine 

learning algorithms for obesity prediction, including Random Forest (RF), 

K-Nearest Neighbors (KNN), Gradient Boosting, and Support Vector 

Machines (SVM). The dataset comprises 1,610 individuals, considering 

health, behavioral, and demographic characteristics. The aforementioned 

metrics were employed to evaluate the model performances; accuracy, 

precision, recall, and F1-score. Of interest, Logistic Regression had the 

lowest accuracy score (76.39%), while Gradient Boosting had the highest 

(88.82%). Similarly, Gradient Boosting performed well with the other 

metrics, reinforcing its valid conclusions for obesity classification. There 

is substantial potential for machine learning, as demonstrated in this study, 

as it will enable the early detection of obesity, and provide intervention 

prospects for health management professionals. 
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1. Introduction 

Obesity has emerged as a critical public health 

issue worldwide, contributing significantly to the 

burden of chronic diseases and associated healthcare 

costs [1]. According to the World Health 

Organization (WHO), global obesity rates have 

nearly tripled since 1975, with over 650 million 

adults classified as obese in 2022 [2]. This alarming 

trend underscores the urgent need for effective 

strategies to address obesity and its associated health 

risks.  In recent decades, the prevalence of obesity 

has steadily increased, affecting populations across 

diverse age groups, genders, and socioeconomic 

backgrounds [3]. There are many converging factors 

that contribute to this rise in obesity such as 

sedentary lifestyles, unhealthy eating and 

urbanization which may restrict physical activity 

[4]. There are severe health risks associated with 

obesity, which significantly increases the likelihood 

of developing an extensive list of diseases including 

Type 2 diabetes, cardiovascular disease, 

hypertension and several cancers [5, 6]. Early 

identification and receptor of individuals at risk of 

obesity will be important to improve public health 

outcomes and minimize the burden on the health 

care systems [7]. Despite the need for early detection 

of obesity, current obesity measures target Body 

Mass Index (BMI) almost exclusively, which whilst 

being a common measure is limited as it may not 

capture the complexity of obesity [8, 9]. BMI 

represents weight in relation to height, but likely 

neglects individual behaviours, demographics, and 

other contributory complexity [10]. The intention in 

this study is to assess ML algorithms for obesity 

classification, and identify the best performing 

model to offset the shortcomings of BMI alone by 

also including behaviour and demographic datasets. 

In this way, BMI-based assessment may miss critical 

aspects of individuals leading to less accurate 

obesity risk prediction. The technology related to 

ML has advanced and now provides an interesting 

path to more complex obesity classification [11]. 

Given the ability for machine learning algorithms to 

analyse complex datasets incorporating behavioural, 

physical, and demographic characteristics, machine 

learning based algorithms provide opportunities to 

increase the accuracy of obesity predictions, and 

better provide personalized risk assessments [12]. 

The dataset in this study consists of details for 1,610 

subjects covering a variety of demographic, 

physical, and lifestyle factors including age, sex, 

height, dietary patterns, levels of physical activity 

and family obesity background [13]. The dataset 

includes this variety of factors that connotates 

several different components of obesity related 

risks, thereby allowing for greater complexity in 

analysis than traditional obesity assessments. Each 

individual in the dataset is classified into one of four 

obesity classes namely, underweight, normal 

weight, overweight, and obese, which provides a 

multi- class definition suitable for classification 

algorithms. To better prepare our analysis of the 

dataset, several pre-processing steps were followed 

including normalizing the data and encoding 

categorical data, before utilizing machine learning 

algorithms. 

The primary purpose of this work is to use 

machine learning models that classify obesity state 

based on the collection of complex variables and 

overcome the limitations of traditional methods of 

evaluating obesity status [14, 15]. The study 

proposes that ensemble machine learning models 

(i.e., Gradient Boosting and Random Forest) will 

outperform simpler model methods (e.g. Logistic 

Regression) at classifying obesity. The study 

explores and evaluates different varying ML 

algorithms systematically to identify the best model 

to classify obesity status. The intended outcome is to 

advance healthcare informatics by providing a data 

driven approach to determining obesity status risk 

that can lead to more accurate and individualized 

interventions. 

The structure of the paper is as follows: Section 

1 introduces the challenges of predicting obesity 

levels based on lifestyle and activity patterns, along 

with a review of related studies. Section 2 describes 

the dataset and details the methodology applied in 

this research, including data pre-processing, feature 

engineering, and the selection and tuning of machine 

learning models. Section 3 showcases the results 

obtained, discussing key performance metrics and 

comparing the effectiveness of different models. 

Section 4 concludes the paper with final remarks and 

suggestions for future research. 

2. Literature Review 

The reviewed studies explored the use of ML in 

obesity prediction and management, highlighting 

advancements and limitations in this domain. For 

instance, Chatterjee, et al. [16] examined the 

effectiveness of eHealth interventions aimed at 

promoting healthier lifestyles, noting challenges 

related to data accessibility and variability, which 

affected model reliability and scalability. However, 

the study acknowledged the potential for positive 

health impacts, positioning eHealth as a valuable 

tool in preventive care. The primary limitation lay in 

logistical and ethical barriers, suggesting that these 

factors must be addressed for effective 

implementation. Similarly, Cheng, et al. [17] used 

recurrent neural network (RNN) models to make use 

of electronic health records (EHR) to predict 

childhood obesity. While these RNN models 

demonstrated good accuracy, using combination 

methods like RNN or deep learning will be highly 

data-dependent; it will not be effective in the 

absence of substantial datasets when using these 

machine-learning (ML) techniques. The study 

showed RNN models exhibited accuracy in 

predicting obesity, assuming the breastfeeding data 

was available from there were a sufficient number of 
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clinical encounters. While these RNN models 

showed promise and value in clinical healthcare 

research; possible future models will likely require a 

long-term application of ML models. In a related 

study, Cheng, et al. [18] focused specifically on 

models incorporating long short-term memory 

(LSTM), which predicted obesity in the pediatric 

population and concluded requiring repeated 

measures of clinical input data increased 

performances. The authors highlighted significant 

potential associated with using ML models in early 

health interventions, but were largely limited by data 

availability; examining the quality of these data and 

the number of records will always be a factor 

affecting the predicted reliability. Moreover, Koklu 

and Sulak [19] compared a number of ML models 

and found random forests (Rf) performed best and 

their random forest model achieved an 87.82% 

accuracy rating for classifying obesity; they also 

found SVM models performed worse. This 

demonstrates the possible benefit of using random 

forests, however using other ML methods will likely 

require a substantial amount of optimization and a 

balanced dataset across the sample population to 

improve predicted generalization. This is a serious 

consideration with respect to dataset structure, and 

random forests were able to manage more 

complexity in health data better than the other 

models. Furthermore, Pang, et al. [20] investigated 

specifically a data mining process as part of the 

exploratory research process and noted some data 

treatment processes were improved prediction in 

terms of speed and accuracy after a feature selection 

approach. This made feature selection a very 

important consideration, particularly in managing 

very large datasets in health research. However, the 

researchers still acknowledge the need for a fairly 

large amount of data to get maximum predictive 

capabilities from their model, suggesting a system’s 

predictive performance will also be very contingent 

on the size of the dataset it is provided to analyse. 

Likewise, Pereira, et al. [21] discussed a similar 

approach when reminding the reader that variable 

selection would improve the models efficiency and 

reduce processing time while using data mining 

techniques and ML techniques were still supportive 

of a rapid assessments of health indicators. The 

authors also offered the caveat that simplicity in 

variable selection (as an additional efficiency 

consideration) would risk losing a degree of 

thoroughness from the interpretation of prediction 

because it is data driven; as they pointed out, it is 

possible to a degree to oversimplify variable 

selection on models to increase predictive accuracy. 

While these studies showcase the potential for the 

ML process to provide good accuracy and efficiency 

rates, they all would suggest that continuing to 

examine access and be consistent with 

comprehensive datasets as a predominant 

consideration will support the chances that the 

results may be complete with and build reliability 

and generalizability across multiple populations. 

3. Method 

The use of several machine learning approaches 

to categorize obesity levels based on behavioral, 

physical, and demographic characteristics is 

examined in this study. The methodology adheres to 

a systematic framework that includes feature 

engineering, model selection, hyperparameter 

tuning, model training, data preparation, and 

performance assessment. Each stage is carefully 

implemented to ensure the models perform 

optimally in addressing this multi-class 

classification task. 

A. Dataset Description 

The dataset consists of 1,610 samples obtained 

from Kaggle [13], ensuring a diverse and 

representative sample of obesity-related factors. 

Each record represents an individual and containing 

14 input features along with a target variable 

indicating obesity status. The input features 

encompass: 

1. Demographic Features: These include 

variables such as Sex, Age, and Height, 

representing basic physical and gender-

related information. 

2. Behavioral and Lifestyle Attributes: These 

include factors like Consumption of Fast 

Food, Physical Exercise, and Smoking, which 

reflect the habits and behaviors influencing 

obesity. 

3. Obesity Status (Target Variable): The target 

variable categorizes individuals into different 

obesity classes, such as underweight, normal 

weight, overweight, and obese. 

Since the proposed dataset is large, Figures 1–4 

highlight key trends, while other parts of the dataset 

are omitted for clarity. 

The chart given in Fig. 1., indicates that 

individuals classified as Normal and Overweight are 

more likely to not have a family history of obesity. 

In contrast, individuals classified as Obese show a 

higher association with having a family history of 

obesity, suggesting that genetic and environmental 

factors may play a significant role in weight 

regulation. From a predictive modeling perspective, 

this makes family history a valuable feature for 

training an AI model, as it introduces a potential 

genetic component that could help differentiate 

between obesity classes. Including this feature in a 

predictive model could improve classification 

accuracy, especially in distinguishing between 

Normal and Obese categories where genetic 

predisposition is a major factor. 
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Fig. 1. Overweight Obese Family. 

Furthermore, regular consumption of fast food 

is clearly more common among individuals 

classified as Obese compared to those classified as 

Normal or Overweight (see Fig. 2). Fast food 

consumption reflects dietary habits and nutritional 

quality, making it a strong predictive feature for an 

AI model. An AI model could learn to recognize 

patterns of high fast food consumption and predict 

increased obesity risk, potentially enabling targeted 

dietary interventions. Including this feature in model 

training would likely enhance the model's ability to 

distinguish between Overweight and Obese 

categories. 

 

Fig. 2. Consumption of Fast Food. 

Furthermore, the graph depicted in Figure 3, 

indicates that individuals classified as Normal and 

Overweight are likely to eat three main meals a day, 

and individuals classified as Obese are likely to eat 

>3 meals per day, suggesting that meal frequency is 

a behavioral pattern that influences body weight. 

The use of number of meals per day as an input 

feature may help improve the predictive 

performance of an AI model so that it recognizes 

behaviors and patterns in eating behavior and caloric 

intake that may be associated with weight gain. The 

model could indicate the ways in which variability 

in meal frequency and size influenced the transition 

from Normal to Overweight and the transition from 

Overweight to Obese. 

 

Fig. 3. Number of Main Meals Daily. 

Last but not least, the chart depicted in Fig. 4, shows 

a clear distinction in eating behavior between obesity 

classes. Individuals classified as Normal and Overweight 

tend to consume food between meals sometimes or 

usually, whereas those classified as Obese have a higher 

tendency to eat between meals always or sometimes. This 

suggests that snacking behavior could be a major 

contributing factor to weight gain and obesity. Regular 

snacking increases total daily calorie intake and may lead 

to poor dietary habits, such as consuming high-sugar or 

high-fat snacks. Including food intake between meals as 

an input feature in an AI model could significantly 

enhance its predictive power by identifying patterns in 

eating frequency and timing that are linked to obesity. The 

model could potentially differentiate between individuals 

with controlled meal patterns and those who engage in 

frequent snacking, improving classification accuracy for 

the Obese category. 

 

Fig. 4. Food Intake Between Meals. 

B. Data Pre-Processing 

Ensuring that the dataset is properly prepared 

for machine learning models requires effective data 

pretreatment. This process involves steps such as 

normalization, encoding categorical features, and 

handling the multi-class nature of the target variable. 

1. Normalization Using Min-Max Scaling 

Min-max scaling is applied to numerical 

features such as Age and Height [22]. This technique 

rescales the features to a standard range, typically 

between 0 and 1. The transformation is defined in 

Eq. (1). 
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               𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

Where, 𝑋 is the original feature value, 𝑋𝑚𝑖𝑛 and 

𝑋𝑚𝑎𝑥_max are the minimum and maximum values 

of the feature in the dataset, and 𝑋𝑆𝑐𝑎𝑙𝑒𝑑 is the 

rescaled value of 𝑋, which is now between 0 and 1. 

By scaling the features, the magnitude of the feature 

values are not biased towards models like SVM and 

KNN that are impacted by the scale of the features. 

2. One-Hot Encoding of Categorical Features 

One-hot encoding is the transformation of 

categorical variable data into distinguishable binary 

columns; Categorical variables in this dataset 

included Sex (with two levels) and Transportation 

Type (with five levels), this encoding ensures that 

proper representation is accomplished without any 

ordinal implications. One-hot encoding prepares our 

categorical data for use in ML, we also checked our 

data set for missing data and outliers. Any instances 

of missing data were filled using imputation; 

extreme outliers were either transformed or removed 

to ensure they do not influence model predictions. 

3. Conversion to Categorical Format (Target 

Variable) 

The target variable, which represents different 

obesity classes, is transformed into a categorical 

format for multi-class classification. This 

transformation ensures that the model treats each 

obesity class as a separate category rather than a 

continuous variable. In multi-class classification 

jobs, where the objective is to categorize 

occurrences into distinct groups instead of 

forecasting a continuous result, this is very crucial. 

C. Data Splitting 

After the pre-processing stage, the data 

partitioning occurs. The models (that were 

implemented) are trained with around 80% of the 

data, and the remaining 20% will assess the 

performance and evaluation of the models. A data 

partition allows for models to be evaluated on a set 

of data that they have never encountered, and thus a 

more objective evaluation of how the models 

generalize to new data. 

D. Feature Engineering 

Feature engineering provides a benefit to the 

dataset in the way it configures the input variables to 

be in the best format for model training. In this 

research, although it is clear that no additional 

features were generated from the existing data, one 

can see that normalization and encoding are 

important procedures. They assure that the models 

will interpret the data correctly. For example, the 

normalized feature values of Height and Age 

produce sage feature scales that do not wield 

disproportionate weight on the models. 

Additionally, categorical features that are one-hot 

encoded avert the assumption of ordinality between 

categories. 

E. Model Selection 

The study explores five machine learning 

models for the classification task, each representing 

different approaches to multi-class classification: 

1. Random Forest is an ensemble learning 

technique creates a number of decision trees, 

each of which casts a vote on the final 

classification. This model is good at capturing 

intricate relationships between features and is 

resistant to overfitting. 

2. Support Vector Machine (SVM) divides 

classes by building a hyperplane in a high-

dimensional feature space. To capture non-

linear correlations between features, a radial 

basis function (RBF) kernel is employed in 

this work. 

3. 3. K-Nearest Neighbors (KNN) is a distance-

based model that tends to classify a sample 

based upon the majority class of the k nearest 

neighbors in the feature space. Thus, KNN 

allows us to predict a class based upon all of 

its neighbor's class which can be 

representative of the neighbors’ class. KNN 

works based on the idea that samples having 

similar feature values are likely having the 

same class. 

4. The logistic (S-shaped) function is used in the 

linear classification model of logistic 

regression to estimate class probabilities. 

Logistic regression is the method of choice 

when the relationship between input features 

and target variable can be approximated as 

linear for either binary or multi-class 

classification problems. 

5. The Gradient Boosting Classifier is an 

ensemble method that builds decision trees 

iteratively, thereby correcting errors from 

previous trees. Gradient boosting classifiers 

are generally successful at improving 

predictions through good overall summary 

prediction accuracy, minimizing the total 

residual error, and are a mature and 

appropriate option for various tasks. The 

selection of these particular methods arises 

from their success in multi-class 

classification, and their ability to 

accommodate the linear and non-linear 

relationships usually seen with obesity-related 

data. 

 

F. Hyperparameter Tuning 

Optimizing hyperparameters is a valuable step 

in enhancing each of the models' performance. 

Hyperparameter tuning is the process of choosing a 

good set of hyperparameters for your model based 

upon cross-validation. For this study, five-fold cross 

validation is used to determine the best 

hyperparameters for each model; the dataset is 
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divided into five segments. The model is fit on four 

segments and validated on the fifth, and this process 

is repeated 5 times; this improves the model's 

generalization capabilities. The hyperparameters 

were chosen based upon performance measures such 

as accuracy and F1-score, which achieved a balance 

between precision and recall for classification tasks. 

The hyperparameters optimized for each model 

were: 

1. Random Forest: Number of trees 

(𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠), maximum depth of trees 

(𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ), minimum samples required to 

split a node (𝑀𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑆𝑝𝑙𝑖𝑡), and minimum 

samples required to be at a leaf node 

(𝑀𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑙𝑒𝑎𝑓) [23]. 

2. SVM: Regularization parameter (C), kernel 

type (kernel), and kernel coefficient (gamma) 

[24]. 

3. KNN: Number of neighbors (𝑛neighbors), 

weighting function (weights), and the 

algorithm used to compute nearest neighbors 

(𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) [25]. 

4. Logistic Regression: Regularization strength 

(C), regularization type (penalty), and the 

optimization solver (solver) [26]. 

5. Gradient Boosting: Number of boosting 

stages (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠), learning rate 

(𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒), and the maximum depth of 

each tree (𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ) [27]. 

For Random Forest, the number of trees 

(𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) was tested in the range of 50 to 200, 

with a step size of 50, while the maximum depth 

(𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ) was tested in the range of 10 to 50. For 

Gradient Boosting, the learning rate (𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒) 

was tested in the range of 0.1 to 0.5, and the number 

of boosting stages (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) was tested in the 

range of 50 to 150. For SVM, the regularization 

parameter (𝐶) was tested in the range of 0.1 to 10, 

and the kernel coefficient (gamma) was tested with 

values of 'scale' and 'auto'. For KNN, the number of 

neighbors (𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ) was tested in the range of 

3 to 10, and the weighting function (𝑤𝑒𝑖𝑔ℎ𝑡𝑠) was 

tested with 'uniform' and 'distance' options. For 

Logistic Regression, the regularization strength (𝐶) 

was tested in the range of 0.1 to 10, and the 

regularization type (𝑝𝑒𝑛𝑎𝑙𝑡𝑦) was tested with ′𝑙1′ 
and ′𝑙2′ norms. 

G. Model Training 

The chosen models are trained on the training 

dataset using the best hyperparameters identified 

through cross-validation. During training, the 

models adjust their internal parameters to minimize 

the loss function, which quantifies the discrepancy 

between predicted and actual class labels. This 

process enables each model to identify patterns in 

the data associated with various obesity categories. 

 

H. Model Evaluation 

The evaluation of the models' effectiveness in 

classifying obesity status based on performance 

measures on the test dataset are done [22]. In this 

case the performance measures are F1-score, recall, 

accuracy and precision respectively. Accuracy is the 

measure of the proportion correct, including true 

positives and true negatives, of total instances. The 

accuracy is calculated as shown in Eq. (2). 

      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

True Positives are denoted by TP, True 

Negatives by TN, False Positives by FP, and False 

Negatives by FN. Precision measures the accuracy 

of positive classifications by dividing the number of 

genuine positive predictions by the total number of 

positive predictions produced by the model. It is 

calculated using Eq. (3): 

                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

Recall quantifies the percentage of real positive 

cases that the model successfully detects; it is also 

known as sensitivity or the true positive rate. It is 

computed using Eq. (4) and highlights the model's 

capacity to identify positive instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (4) 

The F1-score is a balanced statistic that takes 

into account both false positives and false negatives. 

It is computed as the harmonic mean of accuracy and 

recall. Because of this, it is especially helpful when 

there is a class disparity. The expression given in Eq. 

(5) is used to determine the F1-score. 

𝐹1_𝑆𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

Assessing each model's performance using 

these metrics offers a thorough insight into their 

strengths and limitations in accurately classifying 

obesity status. 

4. Training and Results 

A pre-processed obesity dataset was used to 

model the machine learning algorithms, including 

Random Forest, SVM, KNN, Logistic Regression, 

and Gradient Boosting, after splitting the dataset into 

a 20% test set (322 instances) and 80% training set 

(1,288 instances). 

To search through hyperparameter tweaks and 

find an optimal configuration for each model, a grid 

search with five-fold cross validation was 

conducted. Importantly, this involved searching 

different ranges of important hyperparameters with 

the goal of generating the best performance while 



Iman Nozad Mahmood1/NTU Journal of Engineering and Technology (2025) 4 (2) : 95-104 

101 

 

limiting overfitting. The use of five-fold cross 

validation to each model further ensured that each 

model generalized across subsets of data from the 

training set. 

Hyperparameters for the Random Forest model 

included a prescribed number of trees 

(n_estimators), the minimum number of samples 

required at a leaf, maximum depth, and minimum 

samples required to split a node. The best 

configuration used a maximum depth of 30, one 

sample for a leaf and 100 decision trees - trying to 

balance model complexity with overfitting. 

The SVM used an RBF kernel to deal with non-

linear interaction. The C parameter and gamma were 

optimized using grid tuning, the best configuration 

observed was C = 10 and gamma = scale, effectively 

separating classes in high-dimensional space. 

For the KNN model, the distance measure, 

number of neighbours (n_neighbors), and ball tree 

were optimized to maximize computing time 

efficiency through memory use. The best 

configuration used 3 neighbours with distance-based 

weights, which allowed the model to detect local 

patterns per class in the dataset. 

Similar to KNN model hyperparameter tuning, 

the Logistic Regression tuning largely focused on 

the regularization parameter (C). The configuration 

that performed best was regarded to have a value of 

10 as shown above in the hyperparameter tuning 

process, with L2 regularization which supported a 

strong trade-off between fit to the model and 

generalization. This ultimately served as a baseline 

for other, more complex models. 

Finally, the Gradient Boosting model 

hyperparameters include number of boosting stages 

(n_estimators), learning rate, and maximum depth of 

a tree were optimized. The best performance 

achieved was for a configuration of 100 boosting 

stages, a learning rate of 0.5, and a maximum depth 

of 7 as the model could update iteratively through 

the boosting process, contributing to less learning 

prompt through the optimization iterations. 

The models were trained with their optimal 

hyperparameters, and were then used for evaluation 

against the test set. Models were assessed based on 

accuracy, precision, recall, and F1 score, all of 

which are summarized in Table 1 for the best scores 

achieved for each model. 
 

Table 1.  Frequencies of wbc total and differential count. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest 84.16 84.37 84.16 84.21 

SVM 81.98 81.95 81.98 81.95 

K-Nearest Neighbors 77.02 77.03 77.02 76.9 

Logistic Regression 76.39 76.2 76.39 76.32 

Gradient Boosting 88.82 89.04 88.82 88.85 

The notable gradient boosting model had the 

best performance after, among the models described, 

it had the best accuracy of 88.82% along with the 

best precision of 89.04%, Recall of 88.82% and F1-

score of 88.85%. In high-dimensional spaces with 

many features, the average performance of models 

can prove difficult as features can present complex 

relations or patterns, and gradient boosting models 

can also iteratively correct misclassification using 

the tree ensemble as well as promote the attention to 

more challenging records. Based on the iterative 

process of gradient boosting, the model reduced both 

the amount of false positives and false negatives in 

predictions as it focused on learning from the earlier 

iterations. Additionally, the nature of gradient 

boosting allows for "stacked" models of weak 

learners to improve the performance of predicting 

obesity increasing its overall performance output. 

In terms of next best performance, the random 

forest model had a good accuracy performance of 

84.16% (accuracies were comparable along with 

precision and recall scores being comparable).  

Random Forest models provide attainment of 

robustness as they take multiple decision trees, but 

they fell short to gradient boosting as the random 

forest models have no previous trees to adjust 

random sampling with and are random related to 

sequence; random forest models while they produce 

many trees emphasize on comparison, so the order 

of trees was not relevant to predicting obesity status 

which when giving many factors contributed to 

complexity behind model use use. In some cases, 

they still chose random forest as a preferred mode 

due at least as a relatively balancing between 

interpretability of predictions, to robustness of 

prediction, to reducing overfitting considerably 

better than alternatives outlined.  

The SVM had relatively good performance 

(accuracy 81.98%). The SVM effectively created 

simple decision boundaries to distinguish between 

obesity classes. The SVM by applying a RBF kernel 

where the SVM utilized a non-linear decision 

boundary to accommodate for feature interactions, 

was found to produce reasonable performance 

compared to the competing models. SVM was 

simply ranked below the performance of gradient 

boosting and random forest because of the amount 

of complexity with the dataset and models 

capabilities limited with a fixed kernel function. 

In contrast, KNN and logistic regression were 

the least performing models with the accuracy 

results of 77.02%  and 76.39% of predictive 
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accuracy, respectively.  KNN possibly 

accomplished with lower accuracy than expected as 

the model attempts to classify using local patterning 

of the data. Alternatively, the KNN requires distance 

metrics which may be insufficient in capturing the 

appropriate global structure of the data when 

incorporating higher variability and considering the 

aforementioned increased dimensionality of the 

dataset.  

Again, Logistic Regression was a simpler linear 

model and as a linear model, therefore should have 

been speculated tendency to underperform 

compared to the complex dataset where it did not 

have appropriate capabilities to represent non-linear 

relationships among features. Although, specified as 

baseline, logistic regression predictors were found to 

perform poorly comparatively in predictive 

accuracy, precision, recall, F1-score, etc. along with 

the other models gradient boosting and random 

forest provided the capacity to more adequately 

describe interactions among features in their core 

structures as predictive models.  

From the results, we found that models that used 

ensemble methods, mainly gradient boosting, were 

the only suitable approaches available for the multi-

class classification problem of predicting obesity 

based on a number of demographic, physical, and 

behavioral factors about obesity. However, there 

were some recognition about limitations of the 

study. For one, there was no guaranteeing that the 

dataset was widely representative of populations 

globally thus engaging in the need for carefully self-

reported lifestyle measures could evoke biasing in 

data responses overall. In future recommended 

research recommendations we suggest embarking 

with the models mentioned but larger and more 

diverse data points beyond 30 participations and also 

would be useful to explore multi-modal datasets, 

(possibly increases in genomic and accelerometry to 

immurement acceptable accuracy measures while 

still accepting the limitations of relatively larger 

global population use and addresses) but can also 

connect as inherently shared nature to collecting 

multi-modal datatypes along quit an undertaking for 

recognizing biases and limitations regarding 

contributing interaction with datasets. (moreover 

this also deals with potential issues with validated 

use and appeal of datasets with the more covert 

moves of activity engagement- in possible real-time 

predictive system- we imagine to engage datasets 

with wearables could recommend early prompts to 

intervene based on the predictive states not 

addressing classification).  

Although the findings indicate that machine 

learning models can successfully classify obesity, it 

is valuable to recognize sources of variability and 

uncertainty. While the diversity of this dataset is 

certainly a strength, diversity in demographic and 

lifestyle aspects of the individuals in the dataset may 

also contribute to variability in inputs and results. 

Specific models such as KNN, can be sensitive, 

meaning the local data it receives will affect whether 

it generalizes correctly. SVM relies heavily on its 

kernel (this is where it deviates from being a strictly 

generalized model), and Random Forest relies on 

randomness so many variable components of how 

results were achieved may contribute variability in 

the results. Future studies may address these 

limitations by utilizing more diverse and larger 

datasets, as well as utilize more sophisticated 

techniques such as cross-validation and ensemble to 

acknowledge uncertainty. 

 

Gradient Boosting was the best performing 

model of the ones included in this study achieving 

close to 88.82% classification accuracy. This is a 

function of its boosting approach that iteratively 

improves its predictions by correcting for mistakes 

made on earlier rounds, leading to more precise 

results. Random Forest classification accuracy was 

also strong showing close to 84.16% classification 

accuracy. Random Forest relies on an ensemble 

learning method that makes use of an aggregation of 

several decision trees but does not include any prior 

sequential correction like the boosting method. 

There is the possibility that a generalized SVM 

could be a reasonable performer, however, it 

operates with restrictions associated with fixed 

kernel function that may limit its ability to adapt to 

the correct structures within varied data structures. 

Meanwhile, KNN and Logistic Regression are good 

for easier classification tasks, but struggled with the 

complexity of this dataset, as it is reasonable to 

suggest the relationships are likely complex, and 

perhaps even non-linear.  

5. Conclusions 

This research demonstrates how well ensemble 

approaches, in particular, Random Forest and 

Gradient Boosting, classify obesity according to 

physical, behavioral, and demographic 

characteristics. With the best accuracy of 88.82% 

and impressive precision, recall, and F1-scores, 

gradient boosting proved its capacity to identify 

intricate, non-linear patterns in the data. Random 

Forest did well too, although its accuracy was 

somewhat lower since it relied on bagging instead of 

sequential boosting. 

The SVM achieved competitive performance 

with an accuracy of 81.98% when using an RBF 

kernel; however, because this kernel does not 

change in relation to the data, some adaptability to 

the complex structure of the data was limited. KNN 

achieved an accuracy of 77.02% and Logistic 

Regression performed the worst with 76.39%, 

largely because they are less equipped to model the 

complex, non-linear relationships in the data, 

respectively.  

Building upon this work for future studies could 

involve refining feature selection and feature 

engineering procedures and selecting features that 

provided the strongest association to obesity. 
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Additionally, incorporating all relevant multi-modal 

data such as genetic and lifestyle tracking 

information could improve accuracy and potential 

programs for assisted real-time obesity 

management. Although modest, the present findings 

provide generalizable implications in practice for 

clinical practice and public health. In clinical 

practice, the Gradient Boosting model could easily 

be adapted into an electronic health record (EHR) 

system so healthcare providers might be able use the 

model in real time to evaluate an individual's risk of 

developing obesity. This type of assessment would 

enable clinicians to identify at-risk people earlier, 

and to provide individualized interventions as 

necessary (e.g., individualized diet plans, 

individualized exercise plans). In public health 

contexts, the Gradient Boosting model may inform 

the design of obesity prevention programs that target 

populations already at increased risk of obesity. 

There is also the option to integrate the model into 

continuously-distributed wearables and monitor a 

person's lifestyle variables, such as exercise and diet 

behaviors, to provide more serious real-time 

preventative healthcare. If used effectively, 

machine-learning could provide a method for early 

detection of obesity and relieve the healthcare 

system from some of the burden of obesity-related 

diseases and the costs associated. Although less 

tractable due to multicollinearity, we could harness 

novel features using multicollinearity-reducing 

approaches such as recursive feature elimination 

(RFE) or domain-specific transformations to 

interpret and offer more effective models that can 

influence practice. However, data quality imbalance 

may still plague the models despite the data 

preparation. Data augmentation options such as 

SMOTE might help balance our classes and create 

more robust models, especially for classes capable.  

Deep learning models may have more to 

contribute to obesity classification than we currently 

know because of their potential capacity to learn 

complex structures without human intervention, 

perhaps making prediction accuracy improvements 

possible through the use of Convolutional Neural 

Networks (CNNs) or Recurrent Neural Networks 

(RNNs). In addition, and despite the complexity, we 

would want to enhance our ability to make 

interpretable decisions about which features are 

most important to practice by using available model-

interpretation technologies, such as SHAP or LIME, 

to explore our most influential decision variables 

and their relationships to our prediction model in 

health care contexts. In the long term, integrating 

multi-modal data sources, including genomic, 

dietary, and activity data, could pave the way for a 

comprehensive obesity prediction model. 

Developing real-time obesity prediction systems 

may facilitate early intervention and preventive 

healthcare strategies. These advancements represent 

promising directions for improving obesity 

classification and contributing to public health 

initiatives. 
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