

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

In vitro and in vivo evaluation of antioxidant activity and phytochemical screening of Jordanian Gomphocarpus sinaicus boiss (Apocynaceae) extract

Salam Husam Sabri^{1,2*}, Jamil Al-Lahham³⁰ and Mahmoud Al-Qudah³⁰

- ¹Department of Quality Control, Grain Board of Iraq, Ministry of Trade, Altaji, Baghdad, Iraq.
- ³Department of Biology, College of Science, Yarmouk University, Irbid, Jordan
- ³Department of Biology, College of Science, Yarmouk University, Irbid, Jordan.

Article's Information

Abstract

Received: 29.10.2024 Accepted: 14.03.2025 Published: 20.05.2025

Keywords:

antioxidant activity;

Gomphocarpus sinaicus Boiss; in vitro, in vivo: Phytochemical screening.

*Corresponding author: sabrisalam99@gmail.com

Pages:100-108

DOI:https://doi.org/10.47419/bjbabs.v 6i02.340

Distributed under the terms of The Creative Commons
Attribution 4.0 International License (CC BY 4.0), which
Permits unrestricted use, distribution, and reproduction
In any medium, provided the original author and source are properly cited.
Copyright: © 2025 the Authors

OPEN ACCESS

Gomphocarpus sinaicus Boiss, belonging to the Apocynaceae family, is a medicinal plant known for its therapeutic properties. Although it has a history of traditional use, comprehensive studies investigating its phytochemical constituents and antioxidant potential are still limited. This study aimed to evaluate the phytochemical composition and antioxidant activities of various solvent extracts from the aerial parts of G. singicus Boiss, utilizing both in vitro and in vivo approaches. G. sinaicus Boiss has been traditionally used for various medicinal Therefore, this study sought to investigate the phytochemical constituents and assess the antioxidant potential of different solvent extracts of the plant's aerial parts. Aerial parts of G. sinaicus were extracted using solvents of varying polarities. Phytochemical screening was performed to identify secondary metabolites, and the total phenolic and flavonoid contents were quantified. We assessed antioxidant activity through DPPH•, ABTS+, ferrous ion chelation, and hydroxyl radical scavenging assays. Additionally, the in vivo antioxidant effects and acute toxicity of the butanolic extract were evaluated in BALB/c mice. G. singicus Boiss has been traditionally used for various medicinal purposes. This study aimed to investigate its phytochemical constituents and evaluate the antioxidant potential of different solvent extracts from the plant's aerial parts. The solvent extracts were analyzed for their phytochemical constituents, and the total phenolic and flavonoid contents were determined. Antioxidant activity was measured using DPPH+, ABTS+, ferrous ion chelation, and hydroxyl radical scavenging assays. The in vivo antioxidant effects and acute toxicity of the butanolic extract were assessed using BALB/c mice. Phytochemical screening revealed the presence of anthraquinones, terpenoids, flavonoids, saponins, alkaloids, tannins, and cardiac glycosides. The butanol and aqueous methanol extracts exhibited the highest contents of phenolics and flavonoids, displaying the strongest antioxidant activity across all assays. In the in vivo tests, the butanolic extract demonstrated an LD₅₀ of 116.64 mg/kg (intraperitoneally). Treated mice showed increased total glutathione levels and reduced protein carbonyl levels in both serum and liver homogenates. The butanolic extract of *G. sinaicus* Boiss exhibited potent antioxidant activity and favorable safety in vivo, indicating its potential as a natural source of antioxidants and therapeutic agents.

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

1. Introduction

Oxygen plays a crucial role in the metabolic reactions that generate energy in all living organisms. However, oxygen free radicals can trigger a series of reactions that may harm cells. The inherent instability of these free radicals is significant in the development of cancer cells through a continuous chain of reactions. For centuries, plants have served as vital sources of medicinal drugs due to their content of active compounds. Along with that, Many plants produce secondary metabolites that serve as excellent sources of antioxidants. These active compounds are part of the plant's defense mechanisms 5, 16, 18. There are several classes of secondary metabolites, including terpenoids, alkaloids, phenylpropanoids, polyketides, fatty acids, and peptides, all interconnected by complex metabolic pathways. These substances function as antioxidants, which are defined as compounds that significantly inhibit or prevent the oxidation of other substances at low concentrations. Antioxidants are known for their diverse biological effects, including anti-inflammatory, antibacterial, antiallergic, and vasodilatory properties 8. Research, both in vivo and in vitro, has evaluated various extracts of G. sinaicus Boiss (Apocynaceae, subfamily Asclepiadoideae) for their total phenolic and flavonoid content, as well as their phytochemical constituents. The results indicate that *G. sinaicus* Boiss exhibits high antioxidant activity, suggesting that it could be a valuable source of natural antioxidants and other therapeutic compounds ¹³,²².

2. Materials and Methods

All reagents used in this study were of analytical grade. Distilled water was used for common chemical solution preparation. DPPH, ABTS, ferrozine, ferric chloride (FeCl3), Folin- Ciocalteu, bovine serum albumin (BSA), potassium persulphate (K₂S₂O₈); ascorbic acid; aluminum chloride (AlCl₃); sulphuric acid; sodium carbonate (Na₂CO₃); sodium hydroxide (NaOH); sodium nitrite (NaNO2); sodium chloride (NaCl); Iron (II) chloride (FeCl₂); Iron (II) sulfate (FeSO₄) and hydrogen peroxide (H₂O₂) were purchased from Sigma Co. (St. Louis, MO, USA). All solvents n-hexane (99.8%), chloroform (99.8%), ethyl acetate (99.8%) and n- butanol (99.8%) used were of analytical grade and purchased from Merck Co. (Darmstadt, Germany). Distilled and deionized water (d.H₂O and dd.H₂O) was prepared by an ultrapure water purification system (Department of Chemistry, Faculty of Science, Yarmouk University).

G. sinaicus samples collection, extraction and fractionation

The *G. sinaicus* plant was collected in the spring of 2016 in the Agaba region. Specimens were identified by location. Fresh plant material was dried at room temperature (RT) in a shady place for one month. The plant material was powdered and then extracted in a Soxhlet extractor with petroleum ether to remove fatty acids and wax. Then methanol was added to the residual extract in the Soxhlet. Each time before extraction with the next solvent, the material was dried. After that, the extracts were concentrated by a rotary vacuum evaporator and then dried. The final product was added to chloroform (CHCl₃): d.H₂O (1:1) and mixed solvent system. Then the phases CHCl3 and d.H₂O were separated. The CHCl₃ fraction was dried and then partitioned between 10% aqueous methanol and hexane, polar organic compounds were extracted from the water phase by using n-butanol and then, the extracts were used directly to estimate total phenolic content and to assess antioxidant potential by various chemical assays 2.

Phytochemical analysis

Qualitative analysis of butanol, aqueous methanol, hexane, and water extracts of *G. sinaicus* to determine their phytochemical constituents (alkaloids, tannins, anthraquinones, terpenoids, flavonoids, saponins and cardiac glycosides) and other secondary metabolites according to ²⁶.

The determination of total phenolic content (TPC) in all types of extracts was analyzed using the Folin Ciocalteu method as described by ²¹.

Determination of total flavonoid content (TFC) of G. sinaicus in all types of extracts was determined using the aluminum chloride assay through colorimetry assay according to 21 .

DPPH• free radical scavenging assay

The total radical scavenging capacity of the extracts was determined and compared to the standards of ascorbic acid and α -tocopherol. The modified method from reference $^4,^{10}$ was used to evaluate the DPPH \bullet free radical scavenging capacity of the extracts. In this method, 2 mL of 0.1 mM DPPH \bullet solution was mixed with 1 mL of methanolic extract at various concentrations (0.005, 0.01, 0.05, 0.1, and 0.5 mg/mL). The mixtures were incubated in the dark for 30 minutes, after which the absorbance was measured at 51^7 nm using methanol as a blank. All experiments were repeated three times. A standard curve was prepared using different

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

concentrations of DPPH•. The ability to scavenge the DPPH• radical was calculated according to the following Equation 1:

DPPH• scavenging effect =
$$(\frac{1-AS}{AC}) \times 100 \%$$
 (1)

Where AC is the absorbance of the control and AS is the absorbance of the extract. DPPH• decreases significantly upon exposure to radical scavengers. Parameter introduced for the interpretation of the results from the DPPH method was used to calculate the IC50. IC50 can be defined as the concentration of the substrate that causes a 50% loss of the DPPH• activity. The IC50 values were calculated by linear regression method by plotting the antiradical activity percent against the concentration of the tested compounds 17,19 .

ABTS free radical scavenging assay

The total antioxidant activity by radical cation decolonization assay (ABTS+) was determined using the 23 method with some modifications. The ABTS+ cationic radical solution was diluted with d.H₂O to obtain an absorbance reading at 734nm of 0.75. Three mL ABTS+ solution was mixed with 1mL of extract at different concentrations (0.005, 0.01, 0.05, 0.1, and 0.5 mg.ml-¹). The absorbance was measured at 734nm by using a UV-VIS spectrophotometer. The blank was run in each assay and all measurements were taken after at least 5min. The ABTS+ scavenging capacity of the extract was compared to ascorbic acid and α -tocopherol standards. The percentage inhibition was calculated according to the following Equation 2:

ABTS⁺ scavenging effect =
$$(\frac{1-AS}{AC}) \times 100 \% (2)$$

Where AC is the absorbance of the control and AS is the absorbance of the extract. The IC_{50} values were calculated by the linear regression method of plots of the percent of antiradical activity against the concentration of the tested compounds.

Ferrous chelating effect

Ferrous chelation *G. sinaicus* was estimated according to 21 method with some modifications. *G. sinaicus* ability to ferrous chelating was monitored by the absorbance of the ferrous–ferrozine complex at 562 nm. Three mL of methanolic extract solution in different concentrations (0.005, 0.01, 0.05, 0.1, and 0.5 mg.ml $^{-1}$) were added to 250 µL 2 mM FeCl 2 solution. The reaction was initiated by adding 0.2 ml of 5 mM ferrozine. It was then shaken vigorously and left at room temperature for 10 min. The absorbance of the solution was then

measured spectrophotometrically at 562 nm. Percent inhibition of ferrous–ferrozine complex was calculated according to the following Equation 3:

Ferrous ion chelating effect=
$$(\frac{1-AS}{AC}) \times 100 \% (3)$$

Where AC is the absorbance of the control and AS is the absorbance in the presence of G. sinaicus or standards. The control contains only $FeCl_2$ and ferrozine.

Hydroxyl radical assay

A hydroxyl radical assay was detected using salicylic acid and was used to measure the hydroxyl radical formation according to 28 method. To measure the formation of hydroxyl radicals, 1 ml methanol extract solution at different concentrations (0.005, 0.01, 0.05, 0.1 and 0.5 mg.ml $^{-1}$) was added to 0.5 ml of 6 mM FeSO4. Then 0.5 ml of 6 mM H $_2$ O $_2$ was added, followed by vertexing the tubes and finally the tubes were left to stand for 10min. Afterwards, 1ml of 6mM salicylic acid was added to each tube and incubated for 30 min at room temperature. Ascorbic acid was used as a positive control. The absorbance was measured at 510 nm and then the hydroxyl radical scavenging capacity was calculated according to the following Equation 4:

Hydroxyl radical effect=
$$(\frac{1-AS}{AC}) \times 100 \% (4)$$

Where AC is the absorbance of the control and AS is the absorbance of *G. sinaicus* extract or standards.

In Vivo

Experimental design and animals

Adult female BALB/c albino mice, aged 8-10 weeks and weighing approximately 24 grams, were used as experimental subjects in this study. The mice were sourced from the Animal House Department of Biological Sciences at the Faculty of Science, Yarmouk University. They were kept in a controlled environment with a temperature between 21-23°C and a light cycle of 12 hours of light followed by 12 hours of darkness. Standard pellet food and water were provided. The evaluation of the antioxidant capacity of G. sinaicus was divided into two experiments. The first experiment involved an assessment of acute toxicity. For this purpose, two stock solutions of butanol extract were prepared: Stock A consisted of 1 gram of butanol extract dissolved in 15 milliliters of normal saline, while Stock B contained 1 gram of butanol extract dissolved in 60 milliliters of normal saline. In this experiment, 40 female mice were divided into four groups, each group having 10 mice,

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

and the first group was regarded as a control group. And the other group used 0.1ml (200 mg.kg-1) of stock solution A was injected intraperitoneally for 12 (dose/day) administration. And the other group used 0.2ml (100 mg.kg⁻¹) from stock B was injected intraperitoneally for the administration of 12 (dose/day). The last group used 0.1ml (50mg.kg-1) from stock solution B and injected intraperitoneally for administration of 12 (dose/day). And another experiment was used to determine PC level and total GSH content. Butanol extract stock solutions were prepared as Stock A: 1g of butanol extract was dissolved in 60ml of normal saline. And Stock B: 10ml from stock A was mixed with 40mL normal saline. In this experiment, 21 female mice were divided into three groups, each group has 7 mice, and the first group was regarded as a control group. And the other group used where 0.2ml (20 mg.kg⁻¹) from stock В was administrated intraperitoneally for 12(dose/day) administration. The last group used 0.1ml (10mg.kg⁻¹) from stock solution intraperitoneally for 12(dose/day) administration.

Sample preparation for antioxidant evaluation

To preparation the serum sample, blood from treated mice was used, collected in Eppendorf tubes and allowed to clot at room temperature for 30 minutes. Then the tubes were centrifuged at 2000 xg for 15 minutes at 4°C. The serum was then transferred to new tubes and stored at -70 °C. And tissue homogenization used mice liver was collected from treated mice and stored at -70°C until use. Approximately 15mg liver tissue was homogenized in phosphate buffer using Tissue Lyser II (Talboys 930145. Kats Enterprise division, USA) at 20 Hz for 4min. After homogenization, the supernatant was transferred to a new tube and centrifuged for 20min at 13.4xg at 4°C. The supernatant was transferred to a new 1.5ml Eppendorf tube and stored at -70°C. About 30µL from the supernatant was transferred to a 1.5ml Eppendorf tube to measure the protein concentration.

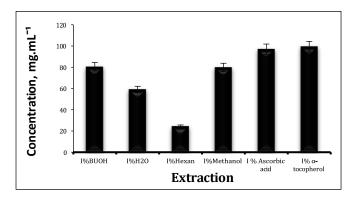
Oxidative stress assessment

Protein carbonyl (PC) levels in serum and liver homogenate identified with the Protein Carbonyl Content Assay Kit (Sigma-Aldrich, USA) were used. Protein concentration of serum and liver homogenate was determined using a Bicinchoninic acid assay kit (Sigma-Aldrich, USA according to the manufacturer's instructions, using BSA as the standard. And the GSH content in the serum and liver homogenate identified by Glutathione Assay Kit (Cayman Chemical Item, USA) was used to measure the total glutathione level in serum and liver extracts ⁹.

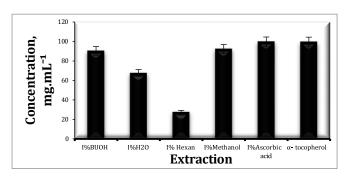
Statistical analysis

The data were analyzed using SPSS software. Mean \pm standard deviation (SD) was found from triplicate reading. *In vitro* antioxidant assays, oneway ANOVA test followed by Tukey's test (P <0.05) were used to analyze the differences in antioxidant assays and the differences among IC₅₀ of various fractions and the IC₅₀ value. *In vivo*, biochemical data was analyzed by one-way ANOVA and the group's means \pm SD. This was performed to compare the differences between the groups. A probability of (P < 0.05) was considered as significant.

3. Results


Revealed the analysis of the phytochemical activity of *G. siniacus* crude which is a qualitative analysis of the presence of many chemical constituents of the extracts, such as alkaloids, flavonoids, terpenes, glycosides, tannins, saponins and phenols, the chemical constituents of the plant it contains support therapeutic medicine. The chemical constituents were screened and their results are summarized as the presence or absence of the chemical, showing that the butanol and aqueous methanol extracts were rich in tannins, terpenoids, flavonoids, saponins, anthraquinones, alkaloids and glycosides²⁰. While the water extract contained tannins, glycosides, terpenoids and anthraquinones and the hexane extract contained none of the chemicals. The determination of the total flavonoid content in the polar extract was higher than that of non-polar Where, the results the extract. demonstrated that *G. sinaicus* is rich in flavonoids; the highest value was in the aqueous methanol extracts $290.5 \pm 7.740 \text{ mg.g}^{-1}$ of Quercetin. Which differs significantly from other extracts (P<0.05).

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907


1.46) mg.g⁻¹ Gallic acid. Which differs significantly from other extracts (P<0.05).

Free radical scavenging capacity by the DPPH assay increased with increasing free radical inhibition percentage, and the antioxidant activity of the four G. sinaicus fractions was expressed in terms of (I%). The results of the two standard compounds (ascorbic acid and α -tocopherol) were compared with the antioxidant activity values. The data show that the highest percentage of DPPH inhibition occurred in the butanol extracts, followed by the methanol- aqueous extract, then the water extract and the hexane extract. The methanolic extract showed very good anti-radical activity compared to the ascorbic acid and α tocopherol standards at the same concentration (Fig. 1) in the ABTS assay. Our data show that the highest ABTS+ scavenger activity was found in the butanol extract at 1 mg.ml⁻¹, then in the aqueous methanol, water and hexane extracts, respectively, compared to inhibition of ascorbic acid and α -tocopherol positive controls (Fig. 2).

Regarding the chelating effect of metals on ferrous ions. The chelating impacts of the four fractions of *G. sinaicus* were expressed in terms of the I% (Fig. 3). The results of the ascorbic acid and EDTA standards were obtained and compared with the values of plant extracts.

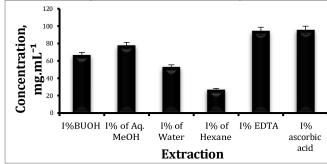
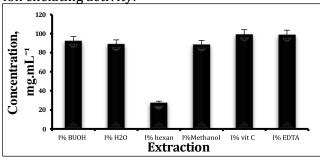

Figure 1. Antioxidant activity of the extract fractions of *G. sainicus* and positive controls (ascorbic acid and α -tocopherol) on DPPH• assay. Data are presented as the mean \pm SD of triplicate samples (n=3)

Figure 2. Antioxidant activity of the extract fractions of *G. sainicus* and positive controls (ascorbic acid and α -tocopherol) on ABTS+ assay. Data are presented as the mean \pm SD of triplicate samples (n=3)

Aqueous methanol was the highest ferrous ion chelating activity of the G. sinaicus extract fractions. The percentage of inhibition of other extracts was as follows: butanol, water and hexane in the same concentration.

In comparison, ascorbic acid and EDTA achieved the percentage chelating effect. The chelating effect obtained for the different fractions of the extract was less than that obtained with the standard antioxidants (EDTA and ascorbic acid).


Figure 3. Metal chelating effect on ferrous ions in the extract fractions of *G. sainicus* and positive controls (ascorbic acid and EDTA). Data are presented as the mean \pm SD of triplicate samples (n=3).

Activity to scavenge hydroxyl radicals also showed that butanol has the highest activity at a concentration of 1 mg.mL⁻¹. Percent inhibition of other extracts was as follows: water, aqueous methanol and hexane extract at the same concentration compared to EDTA and ascorbic acid standards at the same concentration (Fig. 4).

Therefore, the antioxidant activity of *G. sinaicus* extracts plays an important role through their scavenging activity which is a valuable in the treatment of many diseases and free radical scavenging activities were evaluated in comparison

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

to DPPH•, ABTS+, hydroxyl radical, and the ferrous ion chelating activity.

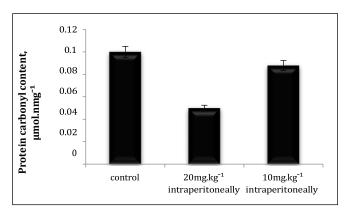


Figure 4. Hydroxyl radical effect of all extracts fractions for *G. Sinaicus* and standards.

Data are presented as the mean \pm SD of triplicate samples (n=3).All extracts showed different radical scavenger activity ranging from 0.005- 0.5mg.ml⁻¹ concentration. However, butanol is considered the best compound for exhibiting the strongest DPPH, ABTS, hydroxyl radical scavenger, and ferrous ion chelate activity compared to other extracts. A toxicological study (acute toxicity assessment) was conducted to evaluate the antioxidant capacity of G. sinaicus. Forty adult female BALB/c albino mice were used. The mice were divided into four groups and the results of this experiment showed no change registered in the control group, where all mice died (200mg.kg-1 intraperitoneal), half of the group (100 mg.kg-1 intraperitoneal) died while the other half survived. Finally, the fourth group (50mg.kg-1intraperitoneal) survives. These results indicate that *G.* sinaicus products can have toxic effects when injected in high concentrations. This experiment was evaluated to demonstrate in vivo antioxidant potential and to determine the median lethal dose (LD₅₀) of butanolic extracts of G. sinaicus. Percent mortality was calculated by counting the deaths of animals in each group to determine the LD₅₀. Symptoms of acute toxicity from *G*. sinaicus in mice were an increase in respiratory rate and heart rate, followed by heart failure and death after half an hour. The LD₅₀ was found 116.64 mg/kg while the LD₁₀₀ was found 194.40 mg.kg⁻¹. LD₅₀ was used as an indicator of acute toxicity. Protein carbonyl levels in the serum and liver homogenate in the butanolic extract of *G. sinaicus* were used to determine PC levels in mice serum PC formation is an important marker of protein oxidation and be mediated by the direct free radical attack on some amino acid side chains of lipid peroxidation products that react with proteins 7. In addition, the data show that the Protein carbonyl content decrease significantly in the group (20mg.kg⁻¹ - intraperitoneally) and group (10mg.kg⁻¹ - intraperitoneal) compared to control. In addition, the

Protein carbonyl content in the liver tissue was also determined, and our data showed that the Protein carbonyl content in the (20 mg.kg-1 - intraperitoneal) group and the (10 mg.kg-1 - intraperitoneal) group was compared decreased significantly (Fig. 5). The results obtained from this study showed that administration of G. sinaicus extracts showed a significant decrease in protein carbonyl content of liver homogenate and serum of BALB/c mice. According to 1,9, the production of protein carbonyl at high levels indicates that oxidation significantly damages amino acid residues in proteins in human tissues and body fluids and this is due to increased free radicals. Therefore, measured an increase in protein carbonyls leads to a decrease in protein thiol groups, which is indicated by significant oxidative modification of proteins, suggesting that protein carbonyl groups are considered a biomarker of oxidative stress. Total glutathione (GSH) content in the serum, the highest total GSH concentration value was the increase significant in the group (20 mg.kg-1 - intraperitoneal) followed by the group (10 mg.kg-1 - intraperitoneal) compared to the control group (Fig. 6). In the liver, the total GSH concentration was highest in the 20 mg.kg-1 - intraperitoneal group and then in the 10 mg.kg-1 - intraperitoneal group compared to the control. In addition, the results of the present study showed that the content of the GSH in the liver and serum increased significantly with increasing concentration of the extracts compared to the control. 14, 22 found that the total concentration of glutathione, a low molecular weight tripeptide thiol, is considered an important antioxidant popular for its ability to minimize the effects of oxidative stress. Glutathione is widely known to minimize the lipid peroxidation of cell membranes and other similar targets known to occur during oxidative stress 11, 24. Finally, evaluating the toxicity profile of each compound is important in drug discovery. In the present study, the acute intraperitoneal toxicity of butanol extraction from *G.* sinaicus showed that the LD50 value when administered intraperitoneally in mice was 116.64 mg.kg-1 body weight.

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

Figure 5. Protein carbonyl content in the serum of mice treated with butanol extracts of *G. sinaicus*. Values are means \pm SD of 7 animals in each group. *p < 0.05 compared to the control.

Figure 6. Total GSH in serum of mice treated with butanol extracts of *G. sinaicus*, Values are means \pm SD of 7 animals in each group. * p < 0.05 compared to the control.

4. Discussion

G. siniacus offers superior analysis results as compared to many other plants in other studies such as Capparis spinosa L., Capparis decidua (Forssk.) Edgew ²,³,²⁵FCalotropis procera (Ait.) Ait.fil, Peruglaria tomentosa L. and Pentatropis spiralis (Forssk.) Decne. 2,3,25 (Asclepiadaceae) ²,³,²⁵.According to determination of the total flavonoid content in the polar extract was higher than those of the non- polar extract showed that the flavonoids of Calotropis procera (Ait.) Ait. fil, in the aqueous methanol extract was 339.0 ± 1.1 mg.g⁻¹, in the total flavonoids of butanol extract were found $1684.5 \pm 0.9 \text{ mg.g}^{-1}$ in the Pentatropis spiralis. While total flavonoid contents of butanol extract of the Capparis spinosa L., Capparis decidua (Forssk) Edgew was (306.93 ± 17.64 and $325.82 \pm 8.39 \text{ mg.g}^{-1}$ of Quercetin) respectively.

The total phenolic content of all extracts was determined using the Folin-Ciocalteu method, and the results were expressed as milligrams of Gallic acid equivalent (mg GAE per mL of extract). In a previous study, the aqueous methanol extract of

Calotropis procera (Ait.) Ait. fil exhibited a higher total phenolic content of 377.2 ± 2.6 mg of gallic acid per gram of dry weight. Additionally, the butanol extract of *Pentatropis spiralis* (Forssk) Decne. (*Asclepiadaceae*) showed a total phenolic content of

113.2 \pm 2.3 mg of gallic acid per gram of dry weight. In comparison, the butanol extracts *of Capparis spinosa* L. and *Capparis decidua* (Forssk) Edgew had total phenolic contents of 227.17 \pm 7.29 mg and 311.50 \pm 3.04 mg of Gallic acid per gram of dry weight, respectively.

All extracts demonstrated varying levels of radical scavenging activity. However, butanol is considered the best compound for exhibiting the strongest DPPH, ABTS, hydroxyl radical scavenger, and ferrous ion chelate activity compared to other extracts. These results correspond to 2,3,25 except for Calotropis procera (Ait) Ait. fil plant. According to 14,22 found that the total concentration of glutathione, a low molecular weight tripeptide thiol, is an important antioxidant recognized for its ability to reduce the effects of oxidative stress. Glutathione is well-known for its role in minimizing lipid peroxidation in cell membranes and other similar targets that are affected during oxidative stress. Additionally, assessing the toxicity. profile of each compound is crucial in the drug discovery process. According to 6,12 estimated that the intraperitoneal median lethal dose (LD50) of G. sinaicus extract grown in Egypt was 49.82 mg per100g-1 body weight for intraperitoneal administration in mice. Where the mean lethal dose of butanol extraction of G. sinaicus was determined according classification of LD₅₀ values ¹⁵.

5. Conclusions

The highest levels of total phenols and flavonoids content and antioxidant activity of G. sinaicus indicate the potential of using G. sinaicus in the pharmaceutical industry. In addition to the therapeutic effect of the active compound present in G. sinaicus increases the total GSH levels and decreases the PC levels. However, the toxicity and LD_{50} of G. sinaicus the butanolic extract were moderately toxic when tested in mice.

Abbreviations: ABTS – 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid); BSA - bovine serum albumin; DPPH – 2,2-diphenyil-1picrylhydrazyl; FeCl $_3$ - ferric chloride; Ferrozine - 3-(2-pyridyl)-5, 6-diphenyl-1, 2, 4-tri-azine-4', 4"-disulfonicacid sodium salt); GAE –Gallic acid equivalent; GSH - total glutathione; I % - percentage inhibition; PC - protein carbonyl; SD - standard deviation; TFC - total flavonoid content.

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

the Ethical Approval

Mahmoud A. Al-Qudah conceived the study, jameel Allaham developed the theoretical framework, and Salam Husam Sabri performed experiments, collected and analyzed data, interpreted the results, and drafted and all researchers revised the manuscript.

6. References

- [1] Agour A, El Abdali Y, Lyoussi B, Derwich E. Phytochemical characterization, acute toxicity, and hemolytic activity of *Cotula cinerea* (Del.) aqueous and ethanolic extracts. Journal of Biology and Biomedical Research (ISSN: 3009-5522). 2024 Sep 29;1(1):70-8. https://doi.org/10.69998/j2br5.
- [2] Al-Dalahmeh Y, Al-Bataineh N, Al-Balawi SS, Lahham JN, Al-Momani IF, Al-Sheraideh MS, Mayyas AS, Abu Orabi ST, Al-Qudah MA. LC-MS/MS screening, total phenolic, flavonoid and antioxidant contents of crude extracts from three Asclepiadaceae species growing in Jordan. Molecules. 2022 Jan 27;27(3):859. https://doi.org/10.3390/molecules27030859.
- [3] Allahham FE. Total Phenolic Content and Antioxidant Activity of Capparis Spinosa and Capparis Decidua (Doctoral dissertation, Yarmouk University).
- [4] Al-Qudah MA, Al-Ghoul AM, Trawenh IN, Al- Jaber HI, Al Shboul TM, Abu Zarga MH, Abu orabi ST. Antioxidant activity and chemical composition of essential oils from jordanian *Ononis natrix* L. and *Ononis sicula* Guss. Journal of Biologically Active Products from Nature. 2014 Jan 2;4(1):52-61. https://doi.org/10.1080/22311866.2014.890069
- [5] Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH. Natural plant chemicals: sources of industrial and medicinal materials. Science. 1985 Jun 7;228(4704):1154-60. https://doi.org/10.1126/science.3890182.
- [6] Batran SA, Abdel-Azim NS, Abdel-Shafeek KA, Shahat AE, El-Missiry MM. Flavonoids of Gomphocarpus sinaicus and evaluation of some pharmacological activities. Natural Product Sciences. 2005;11(4):233-9. https://doi.org/G704-001403.2005.11.4.004.
- [7] Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM. Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proceedings of the National Academy of Sciences. 1997 Jan 21;94(2):674-8.https://doi.org/10.1073/pnas.94.2.674.

- [8] Cook NC, Samman S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of nutritional biochemistry. 1996 Feb 1;7(2):66-76.https://doi.org/10.1016/S0955-2863(95)00168-9
- [9] Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clinica chimica acta. 2003 Mar 1;329(1-2):23-38. https://doi.org/10.1016/S0009-8981(03)00003-2
- [10]Davis CC, Choisy P. Medicinal plants meet modern biodiversity science. Current Biology. 2024 Feb 26;34(4):R158-
 - 73. https://doi.org/10.1016/j.cub.2023.12.038.
- [11] El Kamari F, El Omari H, El-Mouhdi K, Chlouchi A, Harmouzi A, Lhilali I, El Amrani J, Zahouani C, Hajji Z, Ousaaid D. Effects of Different Solvents on the Total Phenol Content, Total Flavonoid Content, Antioxidant, and Antifungal Activities of *Micromeria graeca* L. from Middle Atlas of Morocco. Biochemistry Research International. 2024;2024(1):9027997.

https://doi.org/10.1155/2024/9027997.

- [12] Goyal S, Kaur TJ. Antioxidant and Oxidative Stress in Sports Personnel. In International Conference of the Indian Society of Ergonomics 2025 (pp. 103-121). Springer, Singapore.

). https://doi.org/10.1007/978-981-97-7804-1-12.
- [13]Ivanova S, Sukhikh S, Popov A, Shishko O, Nikonov I, Kapitonova E, Krol O, Larina V, Noskova S, Babich O. Medicinal plants: a source of phytobiotics for the feed additives. Journal of Agriculture and Food Research. 2024 Apr 19:101172.

https://doi.org/10.1016/j.jafr.2024.101172.

- [14]Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. Journal of the international society of sports nutrition. 2005
 - the international society of sports nutrition. 2005 Dec 1;2(2):38. https://doi.org/10.1186/1550-2783-2-2-38.
- [15] Lu F.C., Kacew S.. Conventional toxicity studies. In: Lu's Basic Toxicology: Fundamentals, Target Organs and Risk (Fourth Edition). CRC Press, London, New York, 2002, pp. 73-88, Print ISBN-10: 0415248566, Print ISBN-13: 978-0415248563.
- [16] Makkar HP, Norvsambuu T, Lkhagvatseren S, Becker K. Plant secondary metabolites in some medicinal plants of Mongolia used for enhancing animal health and production. *Tropicultura*. 2009;27(3):159-67.

https://doi.org/10.4236/ajac.2021.1212032.

2025, VOL. 6, NO. 2, 100-108, e-ISSN: 2706-9915, p-ISSN: 2706-9907

- [17] Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, Leitão SG. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy research. 2001 Mar;15(2):127-30. https://doi.org/10.1002/ptr.687
- [18] Miliauskas G, Venskutonis PR, Van Beek TA. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry. 2004 Apr 1;85(2):231-7. https://doi.org/10.1016/j.foodchem.2003.05.007
- [19] Moneme EC, Onochie AU, Onuegbu ME, Anyanwu RO, Ajakpofo FO, Oladejo AA. In vitro Antioxidant Activity and Free Radical Scavenging Abilities of Ocimum gratissimum Leaf Extract. Journal of Advances in Medical and Pharmaceutical Sciences. 2025 Feb 19;27:54-63. https://doi.org/10.9734/jamps/2025/v27i3758.
- [20] Ndung'u AI, Keriko JM, Kareru PG, Wanakai SI, Kisoi GK, Keddy GG. Phytochemical and GC-MS analysis of Thevetia peruviana fruit methanol extract as an anti-rodenticide potential against balb C rats. Heliyon. 2024 Apr 15;10(7). https://doi.org/10.1016/j.heliyon.2024.e29012.
- [21] Olajire AA, Azeez L. Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. African Journal of Food Science and Technology. 2011 Feb;2(2):22-9.
- [22] Özoğlu Ö, Demir S, Çekirdek ŞK, Korukluoğlu M. Antimicrobial Activity of Some Medicinal Plants from the Apiaceae Family. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi. 2024;38(2):437-47. https://doi.org/10.20479/bursauludagziraat.1531

<u>490</u>.

- [23] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 1999 May 1;26(9-10):1231-7.https://doi.org/10.1016/S0891-5849(98)00315-3
- [24] Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complementary and alternative medicine. 2012 Dec;12:1-2. https://doi.org/10.1186/1472-6882-12-221
- [25] Safarzaei A. Evaluation of the Antioxidant Activity of Aqueous and Alcoholic Extracts of

- Caper (*Capparis spinosa* L.) Leaf from Hirmand City. Iranian Journal of Medicinal and Aromatic Plants Research. 2025 Mar 21;41(1):112-29. https://doi.org/10.22092/ijmapr.2025.364949 .3423.
- [26] Siddiqui A. A., Ali M. In: Practical Pharmaceutical Chemistry. First Edition. (A.H. Beckett, J.B. Stenlake Eds.). CBS Publishers and Distributors Pvt. Ltd, New Delhi, 1997, pp. 126-131, Print ISBN: 9788123905709
- [27] Stankovic MS. Total phenolic content, flavonoid concentration and antioxidant activity of *Marrubium peregrinum* L. extracts. Kragujevac J Sci. 2011 Jan 1;33(2011):63-72. https://www.10.5504/BBEO.2011.0020.
- [28] Teismann P, Ferger B. The salicylate hydroxylation assay to measure hydroxyl free radicals induced by local application of glutamate *in vivo* or induced by the Fenton reaction *in vitro*. Brain Research Protocols. 2000 Apr 1;5(2):204-10. https://doi.org/10.1016/S1385-299X(00)00014-
 - 10. https://doi.org/10.1016/\$1385- 299X[00]00014-3.