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ABSTRACT

Breast cancer remains one of the leading causes of mortality worldwide, emphasizing the critical need for accurate and
efficient diagnostic tools. This study investigates the effectiveness of combining linear and non-linear feature selection
methods—Principal Component Analysis (PCA), Pearson Correlation Coefficient (PCC), and Backpropagation Neural
Networks (BNN) to improve breast cancer classification using machine learning models. We utilized the Wisconsin Breast
Cancer Dataset to evaluate the performance of five classifiers—Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Logistic Regression (LR), Decision Tree (DT), Naive Bayes (NB) and Artificial Neural Network (ANN). The
results demonstrated that BNN-selected features consistently outperformed PCA and PCC across all classifiers, with SVM
achieving the highest classification accuracy. The results showed that BNN-selected features consistently outperformed
PCA and PCC, with SVM achieving up to 97.3% accuracy and 98.1% precision, and KNN reaching 97.1% accuracy and
96.9% precision. Stacking ensemble models further improved performance: the non-linear SVM-KNN-ANN ensemble
attained perfect classification metrics of 100% accuracy, precision, recall, specificity, and F1-score demonstrating the
superior synergy between BNN and ensemble learning. These findings highlight the diagnostic advantage of combining
non-linear feature selection with meta-learning approaches and support the development of robust, high-accuracy breast

cancer detection systems.
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1. Introduction

Breast cancer remains one of the most diagnosed
illnesses among women globally and a leading cause
of mortality [1]. The disease disproportionately af-
fects women in Eastern Europe and Africa, with over
2.3 million diagnoses and 685,000 deaths globally in
2020 alone, according to the World Health Organiza-
tion (WHO). Despite advances in early detection and
treatment options, survival rates vary significantly
depending on the stage at diagnosis. While early-
stage breast cancer has a five-year survival rate of
81%, this figure drops to 35% for late-stage diag-
noses [2]. Early and accurate detection is critical to
reducing the mortality rate associated with breast

cancer [3]. However, current diagnostic methods
such as mammography, magnetic resonance imag-
ing (MRI), and ultrasound have limitations, including
high costs, human error, and reduced accuracy in
certain populations [4].

The increasing availability of large medical datasets
and advancements in computational technologies
have paved the way for integrating machine learning
(ML) techniques into breast cancer diagnosis. ML has
demonstrated potential in improving the accuracy of
diagnosis by analyzing complex datasets and uncov-
ering hidden patterns that are often missed by con-
ventional methods [5]. The use of feature selection
(FS) in ML is instrumental in improving diagnostic
models. FS reduces the dimensionality of datasets
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by selecting only the most relevant features, which
enhances model accuracy and reduces computational
costs. This study explores the role of FS methods—
both linear and non-linear—in optimizing breast can-
cer classification using ensemble ML classifiers [6].

Previous research has examined various FS meth-
ods, including Principal Component Analysis (PCA)
and Pearson Correlation Coefficient (PCC), as well
as non-linear techniques such as Back Propagation
Neural Network (BNN). These approaches have been
applied successfully in medical diagnosis, showing
promise in improving the accuracy of breast cancer
detection [7]. Ensemble classifiers, which combine
multiple classification methods, have emerged as ro-
bust tools for enhancing accuracy and reducing noise.
However, there is limited research comparing the
effectiveness of linear and non-linear FS methods in
breast cancer diagnosis, particularly in combination
with ensemble classifiers.

This study aims to compare linear (e.g., PCA and
PCC) and non-linear (e.g., BNN) FS methods in breast
cancer detection using and ensemble ML classifiers.
The primary objective is to evaluate which combina-
tion of FS methods and classifiers achieves the highest
accuracy and reduces false positives. This research
will employ the Wisconsin Breast Cancer Diagnostic
Dataset (WBCD) and evaluate the results using es-
tablished performance metrics, including accuracy,
precision, recall, and specificity. By addressing the
challenges in current diagnostic techniques and lever-
aging the power of FS and ML, this study seeks to
contribute to the early and accurate detection of
breast cancer, ultimately reducing mortality rates and
improving patient outcomes.

2. Materials and methods

2.1. Dataset and feature selection

This study employed the WBCD, which was ob-
tained from the UCI Machine Learning Repository.
Originally compiled by Dr. William H. Wolberg at the
University of Wisconsin Hospital in Madison between
1989 and 1991, the dataset contains clinical records
derived from fine needle aspirates (FNA) of breast
masses. It comprises 699 instances in total, of which
683 are complete and 16 contain missing values in the
Bare Nuclei attribute. Each record is labeled as either
benign (coded as 2) or malignant (coded as 4), with
458 benign cases (65.5%) and 241 malignant cases
(34.5%). The dataset includes ten numerical features
representing cytological characteristics of the breast
cell nuclei. These features which are Clump Thickness
(CT), Uniformity of Cell Size (UCSZ), Uniformity of
Cell Shape (UCSH), Marginal Adhesion (MA), Single
Epithelial Cell Size (SECS), Bare Nuclei (BN), Bland

Chromatin (BC), Normal Nucleoli (NN), and Mitoses
(M) are each scored on a scale from 1 to 10, with
higher values indicating greater abnormality. The
Sample ID column, which has no predictive value,
was excluded from the analysis. These attributes
capture critical biological variations; for example,
cancerous cells tend to vary in size and shape, ex-
hibit increased mitosis, and display more prominent
nucleoli and coarser chromatin [8]. The preprocess-
ing steps involved identifying and handling missing
values—specifically, imputing 16 missing entries in
the Bare Nuclei attribute using the mean—followed
by normalizing all features to a [0,1] scale to ensure
uniformity across input values. Finally, the cleaned
and normalized dataset was split into training (80%)
and testing (20%) subsets for model evaluation. Fea-
ture selection is a crucial step to identify the most
relevant attributes for the classification task [9]. In
this study, two main techniques were employed for
feature selection: PCA and PCC for linear feature se-
lection, and BNN for non-linear feature selection.

3. Methods and methodology

This study employed a comprehensive methodol-
ogy (Fig. 1) to compare linear and non-linear feature
selection techniques for breast cancer classification
using machine learning models. The WBCD, consist-
ing of 669 instances with 10 numerical features, was
preprocessed through normalization and an 80:20
train-test split. Three FS methods were used: PCA and
PCC as linear techniques, and BNN as a non-linear
method. PCA reduced dimensionality by identify-
ing principal components with the highest variance,
while PCC eliminated highly correlated features to
reduce redundancy. BNN identified key non-linear
relationships between features based on network
weights. Six classifiers—Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Logistic Regres-
sion (LR), Decision Tree (DT), Naive Bayes (NB) and
Artificial Neural Network (ANN) —were trained sep-
arately on features selected by each technique. Model
performance was evaluated using accuracy, preci-
sion, recall, specificity, and F1-score, with confusion
matrices providing detailed insights into prediction
accuracy. All analyses were conducted in MATLAB,
while Excel was used to validate PCA and PCC com-
putations. This integrated approach enabled a robust
comparison of feature selection strategies in enhanc-
ing diagnostic accuracy for breast cancer detection.

To address the risk of overfitting, particularly in
high-performing ensemble models, we employed a
10-fold cross-validation strategy across all machine
learning classifiers. This technique involves partition-
ing the dataset into 10 equal subsets, training the
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Fig. 1. Methodology framework.

model on 9 subsets, and validating it on the remaining
one, iteratively. Performance metrics, including ac-
curacy, precision, recall, and RMSE, were computed
as mean =+ standard deviation over all folds. This ap-
proach enhances the reliability of the reported results
and mitigates overfitting by ensuring that model per-
formance is not dependent on a single train-test split.

3.1. Support vector machine

SVM is a supervised learning algorithm that op-
erates based on the principle of finding the optimal
hyperplane that separates two classes in a high-
dimensional space [10]. SVM was applied using both

linear and non-linear kernels. The choice of kernel
function, along with other parameters such as cost
and slack variables, was carefully tuned to maximize
classification accuracy. The robustness of SVM makes
it suitable for large datasets, and it has shown impres-
sive results in breast cancer diagnosis [11].

3.2. Artificial neural network

ANN were employed for modeling the complex
relationships between input features. The network
consists of an input layer, one or more hidden layers,
and an output layer [12]. The ANN was trained using
the backpropagation algorithm to minimize the error
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Table 1. Descriptive statistical analysis of the parameters.

Parameter Mean SD SV Kurtosis Skewness Min Max

Clump Thickness (CT) 4.42 2.82 7.93 -0.62 0.59 1.00 10.00
Uniformity of Cell Size (UCSZ) 3.13 3.05 9.31 0.10 1.23 1.00 10.00
Uniformity of Cell Shape (UCSH) 3.21 2.97 8.83 0.01 1.16 1.00 10.00
Marginal Adhesion (MA) 2.81 2.86 8.15 0.99 1.52 1.00 10.00
Single Epithelial Cell Size (SECS) 3.22 2.21 4.90 2.17 1.71 1.00 10.00
Bare Nuclei (BN) 3.56 3.62 13.13 -0.79 0.98 1.00 10.00
Bland Chromatin (BC) 3.44 2.44 5.95 0.18 1.10 1.00 10.00
Normal Nucleoli (NN) 2.87 3.05 9.32 0.47 1.42 1.00 10.00
Mitoses (M) 1.59 1.72 2.94 12.66 3.56 1.00 10.00
Class Label (C) 2.69 0.95 0.90 -1.58 0.65 2.00 4.00

between the predicted and actual outputs. This model
is particularly beneficial in handling noisy data and
can adapt to both linear and non-linear relationships
in the dataset [13].

3.3. K-nearest neighbor

The KNN algorithm is a non-parametric, memory-
based model [14]. KNN assigns a test sample to the
class of most of its k-nearest neighbors in the feature
space. The Euclidean distance metric was used to
calculate the distance between samples. The optimal
number of neighbors (k) was selected through
cross-validation to achieve the best classification
performance [15].

3.4. Naive bayes

NB is a probabilistic classifier based on Bayes’ the-
orem [16]. It assumes that the input features are
conditionally independent given the class label. De-
spite its simplicity, NB is effective in breast cancer
prediction tasks and was applied to estimate the pos-
terior probabilities of the target classes. The model
was evaluated using the maximum likelihood estima-
tion of the parameters [15].

3.5. Logistic regression

LR is a widely used method for binary classification
problems. The logistic model maps the input features
to the probability of belonging to one of the two
classes, using a logistic function [15]. The model was
trained to find the best-fit parameters using gradient
descent, and it was applied to predict the likelihood
of cancer being malignant or benign [17].

3.6. Decision tree

The Decision Tree DT algorithm splits the data into
subsets based on feature attributes, using a tree-like
structure [18]. Each internal node of the tree repre-
sents a decision based on an attribute, and the leaf

nodes represent class labels. The tree was constructed
using the Gini index for splitting, and it was pruned
to prevent overfitting [19].

3.7 Hyperparameter settings

In this study, all classifiers were implemented us-
ing their default hyperparameter settings as provided
by the MATLAB Classification Learner Toolbox. This
approach was adopted to ensure consistency across
models and to reflect a baseline performance that can
be reasonably expected without extensive tuning. The
default configurations have been widely validated in
previous literature and offer a practical benchmark
for evaluating the impact of different feature selection
methods on model performance.

4. Results and discussion

The descriptive statistics can be shown in Table 1.
The descriptive statistical analysis in Table 1 pro-
vides a comprehensive overview of the distributional
properties of ten diagnostic features used in breast
cancer assessment. Among all variables, Clump Thick-
ness (CT) has the highest mean (4.42), indicating its
prominence in the dataset, while Mitoses (M) has the
lowest mean (1.59), consistent with its typically low
frequency in benign cases. The highest variability is
observed in Bare Nuclei (BN), with a standard devia-
tion of 3.62 and variance of 13.13, suggesting it may
be a critical discriminative feature. Kurtosis values
reveal that M exhibits a sharply peaked distribution
with significant outliers (12.66) and the rest of the
features generally display near-normal characteris-
tics. Skewness analysis shows strong right skew in
M (8.56), and moderate skew in features like Single
Epithelial Cell (SECS) (1.71) and Marginal Adhesion
(MA) (1.52), suggesting the presence of higher value
outliers. Most features span a range from 1 to 10,
indicative of a normalized or scaled input, while the
class label ranges from 2 to 4, likely representing be-
nign and malignant categories. These findings suggest
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Table 2. Eigenvalue and percentage of data explained by
each factor.

Number Value Difference Proportion CV CP

1 6.70864 5.91513 0.6709 6.70864 0.6709
2 0.79352 0.24635 0.0794 7.50216 0.7502
3 0.54716 0.07938  0.0547 8.04933 0.8049
4 0.46778 0.08777  0.0468 8.51711 0.8517
5 0.38001 0.06038  0.038 8.89711 0.8897
6 0.31963 0.02199  0.032 9.21675 0.9217
7 0.29764 0.03498  0.0298 9.51439 0.9514
8 0.26266 0.128 0.0263 9.77705 0.9777
9 0.13466 0.04636  0.0135 9.91171 0.9912
10 0.0883 - 0.0088 10 1

Table 3. Principal component analysis feature subsets.

SUBSETS (M) ATTRIBUTES

M1 UCSH, UCSZ, BN

M2 UCSH, UCSZ, BN, BC, CT, NN

M3 UCSH, UCSZ, BN, BC, CT, NN, MA, SECS, M

that while several features carry strong discrimina-
tory power, transformations or normalization may
be necessary to manage skewness and kurtosis, espe-
cially for algorithms sensitive to feature distributions.
This analysis highlights the importance of proper pre-
processing and informed feature selection to enhance
classification model performance.

4.1. Feature selection analysis

The feature selection process was performed using
three distinct methods: PCA, PCC, and BNN. Each
method aimed to reduce the dimensionality of the
WBCD while retaining the most informative features
for classification. This method transformed the origi-
nal set of features into a new set of orthogonal compo-
nents, capturing the maximum variance in the data.

PCA significantly reduced the number of features
while preserving 95% of the variance (Table 2).
The first few principal components captured
the majority of the variance, indicating that the
dataset’s key features were effectively preserved
in a lower-dimensional space. PCA provided a
reduction in features while preserving the variance
of the data, making it particularly suitable for
linear models (Table 3). Based on the cumulative
explained variance, the first 7 principal components
were retained, capturing approximately 95.14%
of the total variance in the dataset. This selection
ensured an optimal balance between dimensionality
reduction and information retention. Table 3 presents
the subsets generated using PCA.

The PCC correlation matrix in Table 4 reveals key
linear relationships among the diagnostic parame-
ters and their associations with the class label (C),
representing the tumor classification. The highest cor-

relations with C are observed for UCSH (0.819), UCSZ
(0.818), and BN (0.813), indicating that these fea-
tures are highly predictive of tumor type and should
be prioritized in FS. CT (0.717), BC (0.757), and
NN (0.7121) also exhibit strong correlations with C,
reinforcing their diagnostic relevance. In contrast, M
(0.423) has the lowest correlation with C, suggesting
limited predictive contribution on its own. Strong
inter-feature correlations are also noted, particularly
between UCSZ and UCSH (0.907), and between UCSZ
and SECS (0.753), indicating potential multicollinear-
ity. High redundancy is also seen among SECS, BC,
BN, and NN, as they are all moderately to strongly
correlated with each other and with C. This suggests
that while these features are valuable, care must be
taken to avoid overfitting due to correlated inputs
(Table 4). In summary, UCSH, UCSZ, and BN emerge
as the most influential features for breast cancer clas-
sification. However, the presence of multicollinearity
among several features highlights the importance
of dimensionality reduction or regularization tech-
niques, such as PCA or Lasso regression, to enhance
model performance and interpretability (Fig. 2). Ta-
ble 5 presents the subsets generated using PCC.

The BNN used for feature selection was imple-
mented using a fully connected feedforward archi-
tecture. The network consists of an input layer, two
hidden layers, and an output layer. The first hidden
layer contains 32 neurons, and the second hidden
layer has 16 neurons. Both hidden layers use the ReLU
(Rectified Linear Unit) activation function, while the
output layer uses a sigmoid activation function for
binary classification. The network was trained using
the binary cross-entropy loss function and optimized
with the Adam optimizer. The learning rate was set
to 0.001, and training was performed for 100 epochs
with a batch size of 32. Early stopping was applied
based on validation loss to prevent overfitting. This
configuration was selected based on preliminary ex-
perimentation and tuning to balance training stability
and model performance.

The results as presented in the Table 6, rank
attributes based on their predictive contribution mea-
sured through Root Mean Square Error (RMSE). UCSZ
achieved the lowest RMSE (0.2276), indicating it has
the strongest influence on model accuracy, followed
closely by UCSH (0.238) and BC (0.279), which are
also top contributors. These attributes likely cap-
ture essential morphological characteristics relevant
to breast cancer detection and are highly aligned
with the correlation findings. On the other hand, fea-
tures like M (0.404), BN (0.336), and CT (0.3231)
have higher RMSE values, suggesting they contribute
less effectively to the BNN model’s predictive power.
The relatively poor ranking of M reinforces earlier
observations from both descriptive and correlation
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Table 4. Correlation analysis between the input and output variables.

Parameters CT UCSZ UCSH MA SECS BN BC NN M C
CT 1

UCSZ 0.645 1

UCSH 0.655 0.907 1

MA 0.487 0.705 0.683 1

SECS 0.523 0.753 0.720 0.599 1

BN 0.583 0.685 0.708 0.662 0.579 1

BC 0.559 0.756 0.736 0.667 0.618 0.674 1

NN 0.536 0.723 0.719 0.604 0.631 0.580 0.666 1

M 0.350 0.459 0.439 0.418 0.481 0.337 0.344 0.4281 1

C 0.717 0.818 0.819 0.698 0.686 0.813 0.757 0.7121 0.423 1

A

CT NAN(IND)
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UC SHAPE -NAN(IND) - 04
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Fig. 2. Pearson correlation coefficient analysis between the input and output variables.

analyses that it is less informative for classification
(Table 6). The BNN effectively identified the most
relevant non-linear patterns in the dataset, prioritiz-

. . Table 6. Back propagation neural network feature subsets.
ing UCSZ, UCSH, and BC as the most critical features

for accurate breast cancer classification. These find- Attributes RMSE Ranking
ings as grouped in sets (Table 7) further validate the Ucsz 0.2276 1
UCSH 0.238 2
BC 0.279 3
) - SECS 0.2891 4
Table 5. Pearson correlation coefficient feature subsets. NN 0.3053 5
SUBSETS (M) ATTRIBUTES MA 0.3216 6
CT 0.3231 7
M1 UCSH, UCSZ, BN BN 0.336 3
M2 UCSH, UCSZ, BN, BC, CT, NN M 0.404 9

M3 UCSH, UCSZ, BN, BC, CT, NN, MA, SECS, M
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Table 7. Back propagation neural network feature subsets.

SUBSETS (M) ATTRIBUTES

M1 UCSZ, UCSH, BC

M2 UCSZ, UCSH, BC, SECS, NN, MA

M3 UCSZ, UCSH, BC, SECS, NN, MA, CT, BN, M

strength of BNN-based feature selection in capturing
complex feature interdependencies and optimizing
model performance.

To ensure the reliability and statistical significance
of the RMSE values obtained using the BNN, we
applied 10-fold cross-validation during model
training and evaluation. The RMSE values reported
in Table 6 now represent the mean + standard
deviation across the validation folds. This approach
accounts for variance due to data splitting and offers
a more robust estimation of model performance. For
example, the lowest RMSE value was observed as
0.238 + 0.021, while the highest was 0.402 + 0.026,
demonstrating that although the numerical range
appears narrow, the results are consistently replicated
across different subsets of the dataset. These findings
confirm that the BNN model, when combined with
effective feature selection, exhibits stable and reliable
performance, and that the observed differences,
although modest, are statistically significant.

4.2. Classifier performance

After applying the three selected feature subsets
(PCA, PCC, and BNN), six classification models (SVM,
KNN, LR, DT, NB, and ANN) were evaluated using
accuracy as the primary metric. The linear subsets
(PCA and PCC) were similar and grouped as one
(M1, M2, M3), while the non-linear BNN-derived
subset was distinct and evaluated separately using
a corresponding set of three subsets (M1, M2, M3).
The analysis, as seen in Tables 8 to 13, revealed that
although no single classifier dominated across all
feature sets, the non-linear BNN feature selection con-
sistently led to improved model performance. SVM
classifiers, in particular, performed exceptionally
with BNN features, achieving up to 97.3% accuracy

Table 8. Accuracy results of SVM classifiers using linear and non-
linear FS.

LINEAR FS (%) NON-LINEAR FS (%)

SVM M1 M2 M3 Ml M2 M3

Linear 94.6 96 95.9 944 956 96.6
Quadratic 95.3 96 96.4 95.6 957 97.3
Cubic 95.7 959 954 953 0957 96.3
Fine Gaussian 94.7 95 94.7 95 95.7 94.1

Medium Gaussian 95.3 959 959 95 95.9 96.7
Coarse Gaussian 94.8 957 959 946 953 96.9

Table 9. Accuracy results of KNN classifiers using linear and non-
linear FS.

LINEAR FS (%) NON-LINEAR FS (%)

KNN M1 M2 M3 M1 M2 M3

FINE 94.4 941 93.4 93 94 95.1
MEDIUM 948 957 957 95 95.3  96.7
COARSE 93.7 94 93.7 946 933 953
COSINE 948 963 963 954 96 97.1
CUBIC 94.7  96.1 95.3 95 95.4  96.7

WEIGHTED 953 959 959 943 96 96.9

Table 10. Accuracy results of LR classifiers using linear and non-
linear FS.

LINEAR FS (%) NON-LINEAR FS (%)
LR Ml M2 M3 Ml M2 M3
LOGISTIC REGRESSION 94.3 95.7 95.6 94.4 95.1 96.4

Table 11. Accuracy results of DT classifiers using linear and non-
linear FS.

LINEAR FS (%) NON-LINEAR FS (%)

DT M1 M2 M3 M1 M2 M3
FINE 94.7 94.1 94.4 94.7 93.8 93.4
MEDIUM 94.7 94.3 94.4 94.8 94 93.6

COARSE 94.6 93.6 93.6 94.3 93.3 93.3

Table 12. Accuracy results of NB classifiers using linear and non-
linear FS.

LINEAR FS (%) NON-LINEAR FS (%)

NB M1 M2 M3 M1 M2 M3
GUASSIAN 946 957 954 948 956 957
KERNEL 924 953 957 943 946 96.6

Table 13. Accuracy results of ANN classifiers using linear and
non-linear FS.

LINEAR FS (%) NON-LINEAR FS (%)

ANN M1 M2 M3 M1 M2 M3
ARTIFICIAL 956 96 96.3 957 953 96.1
NEURAL
NETWORK

with the Quadratic kernel and 96.7% with Medium
Gaussian. KNN classifiers also benefitted notably
from BNN, with Cosine and Weighted variants
reaching 97.1% and 96.9%, respectively, outper-
forming their performance on linear subsets. LR,
though traditionally suited for linear data, showed
improvement with BNN, increasing from 95.7%
(PCC) to 96.4%. DT exhibited stable performance but
showed limited gain from BNN features, potentially
due to model overfitting. NB classifiers improved,
particularly the Kernel variant, which achieved
its highest accuracy of 96.6% with BNN. ANN
maintained balanced and strong results across both
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feature types, peaking at 96.3% on PCC and 96.1% on
BNN. These findings underscore the value of aligning
feature selection methods with classifier type, and
demonstrate the benefit of combining linear and non-
linear approaches to enhance predictive performance.

4.3. Comparative analysis of classification models

The comparison between linear and non-linear clas-
sifiers across different feature selection strategies
revealed clear distinctions in performance. Linear
classifiers like LR showed strong accuracy with
linearly derived features from PCA and PCC (up
to 95.7%) but further improved when applied to
non-linear BNN-selected features, reaching 96.4%.
Similarly, NB classifiers exhibited higher accuracy
with BNN, with the Kernel variant peaking at 96.6%
which is a notable improvement over results from lin-
ear subsets. In contrast, non-linear classifiers such as
SVM and KNN demonstrated substantial performance
gains when trained on BNN features. SVM with the
Quadratic kernel reached 97.3% accuracy, while Co-
sine and Weighted KNN variants achieved 97.1% and
96.9%, respectively—surpassing their performance
on PCA and PCC subsets. Although DT showed mod-
est, stable results, they did not benefit significantly
from BNN, likely due to their susceptibility to over-
fitting. ANN maintained balanced performance across
both feature types, peaking at 96.3% with PCC and
96.1% with BNN. Overall, the results underscore the
importance of aligning classifier architecture with the
nature of feature selection. Non-linear models, in par-
ticular, leveraged the richer, more complex represen-
tations extracted by BNN, illustrating the synergistic
advantage of combining non-linear feature selection
with compatible classification techniques.

4.4. Stacking ensemble performance evaluation

To further compare the predictive strengths of lin-
ear and non-linear feature selection techniques, we
applied a stacking ensemble classification strategy.
This approach combined the outputs of the two best-
performing classifiers (Tables 8 to 13) from each
subset (M1, M2, M3) using an Artificial Neural Net-
work (ANN) as the meta-classifier referred to as
Neuro Ensemble Optimization. The data was split into
70% training and 30% testing, and performance was
measured using standard classification metrics: accu-
racy, precision, recall, specificity, and F1-score. The
results (Figs. 3 and 4) demonstrated that ensemble
models consistently improved classification outcomes
over individual base classifiers. For linear feature
selection, models M2 and M3 achieved notable im-
provements, with accuracies reaching 97.1% for both

KNN-SVM-ANN and SVM-KNN-ANN combinations. In
contrast, non-linear ensemble models, particularly
M3 using SVM-KNN-ANN, achieved perfect classi-
fication performance of 100% across all metrics,
including zero false positives or false negatives. These
results, presented in Tables 14 and 15, validate the
ability of BNN-derived features to capture complex,
non-linear relationships that significantly enhance
ensemble learning outcomes.

4.5. Comparative analysis of linear vs. non-linear
ensembles

The comparative performance between linear (PCA
and PCC) and non-linear (BNN) feature selection
within the ensemble framework further emphasizes
the critical synergy between feature representa-
tion and model architecture. While both strategies
benefited from the stacking ensemble method, the
performance gains were notably higher for non-
linear subsets. For instance, the linear M1 ensemble
(SVM-ANN-ANN) reached 95.9% accuracy, whereas
its non-linear counterpart (ANN-SVM-ANN) achieved
the same accuracy but with a higher recall and speci-
ficity. Similarly, for M2, the linear ensemble peaked
at 97.1%, slightly outperforming its non-linear coun-
terpart at 96.4%. However, the most significant
differentiation occurred with M3, where the non-
linear SVM-KNN-ANN ensemble attained a flawless
100% performance, a level unmatched by any lin-
ear configuration. This suggests that while linear
techniques like PCA and PCC provide a stable and
interpretable foundation, they may not sufficiently
capture deeper, non-linear patterns inherent in com-
plex medical datasets such as WBCD. BNN, through its
dynamic learning capability, identifies intricate rela-
tionships between features that, when combined with
a meta-learning strategy like ANN, yields highly ac-
curate and generalizable models. Moreover, stacking
ensembles incorporating SVM and KNN as base learn-
ers consistently outperformed those using ANN alone,
indicating that the synergy between high-performing
base classifiers and non-linear feature selection yields
optimal results. Thus, this comparative study af-
firms that non-linear feature selection integrated with
stacking ensemble learning delivers superior and
more reliable breast cancer classification outcomes.

4.6. Interpretation

This study comprehensively evaluates the effective-
ness of different feature selection techniques—PCA,
PCC, and BNN—in enhancing breast cancer
classification accuracy using ensemble machine
learning models. The findings reveal that both linear
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(c)
440 3 99. 39
62.9% 0.4% 0.7%
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96.19 98.8Y9 97.0%
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(b)

442 4 99.19
63.2% 0.6% 0.9%
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2.3% 33.9% 6.3%
96.59 98. 39 97.1%
3.5% 1.7% 2.9%
(d)
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18 239 93.09
2.6% 34.2% 7.0%
96.19 99.29 97.1%
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Fig. 3. (a) Linear M1 SVM-ANN-ANN performance metrics (b) Linear M2 KNN-SVM369 ANN performance metrics (c) Linear M2 KNN-ANN-
ANN performance metrics (d) Linear 370 M3 SVM-KNN-ANN performance metrics.

feature selection methods (PCA and PCC) and the
non-linear method (BNN) offer unique strengths,
with PCA and PCC proving particularly effective for
linear classifiers like LR and SVM, due to their ability
to reduce dimensionality while retaining relevant
information and eliminating multicollinearity. In
contrast, BNN effectively captured non-linear
relationships, enabling improved performance in
complex classifiers such as SVM. Notably, combining
linear and non-linear techniques yielded a synergistic
effect, with the hybrid models achieving superior
classification outcomes, as evident from the 100%
accuracy and absence of false positives in the
non-linear M3 ensemble (SVM-KNN-ANN). These
findings demonstrate that model performance can
be significantly enhanced through strategic feature
selection tailored to classifier architecture. The impli-
cations of this study are profound for clinical practice:
using linear methods like PCA for initial feature
reduction followed by BNN for refinement can lead

to faster, more accurate diagnostic tools. This strategy
not only supports flexible deployment across diverse
healthcare settings but also offers the potential to
integrate multi-modal data sources—such as genetic,
imaging, or patient history—using complementary
linear and non-linear approaches. However, the
study is not without limitations. The WBCD dataset,
while widely used, lacks the complexity of real-world
clinical datasets, and the study was limited to three
feature selection techniques. Moreover, BNN’s high
computational cost and the “black box” nature of
non-linear models present challenges for real-time
clinical implementation and interpretability. To
overcome these challenges, future work should focus
on expanding the dataset to include more diverse
and realistic patient data, exploring additional
feature selection methods like RFE and genetic
algorithms, and adopting hybrid modeling strategies
that balance computational efficiency and predictive
power. Furthermore, integrating explainable Al
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441 7 98.4%
63.1% 1.0% 1.6%
17 234 93.2%
2.4% 33.5% 6.8%
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(c)

440 7 98.4%
62.9% 1.0% 1.6%

18 234 92.9%
2.6% 33.5% 7.1%
96.1% 97.1% 96.4%
3.9% 2.9% 3.6%

(b)

95

440 11 97.6%
62.9% 1.6% 2.4%
18 230 92.7%
2.6% 32.9% 7.3%
96.1% 95.4% 95.9%
3.9% 4.6% 4.1%
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Fig. 4. (a) Linear M3 SVM-ANN-ANN performance metrics (b) Non-Linear M1 ANN375 SVM-ANN performance metrics (c) Non-Linear M2
KNN-SVM-ANN performance metrics 376 (d) Non-Linear M3 SVM-KNN-ANN performance metrics.

Table 14. Linear ensemble performance evaluation matrix.

LINEAR

ACCURACY (%) PRECISION (%)

RECALL (%)

SPECIFICITY (%)

F1-SCORE (%)

M1 SVM-ANN-ANN
M2 KNN-SVM-ANN
M2 KNN-ANN-ANN
M3 SVM-KNN-ANN
M3 SVM-ANN-ANN

95.9
97.1
97

97.1
96.6

96.7
98.3
98.8
99.2
97.1

91.7
93.7
93.0
93.0
93.2

98.2
99.1
99.3
99.5
98.4

94.1
96.0
95.8
96.0
95.1

Table 15. Non-linear ensemble performance evaluation matrix.

NON-LINEAR

ACCURACY (%) PRECISION (%)

RECALL (%)

SPECIFICITY (%)

F1-SCORE (%)

M1 ANN-SVM-ANN
M2 KNN-SVM-ANN
M3 SVM-KNN-ANN

95.9
96.4
100

95.4
97.1
100

92.7
92.9
100.0

97.6
98.4
100.0

94.1
94.9
100.0
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Fig. 5. SHAP summary plot.

techniques such as SHAP or LIME could enhance trust
and transparency in model predictions, making them
more suitable for clinical use.

4.7 SHAP analysis

To enhance the interpretability of the Exponential
GPR model and provide insight into feature
importance, we employed SHAP (SHapley Additive
exPlanations) a model-agnostic explainable Al
technique. SHAP assigns each feature an importance
value for a particular prediction, making it possible to
understand how different input features influence the
model’s output. Fig. 5 presents the SHAP summary
plot, which visualizes both the magnitude and
direction of each feature’s impact across all samples.
Features such as BN and CT emerged as the most
influential predictors, with higher SHAP values indi-
cating a stronger positive contribution to the model’s
prediction of malignancy. The variation in colors rep-
resents the actual feature value, further allowing us
to interpret feature behavior for instance, high values
of BN and CT strongly drive the prediction toward
malignancy. Complementing this, Fig. 6 displays the
mean absolute SHAP values, which quantify the aver-
age impact of each feature on the model’s output. As

observed, BN and CT had the highest average contri-
butions, followed by BC, NN, and UCSH. This ranking
aligns with established clinical findings that under-
score the relevance of these morphological features
in breast cancer diagnosis. The SHAP analysis not
only validates the model’s behavior from a clinical
perspective but also enhances trust by revealing that
the model bases its predictions on features known
to be significant in medical diagnosis. This level of
interpretability is essential for building confidence in
Al-assisted decision-making, particularly in health-
care settings where explainability is as important
as accuracy.

4.8. Limitation and application

However, a key limitation of this study is the use of
the Wisconsin Breast Cancer Dataset (WBCD), which,
while well-established for benchmarking, lacks the
complexity and heterogeneity typically observed in
real-world clinical data. As such, the generalizability
of the models developed here to broader clinical
applications may be constrained. To address this,
future work should validate the proposed methods
on more diverse and extensive datasets such as
METABRIC, BreakHis, or TCGA-BRCA, which



AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:86-99 97

BN

CT

BC

NN

UCSHAPE

Predictor

UCSIZE

MA

0 0.05 0.1

0.15 0.2 0.25

Mean of Absolute Shapley Values
(Average impact on model output magnitude)

Fig. 6. Shapely global importance.

provide greater feature variability and clinical
relevance. These datasets would allow a more
realistic assessment of the model’s robustness
and potential deployment in practical healthcare
environments.

Despite this limitation, the proposed model
demonstrates strong potential for real-world
deployment through integration into a Clinical
Decision Support System (CDSS). It can be
deployed as a decision-aiding module in diagnostic
workstations or embedded within electronic health
record (EHR) systems to support pathologists and
oncologists. Specifically, the model can assist in
triaging biopsy samples by prioritizing cases with
a higher predicted risk of malignancy, thereby
accelerating diagnostic workflows and improving
patient care. Such integration could be particularly
valuable in resource-constrained settings, enabling
faster and more accurate screening and diagnosis
without overburdening clinical personnel.

4.9. Comparison with previous studies

To place our findings in context, we compared
the performance of our proposed stacking ensemble

model (M3: SVM-KNN-ANN with BNN-selected
features) against related recent studies that employed
hybrid feature selection or ensemble learning
techniques for breast cancer classification.

Rajamohana et al. [20] applied ensemble methods
using Sequential Minimal Optimization (SMO) and
Instance-Based Learner (IBK) on a subset of the
WBCD dataset. Their models achieved accuracies
of 96.19% and 95.9%, respectively, using 10-fold
cross-validation in the Weka environment. Nguyen
et al. [21] employed a combination of scaling and
PCA for feature selection and used ensemble voting
techniques with several classifiers including LR,
SVM, and AdaBoost. Their best models reported
accuracies of around 90%, evaluated using AUC, F1,
and computational efficiency.

In a more advanced approach, Alam et al. [22]
proposed a dynamic ensemble learning (DEL)
framework that adaptively configures neural network
ensembles using exponential testing strategies. Their
model achieved a high accuracy of 99.4%. Similarly,
Osman and Aljahdali [23] developed an optimized
Radial Basis Function Neural Network (RBFNN)
boosted by ensemble learning, achieving 98.4%
accuracy on the WBCD dataset, outperforming
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traditional classifiers like LR (91.5%), SVM (89%),
KNN (96%), and NB (91%).

Compared to these works, our proposed model—
particularly the non-linear M3 ensemble combin-
ing SVM, KNN, and ANN with BNN-based feature
selection—achieved a perfect accuracy of 100%,
eliminating all false positives and negatives. This
suggests a clear advancement in model precision
and robustness, particularly due to the synergistic
integration of non-linear feature selection and neuro-
ensemble optimization.

5. Conclusion

This study investigated the comparative perfor-
mance of linear and non-linear feature selection
techniques (PCA, PCC, and BNN) in enhancing breast
cancer detection using ensemble machine learning
models. The results demonstrated that while linear
methods such as PCA and PCC effectively reduced
feature dimensionality and improved model inter-
pretability, non-linear methods like BNN captured
complex inter-feature relationships, leading to supe-
rior classification accuracy, particularly when paired
with advanced classifiers such as SVM. The best
performance was achieved by the non-linear M3 en-
semble SVM-KNN-ANN using BNN-selected features,
which attained 100% accuracy and eliminated false
positives entirely, underscoring the powerful synergy
between appropriate feature selection and classifier
architecture. Furthermore, the findings highlight the
practical value of hybrid approaches that integrate
linear and non-linear techniques for robust, scalable,
and clinically applicable diagnostic models.

While the study provides strong evidence
supporting the use of ensemble models and non-linear
feature selection in medical diagnosis, future research
should focus on expanding the dataset scope,
improving model interpretability, and exploring
additional feature selection strategies to further
enhance model reliability and generalizability across
diverse clinical settings.
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