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ABSTRACT

The agriculture industry has evolved toward intelligent, data-driven processes due to the growing need for food
worldwide, environmental sustainability, and effective resource use. A thorough analysis of smart agriculture as a
game-changing element of the industry 4.0 revolution is provided in this study, with a focus on the incorporation
of Internet of Things (IoT)-based technologies for sustainable farming. To optimize agricultural processes including
irrigation, crop health monitoring, climate and weather tracking, animal management, and disease detection, it in-
vestigates the functions and uses of smart sensors and IoT devices. The study demonstrates how smart agriculture
may meet important issues like food shortages, environmental degradation, and wasteful resource use by combining
the latest scientific developments with practical applications. The study also covers the enabling technologies that
facilitate real-time agricultural monitoring and decision-making, including artificial intelligence (AI), cloud computing,
and cellular networks. It ends by outlining the main obstacles, existing constraints, and potential avenues for further
study in the development of robust, technologically advanced agricultural systems.
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1. Introduction

Smart agriculture is an industry 4.0 green
revolution approach for sustainable and efficient agri-
cultural future [1-3]. This concept leverages on smart
technologies to open new opportunities for sustain-
able agricultural systems and addressing ecosystem
degradation, resource scarcity and food security [4-
6]. Agriculture sector has long been seen as a bedrock
of economy in terms of food security, poverty allevia-
tion, and raw materials [7-9]. This sector contributes
significantly to food security, particularly in emerg-

ing nations where it serves as a source of livelihood
and employment [10]. As reported in [11], growing
population and increasing demand for nutritious food
further increases the burden of agricultural systems.

For variety of reasons, countries have begun to
shift towards sustainable agriculture to enhance food
production and preserve environmental integrity,
with special emphasis on smart agricultural systems.
Sustainable agriculture is now part of several sus-
tainable development goals and targets aimed at pro-
moting biodiversity and ecosystem health, climate-
smart agriculture, and improving nutrition and food
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Fig. 1. Application of 10T in smart farming adopted in [].

availability, income stability and economic resilience
[12]. The United Nation’s (UN’s) focus on sustainabil-
ity, efficiency, and resilience to address problems of
climate change, resource depletion, and food scarcity.

In this context, smart innovations—particularly
those powered by the IoT—present transformative
opportunities for the agricultural sector. IoT is expe-
riencing significant growth in the agricultural sector,
driven by the increasing demand for agricultural
products, advancements in technology and the need
for an efficient farming system. In addition, the
growth of IoT in agriculture market has been signif-
icant, and is further anticipated to grow at a 9.5%
within the next decade, resulting in a market value of
USD71.75 billion in 2032 [13].

This expanding trend emphasizes how urgently
a thorough analysis of smart technologies in agri-
culture is needed. Even though several IoT-based
technologies and solutions have been created and
implemented, there is still a dearth of compre-
hensive information connecting these advancements
to sustainable farming methods. By methodically
examining contemporary applications, technologies,
and innovations—such as smart irrigation systems
[14, 15], livestock monitoring [19], crop health
monitoring [25], soil nutrient tracking [46], meteoro-
logical and climate monitoring [36], pest and disease
detection [40], nutrient management [47], and agri-
cultural drones [61]—this review seeks to close that
gap.

Smarter, data-driven decisions are being made
possible by these technologies, which are changing
conventional farming methods. At the heart of this

change are IoT-powered innovations like drone-based
monitoring, hydroponic farming, automated irriga-
tion, and autonomous tractors, as seen in Fig. 1.

Thus, this review’s goals are threefold: (1) to as-
sess the state and uses of smart technologies and
the Internet of Things (IoT) in agriculture; (2) to
evaluate important technologies like communication
networks, smart sensors, IoT and (3) to determine the
difficulties, and future research paths for sustainable
smart agriculture systems.

2. Smart technologies in agriculture

The integration of digital tools including sensors,
IoT, data analytics, and automation to improve farm-
ing productivity, sustainability, and efficiency is
referred to as “smart technologies” in the agricul-
tural industry. These technologies make it possible
to precisely monitor and regulate agricultural char-
acteristics such as temperature, crop health, livestock
conditions, and soil moisture. Smart agricultural tech-
nologies decrease resource waste, increase yields, and
tackle issues like food security and climate change
by gathering data in real-time and enabling informed
decision-making.

2.1. Smart sensors in agriculture

Smart sensors in agriculture are crucial tools
for real-time monitoring and automation of farm-
ing activities. Several sensor types have been used
in agricultural systems to monitor and control
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Table 1. Categories of sensors currently used for agriculture.

Sensor type Purpose Application domain Reference
Passive infrared (PIR) motion To monitor movement (e.g., of pests or Storage of agricultural produce [38]
sensors intruders) in grain storage facilities or barns.
Digital Humidity and Temperature  Used by farmers for planning, planting and Livestock management and [14, 17,
(DHT) sensors harvesting and monitoring crops’ climate-weather monitoring 18, 31]
temperature and humidity levels
Nutrient sensors To measure soil nutrients such as nitrogen and Nutrient monitoring [46]
phosphorus
Pest and disease detection sensors To detect early signs of pest infestations or Pest and disease detection [65, 77]
(for example, Red, Green, Blue diseases in crops.
(RGB), Multispectral,
Hyperspectral, Thermal)
Crop growth sensors (LIDAR (Light ~ Used to monitor plant growth parameters such ~ Crop management [27, 65]
Detection and Ranging), as height and biomass
ultrasonic sensors, optical sensor)
Gas sensor To detect toxic gases in livestock including Livestock monitoring [124, 125]
poultry system.
Flow sensors, evapotranspiration Used to monitor water content in the soil Irrigation monitoring [14]
(ET) sensors, wind sensors and
Rain sensors
Drone-mounted sensors Unmanned Aerial Vehicles (UAVs) equipped Gasoline vapor (VOCs), CO [45]
with various sensors, multi-spectral, thermal, sensors, O2 sensors, NOX
and LiDAR are used for real-time data sensors and particle Matter
collection in agriculture (PM) sensors
Soil sensors Used to measure soil parameters such as Remote sensing monitoring [14, 18]

moisture PH, and nutrient levels.

Tractor -mounted sensors (Global
Positioning System (GPS),
inclinometers and rotary angle,
and telematics)

These sensors are installed on tractors to
determine precise location, monitor tractor’s
angle, and position, to provide feedback for
auto-steering systems and provide real-time

Farm machinery management [20]

data on the tractor’s status including location,
fuel consumption, and operational efficiency.

physical variables such as temperature, humidity,
light moisture and toxic gases [26]. Smart sen-
sors are semiconductor devices that utilize advanced
algorithms to detect and monitor changes in physi-
cal parameters including temperature, humidity, soil
moisture, and light intensity. These sensors are inte-
grating into various application domains, particularly
in agriculture to improve farming operations and pro-
ductivity. Commonly used sensors used in agriculture
have been reviewed and presented in Table 1.

2.2. Internet of things applications in agriculture

The IoT has fostered agriculture efficiency, produc-
tivity, and sustainability. The integration of smart
sensors, IoT technologies, and data analytics allows
for remote monitoring of farmer activities which
helps to enhance resource management and increases
crop yield and quality. This section examines some
of the IoT applications in smart agriculture with
special on (1) smart irrigation, (2) livestock monitor-
ing, (3) crop health monitoring, (4) climate-weather
monitoring, (5) pest and disease detection, (6) nu-
trient management, (7) greenhouse monitoring and
(8) agricultural drones.

2.2.1. Smart irrigation system

Smart irrigation leverages IoT to automate and op-
timize water usage in plants/crops [14]. This system
reduces waste and conserves water while ensuring
crops receive the optimal amount of water, and the
soil moisture level is suitable for crop growth [15].
This system can automatically adjust watering sched-
ules based on real-time data [16], to minimize the risk
of overwatering and maintain optimal soil moisture
levels [17], leading to improved crop growth and
crop yield [18]. Additionally, smart irrigation can
enhance crop productivity, increase food availability,
and crop yield [10]. Software cloud-based platforms
and emerging communication technologies such as
5G cellular networks and Artificial Intelligence (AI)
are currently being deployed in irrigation systems
to improve remote monitoring and real-time data
analytics [16].

Several researchers have developed cutting-edge
smart irrigation systems in the quest for preci-
sion agriculture, which successfully automate water
management by fusing sensor technologies, micro-
controllers, and cloud platforms. By intelligently
reacting to current soil and environmental conditions,
these systems aim to maximize water use. A solid
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basis was established by Bounnady et al. [14], who
created a real-time soil moisture monitoring system
using the ESP8266 microcontroller. A collection of
sensors was used in the setup: a water flow sensor
to assess irrigation usage, a DHT11 for ambient tem-
perature and humidity, and a soil moisture sensor to
detect hydration levels. The Thing Speak cloud re-
ceived the collected data, allowing farmers to access it
remotely. A relay-controlled solenoid valve operated
to irrigate the soil when moisture levels fell below
threshold levels, which was a unique feature of their
system. The technology ensured sustainability and
efficiency by cutting off the feed as soon as the ideal
moisture level was restored.

In a similar vein, Kumar et al. [15] presented
an automated irrigation system that uses an em-
bedded microprocessor and soil moisture sensors to
assess the situation and start watering. However, by
more closely integrating the sensors with the system’s
decision-making core, their method placed more
emphasis on responsive water distribution than Boun-
nady et al. An early attempt at incorporating Internet
of Things (IoT) concepts into field-level water man-
agement was demonstrated by the ability for farmers
to remotely monitor and control the system using
personal computers (PCs) or mobile devices. This idea
was extended by Bakare et al. [16] using a wider
range of sensors, such as a Light Dependent Resistor
(LDR), which accounts for light intensity in addition
to temperature, humidity, and soil moisture. A Pe-
ripheral Interface Controller 18F4620 (PIC18F4620)
microcontroller, which was coded in C + + within the
MPLAB IDE, handled the decision-making, providing
a strong processing foundation for the system. Local
wireless connection was made possible by a Blue-
tooth module, and users may manually override or
monitor processes from a Windows interface using a
proprietary Visual Basic. Net (VB.NET) application.
This system combined user-controlled flexibility with
automated triggers, emphasizing versatility.

Thendinihu and Inyama [17] devised a more simpli-
fied technique, utilizing an Arduino microcontroller
and a DHT11 sensor to create a simple yet efficient de-
vice. When soil moisture levels decrease, the system
automatically starts watering using a relay-activated
pump. Through its interaction with the ThingSpeak
platform and GSM/Wi-Fi modules, farmers were able
to access real-time data visualizations on desktop
or mobile devices. The system was quite useful for
smallholder farms despite its simplicity because of its
effective operation and remote monitoring features.
Abdikadir et al. [18] developed a comprehensive sys-
tem that integrated sensor data and external weather
inputs, furthering the concept of smart irrigation. The
system used Raspberry Pi as the main computing de-

vice to gather data from DHT11 and Soil Moisture
Sensor v2.0 units. Cloud integration and analytics
were handled using the Favoriot platform, while data
flow and control logic were managed by Node-RED.
By connecting real-time soil data with more general
climatic trends, this hybrid method gave the system
a higher degree of intelligence and adaptability and
enabled it to make sophisticated irrigation decisions.

2.2.2. Livestock monitoring

Livestock monitoring refers to livestock tracking
based on connected devices like sensors [19], collars,
and wearable tags [20] to gather data on animal
health, location, and behaviour [21]. This system uses
smart sensors to monitor vital signs such as heart
rate, body temperature, and control environmental
parameters within livestock facilities [22]. These sys-
tems can regulate temperature, humidity levels, and
optimize animal diets. Currently, various emerging
technologies used in livestock monitoring systems in-
clude wearable sensors, blockchain, cloud computing,
and 5G cellular networks to improve livestock health
[23], illness detection, preventive healthcare, nutri-
tion, and enhance reproductive performance [24].

A hybrid convolutional neural networks and gated
recurrent unit (CNN-GRU) model was presented for
categorizing cow behavior using an inventive com-
bination of wearable sensor data and deep learning.
Using accelerometers, magnetometers, and gyro-
scopes, data was collected from dairy cows and con-
verted into time-frequency characteristics using the
Short-Time Fourier Transform (STFT). The CNN-GRU
network achieved 91.40% accuracy in multi-class cat-
egorization of behaviors like walking, grazing, lying,
and ruminating thanks to this rich dataset, which
enabled the network to capture both spatial and tem-
poral dynamics [19].

An end-to-end IoT system that uses Long Range
Wide Area Network (LoRaWAN) for low-power,
long-range livestock tracking, with an emphasis on in-
frastructure, was also proposed. With a battery life of
more than six months, the hardware design included
motion, temperature, and global positioning system
(GPS) sensors to relay data up to 1.5 kilometers.
Real-time tracking of animal locations and health
indicators was made possible using a web-based in-
terface. This system demonstrated how connectivity
solutions may provide useful and scalable livestock
monitoring by enabling the detection of possible ab-
normalities like theft, boundary violations, or health
problems [20].

Health-focused monitoring was further investi-
gated, particularly for the early detection of digital
dermatitis (DD), a painful hoof condition in dairy
cows. Using machine learning on behavioral sensor
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data, models were developed to identify and forecast
DD. The model achieved 79.00% accuracy on the day
of symptom onset and maintained 64.00% accuracy
two days beforehand [21].

A deep learning system for autonomous video-
based behavior analysis was created, moving the
emphasis from sensors to visual intelligence. With
an overall accuracy of 81.2% in cow identification,
the model, trained on farm footage, was able to
identify individual cows and detect actions like drink-
ing (84.4%) and grazing (94.4%). This passive video
method provides a non-intrusive substitute for wear-
able technology, particularly beneficial in settings
with open grazing or large herds [22].

A non-invasive visual recognition method using
deep metric learning and CNNs was proposed to
enhance animal identification. By analyzing the dis-
tinctive coat patterns of Holstein-Friesian cattle, the
technique identified individuals with 93.80% accu-
racy. This strategy supports welfare tracking and
traceability, especially in contexts where wearables
or tagging are impractical [23].

Behavior classification under complex farm condi-
tions was advanced using a Convolutional Neural Net-
work Bidirectional Long Short-Term Memory (CNN-
Bi-LSTM) hybrid model. By analyzing accelerometer
data, the model was able to capture both temporal
and spatial dependencies, making it ideal for settings
influenced by diverse dynamic elements. Even under
real-world conditions, the model reliably identified
behavioral patterns [24].

2.2.3. Crop health monitoring

The systematic assessment of crop condition
through their growth cycle can be enhanced with
IoT [31]. Various technologies including sensors,
GPS, satellite imagery, and machine learning can be
used to provide real-time information on crop health,
soil moisture, nutrient deficiencies, leaf temperature,
pest infestations, chlorophyll level, and environmen-
tal parameters [25-30]. This system allows farmers
to optimize resources while ensuring that crops re-
ceive proper nutrients and water for improved crop
yields [27-33]. In addition, this system can track soil
health indicators such as nutrient levels and micro-
bial activity to improve soil fertility and biodiversity
[28, 30-32].

Researchers are advancing plant health monitor-
ing in modern agriculture by combining cutting-
edge sensing technologies with artificial intelligence,
whether in open fields or vertical farms. From long-
term satellite-based field mapping to real-time stress
detection, the objective is always the same: identify
and address plant distress before it impairs yield.

In a groundbreaking effort tailored for controlled-
environment agriculture and even space farming, a
small hyperspectral imaging device that combines
fluorescence and reflectance imaging in the VNIR
spectrum was used to identify drought stress in let-
tuce through a line-scan camera and Light Emitting
Diode (LED) lighting, recording fine-grained spec-
tral data. With machine learning classifiers, early
stress was identified with over 90% accuracy—within
four days, long before symptoms were apparent—
demonstrating the critical role of spectral analysis
in proactive crop management, particularly in space-
constrained environments [26].

A more comprehensive approach applied to
Fully Connected Neural Networks (FCNN) alongside
satellite-derived NDVI (Normalized Difference Veg-
etation Index) to distinguish between stressed and
healthy crops, especially those affected by rust. This
integration of deep learning and vegetation indica-
tors enabled high-precision agricultural monitoring at
scale, achieving a classification accuracy of 97.80%
[25].

To address challenges in vertical farming, a multi-
spectral LED (light emitting diode) system emitting
UVA and NIR (near infrared) light was developed to
monitor plant health using a UV-NDVI (Ultraviolet-
Normalized Difference Vegetation Index metric). This
real-time, reflectance-based system allowed vertical
farm operators to detect and respond to early stress
signals efficiently within controlled environments
[27].

To deepen the understanding of plant physiology, a
network of flexible biosensors was designed to mea-
sure stem development, vapor pressure deficit, and
key plant hormones such as salicylic acid and ethy-
lene. These sensors, mounted directly on live plants,
provided continuous insights into internal stress re-
sponses, bridging the gap between biophysics and
precision agriculture [28].

From a remote sensing perspective, a system
utilizing high-resolution satellite imagery, such as
PlanetScope, and APIs was created to generate sea-
sonal field maps based on vegetation indices. These
maps facilitated germplasm selection and disease re-
sistance breeding, contributing to both real-time crop
surveillance and long-term crop protection strategies
[29].

At the field level, an IoT-based mobile application
integrated soil moisture sensors, BMP280 tempera-
ture sensors, and cloud services like Google Firebase
and Airtable. This tool delivered real-time environ-
mental data and crop recommendations tailored to
soil type and seasonal patterns, acting as both a
monitoring solution and decision support system
[301].
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Another IoT monitoring system employed DHT11
and soil moisture sensors to collect and stream
data, which was then analyzed using a convolutional
neural network (CNN) to predict crop conditions,
offering automated diagnostic capabilities beyond
simple monitoring [31].

A scalable, multi-location crop monitoring system
incorporated Linear Monolithic-35 (LM35) tempera-
ture sensors, soil moisture probes, and dual connec-
tivity (Wireless Fidelity (Wi-Fi) and Global System
for Mobile Communications (GSM)) for seamless data
transmission. Cloud-based analytics transformed the
collected data into actionable insights in real time
[32].

Lastly, an Al-powered smart agriculture platform
monitored temperature, moisture, soil pH, salinity,
electrical conductivity, and macro-nutrients such as
nitrogen, phosphorus, and potassium. Field trials on
rice farms showed improved fertilizer management,
irrigation, and disease prevention, driving smarter
and more sustainable farming practices [33].

2.2.4. Climate and weather monitoring

Climate and weather can significantly affect crops
through different mechanisms such as temperature
changes, altered precipitation patterns, soil health
issues, pest dynamics, and food security challenges.
Due to climate changes, agricultural produce’s qual-
ity and quantity may be affected. Hence, farmers
may use sensors to collect various environmental
data including temperature, humidity, soil moisture,
and atmospheric pressure [34, 35]. IoT technology
can help farmers identify potential weather risks on
crops and allow them to take preventive measures to
protect their crops [36]. With accurate weather fore-
casts and climate monitoring, farmers can implement
timely interventions that improve crop growth and
resilience against climate variability [37].

A series of complementary experiments cover-
ing sensor integration, machine learning, real-time
forecasting, and data validation graphically high-
light the synergy between contemporary agriculture
and cutting-edge climate monitoring technologies.
In addition to improving our knowledge of regional
environmental trends, these empirical studies show
how technology can revolutionize conventional farm-
ing methods into data-driven, intelligent systems.
An Internet of Things-based weather monitoring sys-
tem was developed specifically for Ghanaian farmers,
laying the foundation for farmer-centric innovation.
Temperature, humidity, and precipitation are tracked
using Arduino-powered sensors, which send real-time
data to a cloud server accessible via a mobile app. Au-
tomated notifications ensure that farmers are aware
of adverse weather conditions, allowing for proactive

adjustments to planting, irrigation, and pest manage-
ment plans [34].

Building on this framework, a model integrating
Gated Recurrent Units (GRUs) was introduced to add
predictive intelligence to field monitoring. This sys-
tem analyzes soil moisture and nutrient levels while
forecasting future weather events, enabling strategic
rather than reactive decision-making [35]. A modular
environmental control system was also designed for
greenhouse environments, combining sensors, actu-
ators, and cloud platforms to continuously regulate
internal growing conditions and optimize productiv-
ity [36]. To enhance data reliability, another study
applied Bayesian time-series models to validate sen-
sor inputs, significantly reducing false readings and
increasing confidence in automated systems [37].

Taken together, these systems highlight that
achieving climate-smart agriculture requires more
than just deploying sensors or algorithms—it neces-
sitates an integrated ecosystem of reliable data ac-
quisition [37], localized deployment [34], predictive
modelling [35], and intelligent control mechanisms
[36] that together transform farming from analog
intuition to digital precision.

2.2.5. Pest and disease detection

Pest and disease detection is a significant IoT ap-
plication in smart agriculture. Farmers can employ
IoT devices such as sensors and cameras to monitor
for signs of pest infestations and plant diseases [38].
These sensors can send alerts to farmers when pest
activity is detected or when conditions are favorable
for disease outbreaks, leading to a proactive approach
in minimizing crop damage and eliminating the need
for chemical treatments [39]. In addition, prompt
pest and disease control allows for quicker responses,
leading to improved crop health and yield [40]. IoT
can also minimize crop losses through the reduction
of extensive pesticide applications, allowing farmers
to reduce pesticide costs [41-45].

With a two-tier pest detection architecture created
especially for maize fields, a system was developed
using Raspberry Pi 2-enabled sensor units with PIR
motion sensors, High Definition (HD) cameras, GPS
modules, and nighttime LEDs to detect insect activ-
ity and collect geotagged data [38]. These devices
transmitted media to a master unit hosting a CNN
model for pest classification, enabling real-time re-
mote monitoring via 4G routers and Google Cloud.

A deep learning ensemble model improved the ac-
curacy of pest and disease identification across 45
plant conditions by using data augmentation tech-
niques and combining Clustering-based Region-based
Convolutional Neural Network (cluster-RCNN) with
Improved Network Compression - You Only Look
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Once (INC-YOLO) for multi-scale detection [39]. To
reduce complexity while maintaining accuracy, ESA-
ResNet34—a lightweight CNN with Depthwise Sepa-
rable Convolutions and Effective Spatial Attention—
achieved high accuracy on resource-constrained edge
devices [40].

The influence of meteorological factors on insect
outbreaks was modelled using ANN, KNN, Random
Forest, and MLR techniques to forecast disease spread
based on temperature, humidity, and rainfall [41].
Another CNN-based architecture trained on a compre-
hensive dataset effectively identified plant diseases
using preprocessing methods like scaling, normaliza-
tion, and augmentation [42].

Real-time detection on large farms was enhanced
by drone-based image capture integrated with a
CNN model trained on a large dataset, enabling
high-precision identification under varying condi-
tions [43]. An integrated system combining expert
systems, wireless cameras, environmental sensors,
and YOLOv3 provided automated alerts and decision
support in rice and wheat fields [44]. Finally, a hybrid
platform leveraging UAVs and IoT sensors used crop
reflectance and environmental data for early stress
diagnosis, integrating multi-modal analytics for com-
prehensive crop health monitoring [45].

2.2.6. Nutrient management

Nutrient management and crop yield optimization
have advanced significantly in recent years as a result
of the combination of machine learning (ML), artifi-
cial intelligence (AI), and agronomic knowledge. To
forecast soil nutrient levels, suggest fertilizers, and
maximize usage efficiency, researchers are using a
variety of models, from deep reinforcement learning
to neural networks and ensemble learning.

One innovative method formulated nitrogen man-
agement as a deep reinforcement learning problem,
outperforming conventional empirical techniques by
achieving high maize yields with less fertilizer use
by deep Q-networks and soft actor-critic algorithms,
marking a shift from static recommendations to dy-
namic decision-making [46]. Prediction capabilities
were further expanded by using a feed-forward neu-
ral network trained on soil composition, yield, and
climate data to create a supervised learning-based
crop and fertilizer recommendation system, achieving
97% accuracy in crop-fertilizer combination predic-
tion [47].

Artificial neural networks and remote sensing were
used to estimate soil nutrients without the need for
laboratory testing. A mobile application utilized a
Multi-Layer Perceptron (MLP) for real-time nutrient
prediction, while another model combined Sentinel-
2 satellite imagery and weather data with machine

learning algorithms like Random Forests. These mod-
els showed high prediction accuracy (Root Mean
Square Error thresholds and 93.00% accuracy), en-
hancing access to precision fertilization, especially
in rural areas [48, 49]. The significance of timing
and flexibility in fertilizer application was addressed
through a recommender system using data from a net-
work of farms. Recursive Feature Elimination (RFE)
optimized features, and models such as Random For-
est, GBM, and Neural Networks forecasted optimal
fertilizer application times with 85.00% accuracy
[50].

Visual data was explored for nutrient deficiency
detection. Using Convolutional Neural Networks
(CNNs) to evaluate leaf photos for nitrogen insuffi-
ciency led to a 20.00% reduction in nitrogen use, a
10% increase in yield, and the development of an
80.00%-accurate image-based diagnostic tool [51].
A general-purpose Artificial Neural Network (ANN)
trained on soil and climate data reduced fertilizer
costs by 18.00% and matched nutrients to specific
crops with 88% accuracy, showing economic advan-
tages of Al-based nutrient planning [52]. The power
of ensemble deep learning architectures—such as
GRU, BiLSTM, and Deep Belief Networks (DBNs)—
was shown in soil nutrient and pH level classification,
achieving over 92% accuracy and demonstrating the
value of deep temporal feature extraction for soil
health monitoring [53].

When taken as a whole, these works show a pro-
gressive landscape of advancements, ranging from
image recognition, mobile computing, satellite data
integration, and policy-learning to real-time sugges-
tions. Despite differing methodologies, they collec-
tively aim for effective, data-driven nutrient manage-
ment in sustainable agriculture.

2.2.7. Greenhouse monitoring

The application of IoT in greenhouse monitoring
can improve agricultural efficiency and sustainability
[571. IoT devices are mainly used in greenhouses to
maintain optimal environmental conditions such as
humidity, light, and temperature [54]. It conserves
water, monitors moisture levels, and uses real-time
data to schedule irrigation [55]. Farmers can mon-
itor various aspects of greenhouse conditions that
affect plant growth and health. These environmental
parameters can be calibrated and remotely accessed
by farmers to prevent significant crop losses, crop
disease, and pest attacks and to optimize energy
consumption [60]. Also, plant health and growth in
greenhouses can be tracked remotely [59].

Researchers are combining machine learning, com-
puter vision, and real-time sensor data to optimize
all facets of controlled-environment agriculture, from
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disease detection and yield estimation to crop moni-
toring and microclimate prediction. The field of smart
greenhouse innovation is changing quickly.

One study raised the standard for microclimate con-
trol by forecasting temperature, humidity, and carbon
dioxide (CO3) levels in a smart melon greenhouse
30 minutes in advance. They compared several mod-
els using real-time sensor data and discovered that
Extreme Gradient Boosting (XGBoost) was the most
accurate, obtaining R? values above 0.96 for all envi-
ronmental factors. Their method enables growers to
proactively predict and modify growing conditions,
which is a fundamental step in precision agriculture
[54].

Another study used LSTM-based Recurrent Neural
Networks trained on microclimate data from green-
houses in Belgium and the UK to expand predictive
analytics to plant growth and yield estimation. Their
findings demonstrated that temporal modeling is
essential when working with long-term biological re-
sponses in plants, with LSTM outperforming other
models such as SVR and Random Forests [55].

A UAV system that employs LiDAR and RGB-D
imaging was introduced for real-time tomato count-
ing and weight estimation. In just 10.5 seconds, the
machine flew over tomato rows with an astonishing
94.4% counting accuracy and 87.5% weight estima-
tion. This represents a significant advancement in
crop inventorying and automated harvesting logistics
[56].

Plant health and growth monitoring heavily relies
on visual sensing. A CNN-based approach to identify
leaf diseases achieved over 97% training accuracy
and demonstrated particularly high energy efficiency
with 44% lower battery usage, tackling a significant
issue in IoT-enabled agriculture: power sustainability
[571.

Deep learning models such as SSD and YOLOv4
Tiny were developed to identify tomatoes at different
ripening stages, even in the presence of occlusions.
The YOLOv4 Tiny was notable for its real-time infer-
ence speed (5 ms), which is essential for embedded
systems and mobile platforms, even if Single Shot
Multibox Detector (SSD) MobileNet v2 provided su-
perior accuracy (F1-score: 66.15%) [58].

To detect crop stress levels, researchers creatively
classified physiological data such as leaf tempera-
ture and photochemical reflectance index (PRI), in
combination with microclimate data. Their testing ac-
curacies exceeded 89% through the use of Multilayer
Perceptron (MLP) and Gradient Boosting, bringing
plant health diagnostics closer to temperature control
and precise fertigation [59].

An improved YOLOvV5 model addressed the ongoing
issue of greenhouse pests, extending monitoring to

pest management. With F1 scores as high as 0.99 and
detection precision increased to 96% with ingenious
data augmentation (copy-pasting), this kind of auto-
mated, fine-grained pest monitoring is essential for
lowering crop losses and chemical misuse [60].

From real-time environmental sensing and predic-
tion [54, 55] to plant-level monitoring and response
[57, 59], to object-level precision [56, 58, 60],
these works collectively demonstrate a symbiotic
progression. Every system works toward a com-
mon goal: data-driven, autonomous, and sustainable
greenhouse agriculture in which artificial intelli-
gence (AD) enhances and supports biological growth
processes.

2.2.8. Agricultural drones

Drones equipped with various smart sensors can
capture high-resolution images and data on crops
and soil conditions. Drones can create detailed 3D
images of fields for soil analysis and seed planting
planning pattern [67]. IoT-enabled drones can mon-
itor soil moisture level, nutrient content (nitrogen
assessment), and weather conditions, and this infor-
mation can be provided to the farmers [61, 67]. Also,
drones can be used to target spraying of pesticides
and fertilizers, leading to improved crop health [65].
Therefore, smart agricultural drones provide farmers
with aerial surveys of their farms, capturing high-
resolution images and data to enhance crop health
and quality [68, 69].

Precision agriculture has greatly improved thanks
to the combination of artificial intelligence (AI) and
unmanned aerial vehicles (UAVs). According to re-
cent studies, UAV-based systems are being used for
field management, yield estimation, crop health mon-
itoring, and actionable insights.

A quadcopter drone system with high-resolution
photography and an analytical platform based on
convolutional neural networks (CNNs) was created
for the purpose of assessing crop health in real time
[61]. By automating the identification of leaf diseases
and facilitating quick, precise data collection, the
system significantly outperformed conventional field
scouting methods and promoted more adaptable crop
management.

In a comparable application, a deep learning-based
UAV approach was used for counting coconut palm
trees [62]. The researchers’ mean average precision
increased significantly from 0.65 to 0.88 by using
the YOLOvV7 object detection model pretrained on
the Common Objects in Context (COCO) dataset and
supplemented with synthetic training data created
by repositioning trees in drone photos. This demon-
strates how well synthetic augmentation works to
train reliable agricultural models.
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A novel unsupervised learning technique was ap-
plied to solve weed detection using UAV imagery to
detect crop lines and identify interline weeds [63].
With only slight accuracy variations compared to su-
pervised methods (1.5% in spinach fields and 6.0% in
bean fields), the system showed promise for scalable
weed monitoring.

Pollination performance in oilseed rape fields was
evaluated using UAV-based remote sensing [64].
Flower coverage, a stand-in for pollination activity,
was measured using high-resolution RGB orthomo-
saics and K-means clustering. The method’s efficacy
was validated by a strong negative correlation (r =
-0.92) with expert judgments.

A deep learning architecture for viticulture used
multispectral UAV data to detect vine diseases [65].
Visible and infrared images were aligned using a
custom registration method and classified as back-
ground, shaded, symptomatic, or healthy using a
fully convolutional neural network, achieving accu-
racy over 92% at the grapevine level.

A CNN-based system was developed to refine
satellite-derived NDVI maps using UAV imagery,
enhancing crop condition assessments [66]. High-
resolution vegetation vigor maps were generated
using clustering, improving precision for vineyard
management decisions.

A smart crop-monitoring architecture that inte-
grates UAVs, IoT sensors, and machine learning was
also developed [67]. Using CNNs and fast recurrent
neural networks, the system classified crop abnormal-
ities by preprocessing UAV data and incorporating
environmental and historical records to facilitate
proactive planning.

When taken as a whole, these studies demonstrate
the increasing complexity and variety of UAV-based
agricultural solutions. The precision, effectiveness,
and sustainability of contemporary farming methods
are improved by UAVs combined with Al, which of-
fer scalable, data-driven solutions for anything from
pollination monitoring and vegetation indexing to
disease identification and yield estimation. Table 2
shows the Internet of Things application in smart
agriculture.

3. loT communication technologies in
agriculture

Several communication technologies (CTs) have
gained prominence in smart agriculture. These
technologies could aid precision farming, monitoring
environmental conditions, the dissemination of
agricultural information and controlling various
aspects of farm operations. Environmental data
and other related information in agriculture can be

transmitted with high precision. CTs support various
agriculture activity including crop management,
livestock monitoring and supply chain management.
The key components of CTs include internet, mobile
applications, IoT devices, and wireless communica-
tion networks. The most widely used communication
technologies in agriculture are as follows:

3.1. Cellular networks (2G, 3G, 4G, 5G)

Cellular networks (CNs) are widely used for IoT
applications in agriculture due to their broad cover-
age and ability to transmit data over a long distance
[70, 71]. For instance, farmers can use 4G or 5G
network to connect remote sensors that monitor soil
moisture and weather conditions. The collected data
can be sent to a central server for analysis, allowing
farmers to schedule irrigation and manage crops.

3.2. Low power wide area networks (LPWAN)

LPWAN technologies such as LoRaWAN and NB-
IoT, are designed for low-power long-range com-
munication, making them suitable for large area
agricultural applications [16, 72]. Soil moisture
equipped with LoRaWAN can transmit data over
several kilometers, enabling farmers to monitor soil
conditions across vast fields without the need for
frequent battery replacement.

3.3. Wi-Fi

Wi-Fi commonly referred to as wireless fidelity is
used in greenhouse and farms where stable inter-
net connection is available. It allows for high-speed
data transfer between IoT devices and local servers.
Typically, in a greenhouse, Wi-Fi-connected environ-
mental sensors can monitor temperature, humidity,
and light levels, sending real-time data to a central
system that adjust conditions automatically to opti-
mize plant growth.

3.4. Bluetooth and ZigBee

Bluetooth and ZigBee are short-range communi-
cation technologies for connecting devices within a
localized areas such as a farm or green house. For
instance, Bluetooth-enabled livestock trackers can
monitor the health and location of animals, transmit-
ting data to a nearby smartphone or tablet for easy
access by farmers [73, 74].

3.5. Satellite communication

Satellite communication provides a viable solution
for data transmission in remote agricultural areas
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Table 2. 10T applications in smart agriculture.

27

Application area

Technology description

Crop/Animal species

Smart irrigation system
Livestock monitoring
Crop health monitoring
Climate and weather
monitoring
Pest and disease detection
Nutrient management
Greenhouse monitoring

Agricultural Drones

optimizes water use by utilizing automated irrigation
controllers and soil moisture sensors.

Wearable sensors (tags, collars) monitor the location,
activity, and health of animals.

Drones and satellites are examples of remote sensing
systems that evaluate crop health and identify stress
early.

Data on temperature, humidity, precipitation, and wind
are gathered by on-field weather stations.

Al systems and sensor-based traps are used to find and
identify crop pests or diseases.

Fertilization is guided by nutrient levels measured by soil
sensors and portable analyzers.

Temperature and illumination are automatically
controlled by embedded environmental sensors.

Unmanned aerial vehicles (UAVs) are utilized for field
imaging, seeding, and spraying.

Cotton, vegetables, gardens
Cattle, pigs, poultry birds

Cereals, legumes, nuts, spices

Tropical crops (e.g. sugarcane),
temperate corps (e.g. wheat, Oats and
gram), crops affected by climate
change (i.e. soy and wheat)

Vegetables, cotton

Vegetables, fruit crops, field crops,
groundnuts

Fruits, vegetables, herbs, flowers

Grains, cereals, vegetables fruits

with limited internet connectivity [75]. Farmers can
us satellite-based IoT system to monitor crop health
and soil conditions in remote fields and receive data
that can help farmer to manage resources effectively.

4. The impact of loT on the agricultural
industry

Countries striving for sustainability and green agri-
culture have begun to focus on innovative technology
such as Artificial Intelligence (AI), Machine Learning,
big data, and deep learning. IoT provides agricul-
ture with plethora innovation prospects that enhance
productivity, resource efficiency, monitoring, and
management of crops and livestock. IoT technology
contributes to agricultural sustainability by enabling
better management of natural resources. This is par-
ticularly important as the global population continues
to grow and food demand increases. So, adopting
IoT in agriculture assists in maintaining soil health
and reducing climate impact on farm practices, and
improving food security. also, the integration of IoT
has significant impact on productivity and sustain-
ability [76]. With real-time data analytics, farmers
can make informed decisions that can lead to higher
yields. For instance, monitoring crop health through
connected devices aids pest control, nutrient man-
agement and prevent crop losses. Furthermore, the
use of IoT technologies can significantly reduce water
and electricity waste, labor cost and also increase
income for farmers. Automation of routine tasks via
connected devices allows farmers to focus on strategic
activities, leading to secure modernized agricultural
sector.

5. Emerging technologies advancement in
loT for agriculture

Emerging Technologies is ushering in a new era
of agriculture. Emerging technologies such as agri-
bots, nanotechnology, and wearable sensors are
paving the way for new agriculture solutions such
as autonomous agribots, agricultural materials, and
self-driving tractors. The following are emerging
technologies for agriculture sustainable future

5.1. Agricultural robots (Agribots)

With the increasing demand for labor and shortage
of workers in agriculture, Agribots are gaining trac-
tion [77]. Agribots (autonomous robots) can gather
real-time data on soil conditions, crop health, and en-
vironmental factors. The integration of IoT and agri-
bots can help to automate various farming operations
such as planting, harvesting, and monitoring crops.
Also, agribots can autonomously navigate fields, ap-
ply fertilizers, and harvest crops based on real-time
data [78]. The synergy between IoT and Agribots is
paving the way for a new area in agriculture.

A flexible robotic system for precision farming ap-
plications that combines unmanned ground vehicles
(UGVs) with unmanned aerial vehicles (UAVs) was
introduced in 2016. The system developed algorithms
for multispectral perception and combined ground-
based and aerial devices to monitor nitrogen nutrition
status, crop density, and weed pressure. Agricultural-
specific mapping and navigation systems were put
into place, proving the system’s efficacy in selective
spraying and collaborative mapping without the need
for human involvement [77].
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An autonomous robot for accurate and economical
tomato harvesting was created in 2024. To identify
and gauge the maturity of tomato trusses and fruits,
a multi-task YOLOv5 model was employed. Seven
semantic key points on the pedicel were predicted by
a deep learning algorithm to help with path planning
and reduce touch during harvesting. In commercial
greenhouse settings, an average harvest time of 32.46
seconds per tomato was attained, resulting in an
86.67% harvest success rate [78].

A modular, reconfigurable robot platform was cre-
ated in 2024 to assist with a variety of agricultural
activities and enhance the transfer of knowledge from
research to practical applications. Five configurations
for various agricultural purposes were displayed,
demonstrating the robot’s adaptability and versatility
in a variety of actual agricultural situations [79].

A method was developed to enable robots to move
between crop rows beneath the canopy by fusing
model predictive control with monocular RGB vision
perception. The CropFollow system outperformed a
LiDAR-based system, which averaged 286 meters per
intervention, with an average of 485 meters [80].

A multipurpose electric field management robot
capable of performing duties like weeding, pesticide
spraying, and crop data collection was created in
2024. The robot features an integrated navigation sys-
tem that uses RTK-GNSS, LiDAR, and cameras, as well
as four steering modes: Ackermann, four-wheel, crab,
and zero-radius. The crab steering mode achieved a
maximum tracking error of 43.35 mm and an average
lateral error of 20.75 mm in field tests, indicating
outstanding trajectory tracking accuracy [81].

A technique for automatic weed scouting with-
out prior species information was created, employing
clustering algorithms to distinguish between dis-
tinct plant species and deep convolutional neural
networks to discover low-dimensional attributes for
plant representation. The method successfully sepa-
rated cotton plants from grasses in field data gathered
by the AgBotll robot, indicating the possibility of
unsupervised weed scouting [82].

Using IoT technologies, an autonomous robot was
developed to continuously monitor plant conditions.
Equipped with integrated sensors and a line-following
navigation system, the robot captures plant images,
which are then transmitted via IoT to a monitoring
mobile application. The system enhanced decision-
making in crop management by enabling real-time
plant condition monitoring [83].

5.2. Advanced drones (ADs)

Advanced Drones are becoming an integral part of
smart farming [79]. AD is currently being used for

various farming activities including crop monitoring,
soil analysis and precision spraying of fertilizers and
pesticides [24, 80]. This technology combines IoT
devices, sensors and advanced algorithms to monitor
and detect various environmental data for predictive
analysis and crops assessments. For a detailed review
of the related work on the use of drones in smart
farming, please refer to Section 2.2.8.

5.3. Machine learning (ML) and Artificial Intelligence
(Al)

ML and Al are increasingly popular in agriculture
for data analysis [84-92]. One key motivation for this
is the use of AI and ML algorithms in enhancing data
analysis capabilities. These predictive techniques can
allow farmers to predict crop yields, detect dis-
ease early and optimize planting and harvesting
schedules. The synergistic combination of these tech-
nologies with IoT can improve productivity and farm
sustainability.

Recent advancements in machine learning (ML)
and deep learning (DL) have significantly impacted
crop yield prediction, offering more accurate, effi-
cient, and scalable solutions for agricultural fore-
casting. A range of studies has employed diverse
methodologies to enhance yield prediction mod-
els, incorporating various data sources, including
weather patterns, soil quality, and satellite imagery,
to create predictive frameworks suited to different
regions and crops.

One prominent example is the development of
a hybrid machine learning model for forecast-
ing agricultural yields in India. By combining the
best-performing algorithms, such as Decision Tree
(DT), XGBoost, and Random Forest (RF), the model
achieved an impressive 98.60% accuracy. This 'Crop
Yield Predictor’ tool offers an accessible solution
for real-world applications, providing farmers with
a practical tool for predicting crop yields based on
historical data and machine learning techniques [84].

In a similar vein, a study focused on forecasting
maize and Irish potato yields using environmental
data such as rainfall and temperature. The Random
Forest (RF) model outperformed others, achieving
R? scores of 0.875 and 0.817 for irish potatoes and
maize, respectively. This highlights the importance
of environmental factors in crop yield prediction,
emphasizing the power of RF in handling real-world
agricultural data [85].

Furthermore, a system was created to assess soil
fertility, which is crucial for optimizing crop produc-
tion. By applying classifiers like K-Nearest Neighbors
(KNN), Naive Bayes (NB), and Decision Trees (DT) to
soil data collected from Gunupur, India, the system
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effectively classified soil fertility, aiding agricultural
planning and enhancing soil management strategies
for farmers [86].

A more region-specific study used ML and DL tech-
niques to predict crop yields in Rajasthan, India.
Several models, including Random Forest, Support
Vector Machine (SVM), and Long Short-Term Mem-
ory (LSTM), were tested on datasets for five different
crops. The Random Forest model achieved the best
performance with an R? score of 0.963, underscoring
its suitability for accurate yield prediction in Indian
agricultural settings [87].

Another compelling study analyzed 28,242 global
crop samples, comparing multiple ML algorithms, in-
cluding RF, Extra Trees (ET), and Artificial Neural
Networks (ANN). The ET model outperformed the
others with an R? of 0.9873, demonstrating its high
accuracy and efficiency in global crop yield predic-
tion. This broad-scale analysis indicates the potential
of ML in improving agricultural forecasting at a global
level [88].

Further advancement in crop yield prediction in-
tegrated Internet of Things (IoT) data with machine
learning algorithms. The Crop Yield Prediction Algo-
rithm (CYPA) utilizes real-time climatic data gathered
via IoT sensors to forecast yields, highlighting the
significance of IoT in providing real-time, localized,
and highly accurate agricultural predictions [89].

A more holistic approach was taken by integrating
machine learning models with real-time satellite and
sensor data. The system analyzes soil, crop identifica-
tion, and irrigation needs, offering farmers actionable
insights for resource optimization. This integrated
system demonstrates how combining multiple data
sources can contribute to more sustainable and effi-
cient farming practices [90].

Moreover, a study focused on crop selection and
yield prediction using machine learning techniques,
with Random Forest regression achieving an impres-
sive R? score of 0.96. This work also highlighted the
potential of Naive Bayes classifiers in accurately pre-
dicting crop types, achieving a remarkable 99.39%
accuracy in crop prediction, which is a valuable tool
for farmers in selecting the most suitable crops based
on environmental conditions [91].

Lastly, a study exploring the effectiveness
of Support Vector Regression (SVR) alongside
dimensionality reduction techniques like Principal
Component Analysis (PCA) for predicting crop yield
demonstrated high accuracy (97%) in forecasting
agricultural yield [92].

Collectively, these studies illustrate the trans-
formative potential of machine learning and deep
learning in precision agriculture. From improving soil
management to optimizing irrigation and enhancing

yield forecasts, these technologies are poised to play
a pivotal role in shaping the future of sustainable
agriculture.

5.4. Remote control of agricultural machinery

Remote control technologies (RCTs) of agricultural
machinery is a new direction in IoT applications
for agriculture. The IoT and RCT rely on intelligent
sensors to improve farm operations, efficiency, and
safety of farm machinery [93, 95]. The synergy of this
technology with IoT enable farmers to remotely con-
trol their machinery using smartphones, or tablets. It
also facilitates predictive maintenance of agricultural
machinery in real-time [97].

The landscape of agriculture is rapidly evolving
with the integration of cutting-edge technologies
aimed at improving precision, efficiency, and acces-
sibility. One of the most exciting advancements in
this field is the development of autonomous and
remote-controlled systems designed to assist farmers,
regardless of their experience level.

For instance, a remote tractor operating system de-
signed for novice users was introduced in 2023. This
system, utilizing a gamepad-like interface, simplifies
the control of tractors in challenging environments
where autonomous driving may not be feasible. Field
trials demonstrated their success, with operators able
to navigate and till fields with remarkable precision,
aligning implements within just 0.5 meters of their
intended targets [93].

Further enhancing the capabilities of agricultural
machinery, an IoT-based control platform for un-
manned farms was developed, enabling the remote
operation of multiple agricultural machines. This
platform dramatically reduces labor needs and boosts
operational efficiency by allowing precise coordina-
tion between machines. With high synchronization
and impressive mapping accuracy, errors were kept
under 3 cm, making it highly effective for large-scale
farming [94].

On a more immersive front, a teleoperation system
that integrates virtual reality (VR) with UAV-based
digital mapping for precision agriculture was intro-
duced. This system outperforms traditional video-
based remote operations, offering operators complete
situational awareness and improved control accuracy.
By utilizing advanced Structure from Motion algo-
rithms and a closed-loop VR control system, it enables
operators to engage with their equipment as if they
were physically present in the field, providing an in-
tuitive and effective means of managing agricultural
tasks [95].

Precision in navigation and control is crucial in
the realm of autonomous farming, especially when
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dealing with unpredictable terrains. A real-time re-
ceding horizon estimation and control (RHEC) system
for tracked field robots was developed to ensure
accurate navigation, even in challenging soils. This
system achieved a mean tracking error of just 4.23
cm and computation times under 1 ms, proving its
reliability for tasks such as planting and harvesting
[96].

In another significant development, an autonomous
tractor control system was created using RTK-GPS for
ultra-precise path tracking. This system was tested
on a Tianjin TieNiu crawler tractor and showed min-
imal linear route tracking errors, with maximum
deviations of 4.09 cm, ensuring the tractor’s precise
autonomous navigation [97].

Not all autonomous systems in agriculture rely on
GPS. A vision-based navigation system for agricul-
tural robots, capable of operating in the absence of
GPS, was introduced. Deployed on the BonnBot-I plat-
form, this system uses onboard cameras to track crop
rows, with an average accuracy of 3.82 cm across
a variety of field conditions, making it adaptable to
different farming environments [98].

The integration of Al into autonomous systems has
led to breakthroughs in real-time crop management.
An autonomous agricultural robot was developed to
incorporate a convolutional neural network (CNN)
for real-time weed detection. The robot was able to
identify and classify weeds with high accuracy, show-
casing the role of Al in reducing herbicide use and
promoting sustainable farming [99].

These advancements, from intuitive remote tractor
systems to Al-driven weed detection robots demon-
strate how emerging technologies are transforming
agriculture. By integrating IoT, Al, and autonomous
systems, farmers can perform tasks with greater preci-
sion, efficiency, and sustainability, ultimately paving
the way for a new era in agricultural productivity.

5.5. Autonomous tractors

Autonomous tractors, often known as self-driving
cars, are transforming the face of agricultural tech-
nology. These tractors use modern technologies such
as sensors, cameras, and artificial intelligence to navi-
gate and make decisions while driving autonomously,
hence eliminating the need for human participation.
The concept of self-driving tractors has been around
for decades, but recent advancements in technology
have made it fruition. One of the main benefits of
self-driving tractors is their ability to increase oper-
ational efficiency. With autonomous tractors, the risk
of human error is significantly reduced, as the tractor
is equipped with sensors that can detect and respond
to potential hazards faster than a human driver. This

technology has the potential to optimize resource use,
such as water and fertilizers. Moreover, autonomous
tractors have the potential to reduce greenhouse gas
emissions due to the ability to operate in hybrid
modes as electric or hybrid. However, there are still
challenges to overcome, such as regulatory and eth-
ical concerns, before we see widespread adoption of
autonomous tractors. Nonetheless, the future of agri-
culture looks promising with the advancement of this
technology.

The development of autonomous tractor-trailer
systems has benefited significantly from advances
in nonlinear model predictive control (NMPC). A
decentralized tube-based NMPC framework was in-
troduced to enhance robustness against disturbances
and ensure coordinated behaviour in tractor-trailer
dynamics [100]. In a related work, centralized NMPC
was applied with an online learning mechanism, im-
proving real-time control efficiency and adaptability
in unstructured field environments [101].

Handling parameter uncertainty and external dis-
turbances remains a key challenge in trajectory
tracking. A recent study introduced a robust control
framework capable of mitigating such uncertainties
while maintaining path fidelity, even under adverse
field conditions [102]. Complementing this, nonlin-
ear guidance laws have been successfully used to
simplify path-following control for autonomous trac-
tors, demonstrating effective course adherence on
complex trajectories [103].

Basic path-following systems have also evolved,
with Global Positioning System (GPS) and Real-Time
Kinematic (RTK) technologies enabling highly accu-
rate driverless tractor control systems with average
errors in the centimeter range [104]. Expanding be-
yond classical control methods, type-2 fuzzy logic
controllers have shown promise in managing un-
certainties and nonlinearities typical of off-road
agricultural environments [105].

Robust planning and control approaches are further
reinforced through formal modelling of uncertainty
sources in autonomous tractor-trailer systems, high-
lighting the need for adaptive algorithms capable
of adjusting to varying terrain and task complex-
ity [106]. Supporting these efforts, recent work on
all-terrain autonomous robots has demonstrated the
viability of navigation algorithms tailored for agricul-
tural settings, particularly where obstacle avoidance
and terrain irregularities are prominent [107].

5.6. Nanotechnology and IloT integration
Nanotechnology is a novel areas that use materi-

als at nanoscale to create agricultural products with
unique properties and traits [108]. Nanomaterials
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are being developed to facilitate early detection of
pathogens in crops and produce crops with enhanced
traits that can adapt to climate change and resist pest
and disease. Also, nano pesticides and nano fertilizers
are new areas of application of nanotechnology in
agriculture. Nanotechnology can be used to improve
soil quality and materials such as nano zeolites and
hydrogen can enhance soil stricture, water retention
and nutrient availability [110].

The convergence of nanotechnology and the Inter-
net of Things (IoT) is revolutionizing modern agri-
culture, offering farmers the tools to make real-time,
data-driven decisions that enhance productivity, ef-
ficiency, and sustainability. This smart integration
enables precise monitoring of crop health, soil condi-
tions, and environmental factors—ushering in a new
era of precision agriculture.

Zhang and Liu [108] pioneered an IoT-based agri-
cultural monitoring system using nano-enhanced sen-
sors such as SHT-11 for humidity, BH1750 for light,
and MS-10 for soil moisture. The system leveraged the
ZigBee protocol for efficient wireless communication,
proving effective in real-time field tests for crop con-
dition optimization.

Nanotechnology also plays a central role in tar-
geted crop and soil diagnostics. Samreen et al. [110]
highlighted how nano sensors enable the detection
of nutrient levels, moisture content, and early pest
infestations. These miniaturized devices operate with
high sensitivity and specificity, allowing for micro-
level interventions that reduce resource waste and
environmental harm.

Dinesh et al. [109] presented a broader perspec-
tive by integrating nano-biosensors with satellite-
based agricultural systems, forming a cyber-physical
framework for real-time soil fertility analysis, crop
health assessment, and input management. This al-
lowed for precise spatial decisions that minimize
over-application of fertilizers and pesticides while
maximizing yield.

Anuja et al. [111] emphasized the importance of
nano-sensors in decision-based farming, where inputs
are applied based on data from real-time environmen-
tal tracking. Their work detailed the use of nanoscale
biosensors combined with satellite imaging to guide
pesticide and fertilizer delivery, improving both yield
and environmental safety.

Moreover, recent trends in agricultural robotics
and automation are also beginning to incorporate
nano-enhanced IoT systems. These systems, equipped
with nano-sensors, can autonomously navigate fields,
identify plant stressors, and deliver remedies with
surgical accuracy. This not only reduces human
labor but also enhances farm-level autonomy and
scalability.

Beyond direct sensing, researchers are explor-
ing how nanomaterials—such as carbon nanotubes,
silver nanoparticles, and quantum dots—can be inte-
grated with IoT devices to improve sensor durability,
biocompatibility, and response time [112]. These
materials increase the reliability of long-term agricul-
tural monitoring systems, particularly in harsh field
environments.

In summary, the integration of nanotechnology into
IoT-based agriculture systems supports a paradigm
shift toward precision, sustainability, and automa-
tion. These innovations empower farmers with ac-
tionable insights, reduce dependency on harmful
chemicals, and ensure that inputs are applied only
when and where needed—paving the way for climate-
smart, resource-efficient farming.

5.7 Wearable sensors in agriculture

The demand for wearable sensors is increasing in
precision agriculture. One key reason for its high
demand is due to non-invasive technique employed
in its operation. These sensors are currently used in
crops and animals to collect real-time data for optimal
growth of livestock and crops. In disease detection,
it is mainly used to identify biochemical signals as-
sociated with plant animal diseases. The synergetic
combination of wearable sensors and IoT can improve
efficiency, resource conservation, crop management
and disease detection.

An IoT-enabled smart neck-collar combining tem-
perature, pulse-rate, and 3-axis motion sensors was
developed to monitor the health of dairy cows.
Random-Forest models flagged early health anoma-
lies in 150 dairy cows with 92% accuracy, enabling
prompt treatment and reducing veterinary costs
[113].

A chip-scale colorimetric nano-biosensor was fabri-
cated to quantify soil nitrate- and phosphate-nitrogen
in less than two minutes in the field. On 18 Indian
farms, the tool achieved R?> = 0.89 compared to
laboratory results and reduced fertilizer use by 25%
[114].

PlantRing, a silk-based stretchable strain sensor,
was introduced to track organ-circumference dynam-
ics in tomatoes. A wireless mesh of 300 rings was
used to automate irrigation decisions, reducing green-
house water use by 20% [115].

Hyperspectral imagers mounted on drones de-
tected wheat stem-rust seven days before visual
symptoms appeared. The Support Vector Machine
— Random Forest (SVM-RF) pipeline discriminated
healthy, mild, and severe infections with 85% overall
accuracy, safeguarding yield potential [116].
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Cattle behavior recognition from accelerometer
data was achieved by leveraging in-situ cross-device
model learning, improving real-time recognition ac-
curacy in monitoring animal activities and welfare
[117].

A leaf-mounted capacitance sensor was developed
to continuously monitor foliar transpiration and so-
lar irradiance as indicators of plant water status.
Continuous data correlated with stem-water poten-
tial, enabling fine-grained drip-irrigation scheduling
[118].

5.8. Renewable energy and loT integration in
agriculture

Unreliable grid energy system has long been iden-
tified as main challenge of agriculture, especially in
remotes areas [119]. The integration of Internet of
Things and renewable energy sources like wind, So-
lar, Solar thermal and battery storage system such
as fuel cell and hydrogen can compensate for grid
power unreliability and provide remote access of en-
ergy to farm operations. Also, the renewable energy
can power vital farm equipment and ensure that these
systems remain operational even in off-grid locations.

In the pursuit of sustainable agriculture, re-
searchers are harnessing the power of IoT and
renewable energy to revolutionize farming practices
across diverse regions. A low-cost, open-source smart
farming solution was designed to support small to
medium farms in arid and sub-Saharan regions. The
system uses Arduino-based sensors to monitor key
parameters like soil moisture, temperature, humidity,
and water level, while smart relays automate irri-
gation and lighting. It is powered entirely by solar
energy and managed by a Raspberry Pi running Node-
RED, with fuzzy logic enabling intelligent irrigation
decisions and Message Queuing Telemetry Trans-
port (MQTT) handling remote monitoring. Field trials
demonstrated impressive results: water usage was re-
duced by 71.8%, and soil moisture was consistently
maintained between 57%-65%, indicating both effi-
ciency and environmental sustainability [119].

A comprehensive smart agriculture framework inte-
grating solar panels, Battery Energy Storage Systems
(BESS), IoT, and precision robotics has also been
introduced. An Espressif Systems 32-bit (ESP32) mi-
crocontroller collects and manages real-time energy
and environmental data, feeding it into the Blynk
IoT platform for seamless visualization and control. A
Bluetooth-enabled robot applies chemicals accurately
based on sensor input, enhancing precision in farm
management. The system not only improved crop
health and irrigation efficiency but also achieved a
27% reduction in CO, emissions and lowered the

Levelized Cost of Energy from $0.300 to $0.170 per
kWh—a significant economic and environmental gain
[120].

A smart agriculture framework designed for regions
like Bangladesh aimed to improve farming through
real-time monitoring and decision-making. The sys-
tem includes soil moisture, salinity (via BJT BC548),
water level, humidity, and temperature sensors, with
Arduino Nano boards processing the data. Data is
sent via ESP8266 Wi-Fi modules to the cloud, where
farmers can access it through a smartphone app. Pow-
ered by solar panels, the system runs independently
of external power sources, enabling timely, informed
decision-making [121].

An IoT-enabled environmental control system pow-
ered by solar energy was developed for Indian
oyster mushroom cultivation. It features sensors for
temperature, humidity, and light, along with actua-
tors, Raspberry Pi 4 microcontrollers, and adaptive
control algorithms for maintaining optimal condi-
tions. The system also integrates battery storage for
uninterrupted power. Compared to traditional tech-
niques, it significantly reduced energy usage and
carbon emissions, proving effective for sustainable,
controlled-environment farming [122].

A smart agriculture monitoring system was cre-
ated using IoT sensors and renewable energy to
automate environmental monitoring and irrigation.
Soil moisture, humidity, and temperature sensors are
interfaced with an ESP32 microcontroller, which pro-
cesses and transmits data to a cloud platform via
Wi-Fi. Farmers monitor and control the system re-
motely using a web or mobile app. Powered by solar
panels, the system ensures energy efficiency and re-
duced operational costs while maintaining a reliable
power supply [123].

5.9. IoT application in crop storages

Nkanaunena and Chatola introduced a real-time
crop storage monitoring solution powered by IoT sen-
sors that continuously track critical environmental
parameters—gas levels, humidity, and temperature—
within storage facilities. When conditions drift from
the optimal range, the system instantly sends alerts,
enabling swift corrective actions. This not only helps
prevent spoilage but also substantially reduces post-
harvest losses by allowing early intervention [124].

To further address the challenges of safe grain
storage, Sivathanu et al. designed an intelligent silo
monitoring system. It uses sensors to detect CO, ac-
cumulation, humidity, and temperature, and employs
Google Apps Script to analyze and visualize this data.
The system includes an emergency protocol capa-
ble of releasing toxic gases, when necessary, thus
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preventing dangerous build-ups and enhancing both
grain preservation and operator safety [125].

Pushing the boundaries of environmental surveil-
lance, Lydia et al. implemented a sophisticated
sensor network across storage warehouses to monitor
grain level, temperature, humidity, vibration, carbon
monoxide, motion, and smoke. The system utilizes
PIC microcontrollers to collect data and GSM mod-
ules to upload it to the cloud. Real-time alerts are
issued through SMS and mobile apps, enabling rapid
response to risks such as fire, pests, or environmental
imbalances—effectively lowering spoilage rates and
improving overall warehouse safety [126].

Meanwhile, Viviane et al. developed an IoT-based
system tailored for both crop drying and storage.
By measuring parameters like temperature, humidity,
and moisture content, the system ensures optimal
drying and storage through automated control of
ventilation and heating systems. Data is processed
in real-time via a cloud platform, while remote
monitoring and real-time alerts enable immediate in-
terventions. This continuous monitoring minimizes
mold growth and pest infestation, preserving crop
quality and extending shelf life [127].

Focusing specifically on rice grains, Zari et al. de-
ployed IoT sensors in paddy storage units to monitor
temperature, humidity, and moisture levels. The data
is transmitted to a centralized cloud platform that
analyzes it in real-time. Automated adjustments to
ventilation and environmental settings help maintain
optimal conditions, reducing spoilage and preserving
grain quality during storage [128].

Lastly, Doltade et al. presented a comprehensive
IoT-based monitoring and control system aimed at
enhancing grain storage efficiency and safety. Utiliz-
ing a suite of sensors—DHT11 for temperature and
humidity, MQ2 and MQ135 for gas detection, and
PIR sensors for security—the system is anchored on a
NodeMCU ESP8266 microcontroller. Data is relayed
to the ThingSpeak cloud for visualization, while the
Blynk app provides remote access and alerts. When
parameters exceed safe thresholds, the system trig-
gers buzzers, fans, or relays to restore balance. This
real-time, automated intervention significantly curbs
spoilage risks and enhances overall grain storage
management [129].

6. Case studies

The growing demand for sustainable agricultural
systems has expanded the application of the Internet
of Things (IoT) across various sectors of agriculture
worldwide. Numerous real-world examples demon-
strate the successful integration of IoT technologies,

which are revolutionizing modern farming prac-
tices by enhancing productivity, sustainability, and
decision-making processes.

In countries like Israel, which is renowned for
its agricultural innovations, farms utilize soil mois-
ture sensors to obtain real-time data on water
requirements. These systems help optimize irrigation
schedules, reduce water waste, and improve crop
health. Similarly, India is leveraging IoT through star-
tups such as AgroStar, which provides farmers with
soil sensors that measure nutrient levels and mois-
ture content. This data is transmitted to a mobile
app, enabling informed decisions on fertilization and
irrigation, thus improving yields while minimizing
input costs. In Sub-Saharan Africa, IoT-based irriga-
tion systems for smallholder farmers are being used to
automate watering based on soil conditions, resulting
in efficient resource use and higher productivity.

IoT applications have also gained significant trac-
tion in livestock monitoring. In the United States,
companies like Allflex have developed wearable
sensors for cattle that monitor health indicators,
movement, and behaviour. These devices enable
early illness detection and efficient herd management
[130]. Australia is actively testing and deploying sim-
ilar wearable technologies that track cattle activity
and detect lameness or other health issues [64]. In
Kenya, GPS tracking collars are used for pastoral
herds to optimize grazing patterns and reduce live-
stock loss [97]. Zimbabwe’s start-up, Hurukuro, is
deploying livestock tracking systems and agricultural
drones across the farming value chain, supporting
logistics and animal monitoring [134].

IoT-enabled pest and crop health management
systems are another major application. Brazil, for in-
stance, uses drones and satellite imagery to monitor
crop conditions across expansive soybean and coffee
plantations [100]. Additionally, Brazil has imple-
mented sensor-based pest detection systems that can
trigger targeted responses such as releasing beneficial
insects or localized pesticide application, reducing
environmental impact and promoting sustainability
[110]. In Argentina, predictive analytics using Al and
machine learning models help anticipate pest and dis-
ease outbreaks in corn and soybean fields, allowing
for timely interventions.

Post-harvest management and supply chain opti-
mization are also benefiting from IoT adoption. China
has installed sensors in storage facilities to mon-
itor temperature, humidity, and spoilage in fruits
and vegetables, thereby minimizing losses [129].
Spain is currently utilizing RFID tags to monitor pro-
duce shipments, ensuring food safety and traceability
throughout the supply chain. In Rwanda, sensors are
being integrated into food storage systems to help
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maintain optimal conditions [133]. The United States
is exploring advanced solutions such as blockchain
platforms to provide end-to-end visibility in the beef
supply chain, enhancing traceability and consumer
trust [133].

Precision agriculture driven by data analytics is
another emerging trend. In the Netherlands, green-
house automation is facilitated by intelligent sensors
like Priva, which regulate temperature and humidity
autonomously to maintain ideal growing conditions
[131]. Japan uses Al and predictive models to fore-
cast crop yields and optimize planting and harvesting
schedules, especially for staple crops such as rice
[92]. Similarly, European nations such as Germany
and the Netherlands have adopted the EU’s IoF2020
Directive to encourage IoT use in agriculture, im-
proving efficiency and sustainability across the sector
[132].

Further advancing digital agriculture, the AGriDI
project spans several West African countries and pro-
motes the adoption of innovative digital technologies,
including IoT, to enhance food security and agri-
cultural productivity [135]. Across Europe, various
pilot initiatives are being developed to apply IoT for
real-time soil monitoring, climate data collection, and
crop condition analysis, enabling farmers to make
timely and precise agricultural decisions.

7. Challenges of internet in agricultural
systems

The integration of the Internet of Things (IoT) in
agricultural systems offers several benefits including
improved efficiency, crop storage and management,
and sustainability. However, it also presents signifi-
cant challenges such as:

71. Security concern

The integration of IoT in agriculture raises signifi-
cant security issues, including the risk of hacking and
data theft. As farms become more connected, they
become more vulnerable to cyberattacks, which can
compromise sensitive data and disrupt farm opera-
tions. Also, there is a risk that collected data could
be misused by the third parties, leading to potential
violations of personal privacy.

72. Cybersecurity concern

With the numerous devices connected to the net-
work, the potential entry point for cyber attacks
increase significantly, hackers can exploit vulnerabil-
ities in IoT devices to gain unauthorized access to

sensitive information or disrupt transportation ser-
vices. Robust cybersecurity measures are essential to
protect against these threats.

73. Complexity of integration and interoperability

Integrating IoT technologies with existing trans-
portation systems can be complex and resource in-
tensive. For instance, integrating IoT technology with
the existing agriculture system poise a great challenge
in terms of technicality. Intensive absence of univer-
sally accepted communication protocols, diverse data
formats and technologies, network complexity, inter-
connection issue and scalability are major challenges
of IoT in agriculture. In addition, integrating smart
sensors with farm machinery raises issues on compat-
ibility and connectivity .Counting crop sensor data
with environmental data on a computing platform
creates data sharing and system integration problems
since the data formats and technologies differs, and
there is no common technique for data fusion [113].
Interoperability may be difficult to achieve since var-
ious technologies differ in terms of data formats and
communication protocols. Also, disparity in software,
Apps functionalities and hardware capabilities can
limit the effectiveness of mobile applications across
different platform.

74. High implementation costs

High investment cost and system complexity are
another crucial barrier in deploying IoT technologies
in agriculture. Smart agricultural systems necessitate
substantial investments in hardware, software, and
infrastructure. This can be particularly challenging to
adoption for smaller farm holders with limited bud-
gets, since many existing agricultural systems may
require huge cost to accommodate significant up-
grades of IoT systems. Furthermore, implementation,
maintenance and upgrade of IoT technologies in agri-
cultural systems are complex, and require advanced
analytics capabilities and infrastructure in data man-
agement, Artificial Intelligence, and IoT technology.

75. Lack of awareness and information

Awareness and information are one of the major
barriers of adopting IoT in agriculture. Farmers need
to be aware of connectivity issues, data management
complexities, and the need for secure systems to
protect sensitive information. Farmers can be well-
informed on the state-of art in IoT through public
enlightenment, education, training programs and col-
laboration with technology provides.
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76. Connectivity issues

Inconsistent connectivity is one of the main chal-
lenges that the reliability of IoT devices in agriculture.
IoT system rely heavily on reliable connectivity to
function effectively. Any distortion in network signals
or network breakdown can lead to significant issues
such as gap in data collection and transmission, traffic
congestion, and delay response.

8. Discussion of the survey

Precision, efficiency, and sustainability have all in-
creased significantly because of the application of
Internet of Things (IoT) technology in agriculture.
Some patterns and trends show up in the case studies
and application areas that have been analysed. For
example, among the most developed and extensively
used applications are intelligent irrigation systems
and livestock monitoring technologies, which are mo-
tivated by observable cost reductions and increases in
output. However, because of high expenses, a lack of
digital literacy, and poor infrastructure, adoption is
still restricted in many low-income and smallholder
agricultural areas.

The capacity of IoT applications to produce real-
time, detailed data that enhances decision-making
is one of its main advantages. A scalable solution
to some of agriculture’s most urgent problems, such
as climatic variability, pest outbreaks, and wasteful
input utilization, is provided by technologies like
drones, smart sensors, and machine learning models.
The survey shows that, despite these benefits, de-
velopment and implementation vary by location and
farming scale.

Numerous difficulties still exist, such as:

+ Problems with data standardization and interop-
erability make it challenging to integrate across
platforms and devices.

« Issues with data security and privacy, especially
with cloud-based solutions.

* Real-time data transmission is hampered in re-
mote rural locations by energy and connectivity
constraints

 High upfront costs and a dearth of alternatives
specifically designed for smallholder farms.

Furthermore, many developing regions are still
only building basic sensor networks, while developed
nations are experimenting with Al, blockchain, and
predictive analytics. This draws attention to a digital
divide that requires localized technology develop-
ment, capacity training, and policy support.

Research-wise, there aren’t enough long-term per-
formance assessments of these systems available

right now, particularly in settings with limited re-
sources. Furthermore, interdisciplinary cooperation
is required to match technical advancements with
the ecological and socioeconomic realities of various
farming systems.

9. Future directions

The future of IoT in agriculture poises significant
transformation, driven by advancement in technology
and increasing demand for efficiency and food secu-
rity. However, some areas in smart agriculture that
require additional future directions are as follows:

* Security and privacy are crucial and serious
issues in agriculture industry. Cyber-attack in
agriculture infrastructure can be costly and fatal
to national security, public safety and econ-
omy. Future research should focus on developing
advanced encryption and anonymization tech-
niques. Also, research into adaptive cyber security
measures that can respond to evolving threats can
be exploited for maintaining the integrity of IoT
systems.
Exploring innovative funding models and cost-
sharing mechanisms can facilitate the adoption
of IoT technologies, particularly in resource-
constrained environments.
Promoting industry-wide standards for IoT de-
vices can enhance interoperability and allow
seamless integration across different platforms
and technologies.
» Implementing strict data governance policies can
help protect user privacy. This includes clear data
usage policies, user consent mechanisms, and reg-
ular audits of data handling services.
The use of blockchain technology can be adopted
to improve security, efficiency and data manage-
ment across various transportation networks. The
synergetic integration of blockchain technology
with IoT and AI can lead to smarter, reliable,
and sustainable transport systems that can adapt
to changing environmental conditions and user
needs.

+ Green agriculture system can be a policy impera-
tive for many developing countries, especially in
Africa, to reduce food scarcity and improve the
productivity and food security of agriculture as-
pect such crop management, livestock monitoring
and smart farming. This is in line with the United
Nations Sustainable Development Goal (UNSDG
1, 2,2,11, 15) on safe, affordable, accessible, and
sustainable transport systems for all by 2030. Sus-
tainable transport systems are vital for combating
climate change and improving air quality in cities.
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10. Conclusion

The adoption of IoT in agriculture signifies a rev-
olutionary change toward data-driven, efficient, and
sustainable farming methods. The broad role of IoT in
tackling the intricate problems facing the agriculture
industry, like irrigation, livestock monitoringresource
inefficiency, food insecurity, and crop health moni-
toring, has been examined in this paper. IoT makes it
possible to precisely and automatically control agri-
cultural processes using smart sensors, cutting-edge
communication technologies, and real-time moni-
toring systems. This leads to enhanced resource
management, decreased waste, and increased output.

Additionally, predictive decision-making, crop and
livestock management, and operational efficiency are
improved by the convergence of IoT with cutting-
edge technologies including artificial intelligence,
machine learning, big data analytics, cloud comput-
ing, and nanotechnology. From greenhouses to far
fields, communication technologies like cellular net-
works, satellites, and LPWAN guarantee reliable data
transfer in a variety of agricultural environments.

The analysis also highlights how sensor technol-
ogy is developing and how embedded systems hold
promise for upgrading agricultural processes. The on-
going development and uptake of IoT and related
technologies is crucial for accomplishing sustainable
development goals, guaranteeing food security, and
fostering economic resilience as agriculture faces in-
creasing demands because of population expansion
and climate change.

In conclusion, IoT-enabled agriculture is essential
for the future and not just a fad. To fully exploit the
potential of these technologies and to make smart
farming scalable and accessible across economies and
regions, more research, funding, and governmental
support will be needed.
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