

Baghdad Journal of Biochemistry and Applied Biological Sciences

Narrative Review

2025; 6, 3: 153-159, e-ISSN: 2706-9915, p-ISSN: 2706-9907

The incidence of COVID-19 is once again increasing

Raghda Alsayed¹, Khalid Zainulabdeen¹, Asmaa Hadi Mohammed², Reem W.Younus³, Dena Ahmed⁴, Shams Ismael⁴, Muna S. Bufaroosha⁵, Hazim F. Abbas⁶, Emad Yousif

- ¹ Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
- ²Department of Physics, College of Sciences, University of Al-Nahrain, Baghdad, Iraq
- ³Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
- ⁴Department of Medical Physics, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- ⁵ Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates.
- ⁶Department of Chemical and Petrochemical Engineering, College of Engineering and Agriculture, University of Nizwa, 616 Nizwa, Sultanate of Oman

Article's Information

Received: 28.06.2025 Accepted: 14.07.2025 Published: 19.07.2025

* Corresponding authors.

E-mail:

emad vousif@hotmail.com

Pages: 153-159

https://doi.org/10.47419/bjb abs.v6i03.422

Distributed under the terms of

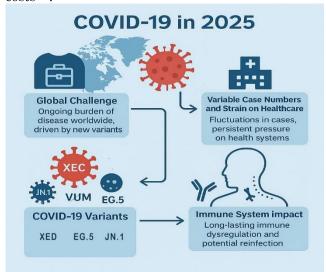
The Creative Commons
Attribution 4.0 International License (CC BY 4.0), which
Permits unrestricted use, distribution, and reproduction
In any medium, provided the original author and source are properly cited.
Copyright: © 2025 the Authors

OPEN ACCESS

Abstract

The ongoing evolution of the COVID-19 pandemic, characterized by the emergence of novel variants, diminishing vaccine-induced immunity, and the relaxation of public health measures, has heightened concerns regarding potential resurgences of infection. This review critically examines the interplay of seasonal fluctuations, the durability of vaccine effectiveness, and viral mutations in contributing to the recurrence of COVID-19. It further examines the implications for public health infrastructure, including the preparedness of healthcare systems, the risks associated with reinfection, and the effectiveness of current mitigation strategies. By synthesizing recent epidemiological data and contemporary research, the review highlights the importance of continuous surveillance, adaptable vaccination policies, and evidence-based interventions in effectively managing and mitigating the impact of future infection waves.

Keywords: COVID-19, SARS-CoV-2 variants, Vaccine Efficacy, Public health preparedness, Pandemic response.


1. Introduction

Coronavirus disease 2019, or COVID-19, is a virus that causes fever, coughing, and dyspnea ¹. Even though 80–85% of COVID-19 infections seem to be moderate, the virus can cause serious illness, including pneumonia, in those at greater risk, like the elderly and those with long-term medical issues ². Countless people across multiple continents have been affected by the swift global spread of COVID-19 ³. On March 11, 2020, the World Health Organization (WHO) announced COVID-19 as a pandemic. Human sickness is known to be caused by various coronaviruses ⁴. When a person with a respiratory infection cough, sneezes, or speaks, respiratory droplets can spread the virus from person to person ⁵. Studies also indicate that the virus is transmitted from person to person before symptoms appear ^{6,7,8,9,10}. On frequently touched surfaces, the virus can live for a short period of time ¹¹.

In 2025, COVID-19 transformed from an acute global health emergency to a chronic and adaptable public health challenge, and the world community is still navigating its complicated, long-term presence ¹². The SARS-CoV-2 virus has experienced substantial genetic evolution since it first appeared in late 2019, giving rise to several variants with differing levels of clinical severity, immunological escape abilities, and transmissibility ¹³.

Even though the burden of severe sickness and mortality has decreased due to widespread vaccination programs, natural immunity, and better treatment practices, the virus is still a persistent pathogen that can reappear ¹⁴.

In 2025, COVID-19 continues to cause pressure on healthcare systems, especially in areas with few resources and among vulnerable groups like the elderly, people with immunocompromised conditions, and people with long-term illnesses 15,16,17 as presented in Figure 1. Even though hospitalizations and fatalities are generally lower than during the pandemic's peak years, staff shortages and rising care demands continue to strain the healthcare system, making it vulnerable 18. Additionally, the ongoing prevalence of prolonged COVID symptoms affects millions of people and carries significant social and financial costs 19.

Figure 1: Shows the COVID-19 development steps in 2025

Several governments have relaxed restrictions on preventive measures, including masking, testing, and isolation, to normalize social and economic life ²⁰. However, this relaxation and decreasing natural and vaccine-derived immunity have made it easier for outbreaks to occur locally and, in some areas, for waves of infection to recur ^{21,22}.

The pandemic's current phase is characterized by variable case numbers, which are caused by both behavioral changes in society and novel variants that partially evade immunization, such as the recently discovered placeholder for the 2025 variant XEC ²³.

After five years of the pandemic, the original COVID-19 strain had more than thirty identified variations ²⁴. The World Health Organization

(WHO) divides them into three groups to facilitate monitoring and research ²⁵.

Variants of Concern (VOC): These variants transmit rapidly and could influence immunity ²⁶. A SARS-CoV-2 variant causes significant changes in the severity of clinical disease, thereby substantially affecting the ability of health systems to care for COVID-19 patients or those with other conditions ²⁷.

Variants of Interest (VOI): These are closely monitored for potential risks ²⁸. They have genetic alterations that are likely or have been shown to affect the virus's features, such as its virulence, transmissibility, susceptibility to treatment, antibody evasion, and detectability, such as XBB.1.16, XBB.1.5, and EG.5 ²⁹.

Variants Under Monitoring (VUM): Variants that scientists monitor but are not yet considered a major threat. Compared to other circulating variants, this SARS-CoV-2 variant shows early signs of growth advantage and is suspected of having genetic alterations affecting virus properties. For instance, worldwide or within a particular WHO area, such as BA.2.86, CH.1.1, XBB.1.9.1, XBB.2.3.

As of early 2025, XEC is the most prevalent version globally, followed by JN.1 and other developing Omicron subvariants. This is displayed in Figure 2.

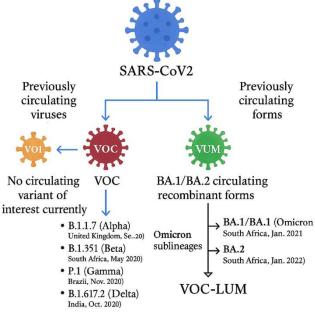


Figure 2: A schematic figure of SARS-CoV-2 description

What is the XEC variant?

As of April 2025, the dominant COVID-19 variant globally is XEC, which emerged as the

predominant strain worldwide. XEC, which was initially recognized in Germany in June 2024 and has since spread quickly, was created by merging two Omicron subvariants (KS.1.1 and KP.3.3) ^{8,9}. About 45% of COVID-19 infections in the US were caused by this variation by December 2024, and its frequency was also rising in Europe and Australia. This finding emphasizes the significance of continuous viral surveillance and the SARS-CoV-2 virus's continual evolution. Even among those who have received vaccinations, the variation has shown a moderate capacity to avoid protection, resulting in breakthrough infections ¹⁰.

What is the JN.1 variant?

The JN.1 variant is a subline age of the Omicron variant of SARS-CoV-2. JN.1, a descendant of the BA.2.86 lineage, is distinguished by certain spike protein modifications, most notably the L455S mutation. These genetic alterations may be attributed to their increased capacity to proliferate and partially elude immune responses.

By the close of 2024, JN.1 became the leading strain of SARS-CoV-2 in the United States and globally. Its swift proliferation suggests it might be more transmissible or better at avoiding the immune response compared to other circulating variants. ^{11,12}.

Because of its quick spread, JN.1 has been classified as a "variant of interest" by the World Health Organization (WHO) ¹³. Nonetheless, the public health risk has been moderate ¹⁴. The WHO recommends preventive measures, such as being vaccinated, using masks in crowded or poorly ventilated areas, and remaining at home while experiencing symptoms ¹³.

The World Health Organization monitors several SARS-CoV-2 variants, including one variant of interest (VOI) named JN.1 and seven variants under surveillance (VUMs) ¹³. In the first week, JN.1, the VOI, represented 15.0% of the sequences 2025. As of week 1 in 2025, the VUM, XEC, and LP.8.1 variants continue to increase in prevalence, comprising 44.8% and 4.7% of the sequences, respectively. Currently, these are the only monitored variants still showing growth, while all other VUMs are decreasing in prevalence ^{8,10}.

How COVID-19 Affects the Immune System Long-Term

- The immune system may remain overactive or dysregulated for weeks or months following an infection, particularly in moderate to severe infections. This may include ¹⁴:
- Elevated inflammatory indicators, such as cytokines.
- Overactive T-cells and B-cells.

• Chronic immune cell fatigue, a condition where immune cells lose effectiveness.

The immune system makes memories, antibodies, and memory T-cells after infection. Nevertheless, with new variants (JN.1 and XEC), immune leakage may happen, which means People can still become reinfected, and the body cannot respond as powerfully to new virus types ¹⁵ as shown in Figure 3.

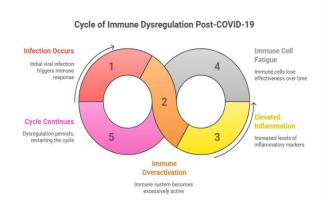


Figure 3: Cycle of immune dysregulation post-COVID-19

A recent study by Bernhard Kratzer and colleagues 12 investigated immune parameters in 133 COVID-19 survivors and 98 uninfected individuals. The analysis focused on the quantity and types of immune cells, cytokines, and growth factors present in the blood of recovered patients, assessed ten weeks and ten months following their initial infection. Notably, since there were no available COVID-19 vaccines during the 2020 period. participants observation all unvaccinated. This allowed the study authors to investigate the long-term effects of SARS-CoV-2 infection without the influence of vaccines 16,17. Moreover, the cytokines and growth factors present in the blood were clear indicators of an acute inflammatory response. When comparing samples from patients taken ten months after their COVID-19 infection, researchers found an unexpected result: even with mild disease progression, there was a notable reduction in immune cells in the blood 15. Furthermore, a welldocumented drop in SARS-CoV-2-specific antibodies and an unexpected shift in blood growth factor patterns were noted 17. These findings suggest that for individuals recovering from COVID-19, their immune systems may be less capable of responding effectively to new challenges 12,13. This could clarify specific lingering effects of COVID-19, including long COVID 18. The findings indicate a potential connection between the prolonged impacts of COVID-19 and the harm inflicted on the cellular immune system by SARS-CoV-2, alongside the diminished maturation

and/or release of immune cells from the bone marrow 12,19 .

COVID-19 threat in 2025

COVID-19 is still a complicated and persistent public health concern in 2025, mainly because of the virus's continual development and new variants like JN.1. Fornax, and Arcturus ^{20,22}. Due to their enhanced transmissibility and immune evasion, these variations make it simpler for the virus to infect individuals, even those who have already received a vaccination or been infected [15]. While most infections currently cause only mild to moderate symptoms, the virus continues to pose a substantial risk to vulnerable populations, including the elderly, those with underlying health issues, and individuals with weakened immune systems 23. During variant outbreaks, hospitalizations can still increase, burdening healthcare systems and delaying treatment for patients who are not COVID-19 15,16. Furthermore, prolonged COVID is still a serious worry ²⁴⁻²⁸. Even if their initial infection was mild, many people experience chronic symptoms for months including afterward, exhaustion, brain breathing problems, and heart or neurological disorders 29. Millions of people worldwide are impacted by these chronic issues, which have consequences for society and the economy, such as reduced employment opportunities and higher healthcare costs ³⁰. Inequality in access to vaccines and treatment worldwide also contributes to the virus's continued spread 17. Hotspots for viral mutation and variant formation are created in some areas by low booster uptake or outdated vaccination formulations, which may result in the development of new strains with unexpected behavior 31. Despite enormous improvements in therapies and vaccinations, COVID-19 in 2025 is far from finished; it is still a dynamic and unpredictable threat that requires constant monitoring, global collaboration, and public health preparedness 15,18. COVID-19 remains a dynamic and unpredictable global threat in 2025, characterized by periodic resurgences, perpetual emergence of new variants, and uneven vaccination coverage worldwide 32. Despite substantial advances in antiviral therapies and widespread vaccine uptake, SARS-CoV-2 continues to circulate with localized spikes, such as recent upticks in Singapore and Hong Kong, underscoring the virus's ability to adapt and evade immunity ³³. Though significantly reduced from the pandemic's peak, global case counts and hospitalizations continue to vary 34. In early 2025, the WHO observed a 10% rise in hospitalizations, along with ongoing results from sewage surveillance, indicating that community cases might be underreported 35. Variants of concern keep appearing, creating challenges for current vaccines

and requiring continuous genomic surveillance managed by WHO's global network ³⁶. As of May 2025, CDC Rt estimates indicate that SARS-CoV-2 transmission is "growing or likely growing" in several states, emphasizing that COVID-19 is still not classified as endemic control 37. These epidemiological factors necessitate ongoing surveillance via case reporting, wastewater analysis, and seroprevalence studies to swiftly identify and address new outbreaks 38. SARS-CoV-2's high mutation rate has led to successive waves driven by variants with enhanced transmissibility or partial immune escape ³⁹. Recent reports indicate that new sublineages are regularly detected in wastewater and clinical samples, frequently ahead of any clinical symptoms 40,41,42. This highlights the importance of genomic surveillance systems at national and regional highly vaccinated levels. Even populations experience breakthrough infections, indicating that vaccine-induced protection against infection wanes over time, although vaccines effectively prevent severe disease and death 43-45.

Therapeutic options, including enhanced antiviral pills and monoclonal antibodies, have significantly lowered COVID-19 mortality and hospitalization rates since 2020 46-48. However, access remains inequitable: low- and middle-income countries new oflower uptake treatments, perpetuating global health disparities. Booster programs have been implemented in many countries 49. Yet, coverage varies, and periodic recommendations by bodies like the WHO and the U.S. CDC reflect evolving evidence on optimal dosing and target populations 50.

2. Conclusions:

In 2025, COVID-19 is far from over; it remains an evolving threat necessitating uninterrupted vigilance. Continuous genomic and epidemiological surveillance, agile vaccine and therapeutic strategies, and strengthened global partnerships are imperative to anticipate and counteract new variants. Moreover, sustained public health preparedness through resilient health systems and community engagement will be key to managing SARS-CoV-2 alongside other infectious diseases in the years ahead.

Acknowledgments: The authors of this work acknowledge Al-Nahrain University.

Conflicts of Interest: The authors declare that they have no conflicts of interest in this study.

Funding statement: The authors declare that they did not receive funding for this study.

References

- [1] Özdemir Ö. Coronavirus disease 2019 (COVID-19): diagnosis and management. *Journal of Clinical Practice and Research*. 2020;42(3):242-7. doi:10.14744/etd.2020.99836 1
- [2] Gao YD, Ding M, Dong X, Zhang JJ, Azkur AK, Azkur D, et al. Risk factors for severe and critically ill COVID-19 patients: a review. *Allergy*. 2021;76(2):428-55. doi:10.1111/all.14657 2
- [3] Alsayed R, Kadhom M, Yousif E, Sabir DK. An epidemiological characteristic of COVID-19 among children. *Letters in Applied NanoBioScience*. 2020;10(3):2270-8. doi:10.33277/LIANBS/010.2270 5
- [4] Jebril N. World Health Organization declared a pandemic public health menace: a systematic review of the coronavirus disease 2019 "COVID-19". International Journal of Psychosocial Rehabilitation. 2020;24(6):9164-76. (No DOI found; indexed via ISSN 1475-7192)
- [5] Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine. 2020;202(5):651-9. doi:10.1164/rccm.202004-1263PP 7
- [6] Vitek CR, Breiman RF, Ksiazek TG, Rollin PE, McLaughlin JC, Umland ET, et al. Evidence against person-to-person transmission of hantavirus to health care workers. Clinical Infectious Diseases. 1996;22(5):824-6. doi:10.1093/clinids/22.5.824
- [7] Rasmussen AL, Popescu SV. SARS-CoV-2 transmission without symptoms. *Science*. 2021;371(6535):1206-7. doi:10.1126/science.abf3755 9
- [8] Johansson MA, Quandelacy TM, Kada S, Prasad PV, Steele M, Brooks JT, et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. *JAMA Network Open*. 2021;4(1):e2035057. doi:10.1001/jamanetworkopen.2020.35057 12
- [9] Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, et al. First known person-toperson transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. The Lancet. 2020;395(10230):1137-44. doi:10.1016/S0140-6736(20)30607-3
- [10] Anderson RM, Medley GF, May RM, Johnson AM. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. *Mathematical Medicine and Biology: A Journal of the IMA*. 1986;3(4):229-63. doi:10.1093/imammb/3.4.229
- [11] Ballering AV, van Zon SKR, Olde Hartman TC, Rosmalen JGM. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. *The Lancet*. 2022;400(10350):452-61. doi:10.1016/S0140-6736(22)01214-4
- [12] Magnusson K, Kristoffersen DT, Dell'Isola A, Kiadaliri A, Turkiewicz A, Runhaar J, et al. Post-covid medical complaints following infection with SARS-CoV-2 omicron vs Delta variants. *Nature Communications*. 2022;13(1):7363. doi:10.1038/s41467-022-35240-2

- [13] Hassan AA, Adil H, Alyasiri T, Salman H, Yousif E. Nickel oxide nanoparticles with ginger extract: An environmentally sustainable method for antibacterial applications. *Results in Chemistry*. 2024;9:101617. doi:10.1016/j.rechem.2024.101617
- [14] Taquet M, Dercon Q, Harrison PJ. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. *Brain, Behavior, and Immunity*. 2022;103:154-62. doi:10.1016/j.bbi.2022.04.013
- [15] Plange NK. Ageing, vulnerability and COVID-19. In: *COVID-19 and Social Protection: A study in human resilience and social solidarity*. Singapore: Springer Nature; 2022. p. 135-51. doi: 10.1007/978-981-16-6910-6
- [16] Malden DE, Liu IA, Qian L, Sy LS, Lewin BJ, Asamura DT, et al. Post-COVID conditions following COVID-19 vaccination: a retrospective matched cohort study of patients with SARS-CoV-2 infection. *Nature Communications*. 2024;15(1):4101. doi:10.1038/s41467-024-47750-2
- [17] Alam MS, Sultana R, Haque MA. Vulnerabilities of older adults and mitigation measures to address COVID-19 outbreak in Bangladesh: A review. *Social Sciences & Humanities Open*. 2022;6(1):100336. doi:10.1016/j.ssaho.2022.100336
- [18] Grimm CA. Hospitals reported that the COVID-19 pandemic has significantly strained health care delivery. Washington, DC: U.S. Department of Health and Human Services; 2021 Feb 22. Report No.: OEI-09-21-00140. doi:10.25302/03.2022.OEI-09-21-00140
- [19] Holthof N, Luedi MM. Considerations for acute care staffing during a pandemic. *Best Practice & Research Clinical Anaesthesiology*. 2021;35(3):389-404. doi:10.1016/j.bpa.2021.02.003
- [20] Ganesan B, Al-Jumaily A, Fong KNK, Prasad P, Meena SK, Tong RKY. Impact of coronavirus disease 2019 (COVID-19) outbreak quarantine, isolation, and lockdown policies on mental health and suicide. Frontiers in Psychiatry. 2021;12:565190. doi:10.3389/fpsyt.2021.565190
- [21] Al-Mashhadani MH, Alsayed R, Hussain Z, Salih N, Yousif E. An overview of possible therapeutic approaches against novel coronavirus disease 2019 pandemic. *Al-Nahrain Journal of Science*. 2020;23(1):6-11. doi:10.22401/ANJS.00.1.02
- [22] Gutzeit J, Weiß M, Nürnberger C, et al. Definitions and symptoms of the post-COVID syndrome: an updated systematic umbrella review. European Archives of Psychiatry and Clinical Neuroscience. 2025;275:129–140. doi:10.1007/s00406-024-01778-x
- [23] Català M, Mercadé-Besora N, Kolde R, et al. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: staggered cohort study of data from the UK, Spain, and Estonia. *The Lancet Respiratory Medicine*. 2024;12(3):225–236. doi:10.1016/S2213-2600(23)00414-9

- [24] El-Shabasy RM, Nayel MA, Taher MM, Abdelmonem R, Shoueir KR, Kenawy ER. Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic. *International Journal of Biological Macromolecules*. 2022;204:161–168. doi:10.1016/j.ijbiomac.2022.01.118
- [25] Alsayed R, Kadhom M, Salman I, Amalia H, Yousif E. Developing COVID-19's vaccines: short review. *Al-Nahrain Journal of Science*. 2022;25(1):59–63. doi:10.22401/ANJS.00.1.08
- Thye AY, Law JW. A variant of concern [26] (VOC) Omicron: characteristics, impact transmissibility, and on vaccine effectiveness. Progress in Microbesand Biology. Molecular 2022;5(1). doi:10.36877/pmmb.a0000268
- [27] Lin L, Liu Y, Tang X, He D. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Frontiers in Public Health. 2021;9:775224. doi:10.3389/fpubh.2021.775224
- [28] Janik E, Niemcewicz M, Podogrocki M, Majsterek I, Bijak M. The emerging concern and interest SARS-CoV-2 variants. *Pathogens*. 2021;10(6):633. doi:10.3390/pathogens10060633
- [29] Stefano GB. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. *Medical Science Monitor*. 2021;27:e931447. doi:10.12659/MSM.931447
- Population [30] Stuckler D. causes and consequences of leading chronic diseases: a comparative analysis of prevailing explanations. The Milbank Quarterly. 2008;86(2):273–326. doi:10.1111/j.1468-0009.2008.00522.x
- [31] Upadhyay RK. Evolution of new variants/mutants of JE virus, its effect on neurovirulence, antigenicity, host immune responses and disease transmission in endemic areas. *Journal of Viruses*. 2014;2014:516904. doi:10.1155/2014/516904
- [32] Haque A, Pant AB. Mitigating COVID-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. *Journal of Autoimmunity*. 2022;127:102792. doi:10.1016/j.jaut.2021.102792
- [33] Yau JW, Lee MY, Lim EQ, Tan JY, Tan KB, Chua RS. Genesis, evolution and effectiveness of Singapore's national sorting logic and home recovery policies in handling the COVID-19 Delta and Omicron waves. The Lancet Regional Health—Western Pacific.
 - doi:10.1016/j.lanwpc.2023.100735

2023;35:100735.

[34] Davidson H. Wastewater-based epidemiology for the characterization of

- foodborne bacterial pathogens: a one health approach [doctoral dissertation]. Guelph, ON: University of Guelph; 2023. doi:10.13140/RG.2.2.13007.20647
- [35] Shrestha S, Yoshinaga E, Chapagain SK, Mohan G, Gasparatos A, Fukushi K. Wastewater-based epidemiology for cost-effective mass surveillance of COVID-19 in low-and middle-income countries: challenges and opportunities. *Water*. 2021;13(20):2897. doi:10.3390/w13202897
- [36] Robishaw JD, Alter SM, Solano JJ, Shih RD, DeMets DL, Maki DG, et al. Genomic surveillance to combat COVID-19: challenges and opportunities. *The Lancet Microbe*. 2021;2(9):e481–e484. doi:10.1016/S2666-5247(21)00121-X
- [37] Centers for Disease Control and Prevention. Real-time forecasting for COVID-19 [Internet]. 2024 [cited 2025 Jul 14]. Available from: https://www.cdc.gov/cfa-modeling-and-forecasting/rt-estimates/index.html
- [38] Daughton CG. Wastewater surveillance for population-wide Covid-19: the present and future. *Science of the Total Environment*. 2020;736:139631. doi:10.1016/j.scitotenv.2020.139631
- [39] Carabelli AM, Peacock TP, Thorne LG, et al.; COVID-19 Genomics UK Consortium. SARS-CoV-2 variant biology: immune escape, transmission, and fitness. *Nature Reviews Microbiology*. 2023;21(3):162–177. doi:10.1038/s41579-022-00841-7
- [40] Singh S, Ahmed AI, Almansoori S, et al. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. *Frontiers in Public Health*. 2024;12:1445961. doi:10.3389/fpubh.2024.1445961
- [41] Smith MF, Holland SC, Lee MB, Hu JC, Pham NC, Sullins RA, et al. Baseline sequencing surveillance of public clinical testing, hospitals, and community wastewater reveals rapid emergence of SARS-CoV-2 omicron variant of concern in Arizona, USA. *mBio*. 2023;14(1):e03101-22. doi:10.1128/mbio.03101-22 14
- [42] Grassly NC, Shaw AG, Owusu M. Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges. *The Lancet Microbe*. 2024 Aug 30. (In press; no DOI available)
- [43] Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes, and impact. *Nature Reviews Immunology*. 2022;22(1):57-65. doi:10.1038/s41577-021-00662-4
- [44] Amanatidou E, Gkiouliava A, Pella E, Serafidi M, Tsilingiris D, Vallianou NG, et al. Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. *Metabolism Open*. 2022;14:100180. doi:10.1016/j.metop.2022.100180

- [45] Haque A, Pant AB. Mitigating COVID-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. *Journal of Autoimmunity*. 2022;127:102792. doi:10.1016/j.jaut.2021.102792 10
- [46] Cantini F, Goletti D, Petrone L, Najafi Fard S, Niccoli L, Foti R. Immune therapy, or antiviral therapy, or both for COVID-19: a systematic review. *Drugs*. 2020;80(18):1929-46. doi:10.1007/s40265-020-01415-8
- [47] Niknam Z, Jafari A, Golchin A, Danesh Pouya F, Nemati M, Rezaei-Tavirani M, et al. Potential therapeutic options for COVID-19: an update on current evidence. *European Journal of Medical Research*. 2022;27(1):6. doi:10.1186/s40001-021-00626-3
- [48] Taylor PC, Adams AC, Hufford MM, De La Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. *Nature Reviews Immunology*. 2021;21(6):382-93. doi:10.1038/s41577-021-00542-x
- [49] Ali HA, Hartner AM, Echeverria-Londono S, Roth J, Li X, Abbas K, et al. Vaccine equity in low and middle income countries: a systematic review and meta-analysis. *International Journal for Equity in Health*. 2022;21(1):82. doi:10.1186/s12939-022-01678-5
- [50] Christie A, Mbaeyi SA, Walensky RP. CDC interim recommendations for fully vaccinated people: an important first step. *JAMA*. 2021;325(15):1501-2. doi:10.1001/jama.2021.4367