
 

822 
 

جحث جوزيعات  (Variational) الاسحدلال انقابم نهحوسع في اننماذج انبايزية نهن ِّسَب: مناهج جقاربية

ثة  اححمانية مهو 

 عهً طلال محمد

 لسى انشٌبضٍبد، كهٍخ انعهٕو، عبيعخ يحمك أسدثٍهً، إٌشاٌ

  alitalalali9919@gmail.comانجشٌذ الإنكزشًَٔ نهًؤنف انًشاسم:

 07000003070سلى انٓبرف: 

 انمهخص:

ٔالاَحذاس  (Binomial Regression) رسُزخذو انًُبرط انجبٌضٌخ نهُِّسَت يضم الاَحذاس ري انزٕصٌع انضُبئً

انصحٍخ، ٔانعهٕو الاعزًبعٍخ، ٔرحهٍلاد انجٍبَبد عهى َطبق ٔاسع فً انعهٕو  (Beta Regression) ثٍزب

انشلًٍخ. ٔسغى يب رٕفشِ ْزِ انًُبرط يٍ إطبس يزًبسك نمٍبط عذو انٍمٍٍ، فئَٓب شذٌذح انحسبسٍخ نهزهٕس 

ـ  (MCMC) ٔانجٍبَبد انشبرح، كًب أٌ طشق الاسزذلال انزمهٍذٌخ ـ خبصخً سلاسم يبسكٕف يَٕذ كبسنٕ

يم يع لٕاعذ ثٍبَبد ضخًخ. ٌمذوّ ْزا انجحش يُبْظ اسزذلال رمبسثً ثبٌضي رصجح غٍش عًهٍخ عُذ انزعب

 .لبثهخ نهزٕسع نًعبنغخ انًُبرط انُسجٍخ رحذ رٕصٌعبد احزًبنٍخ يهٕصخ (Variational Inference) يزذسّط

ً انز (Mixture-based) انًُزعخ ثبنزٕصٌعبد انًخزهطخ (1) :ٌٔعزًذ انعًم عهى اسزشارٍغٍزٍٍ يزكبيهزٍٍ

ٍ يٍ رٕصٍف احزًبنٍخ انزهٕس يجبششح عجش ًَٕرط الاسزذلال انمبئى عهى  ε-contaminationٔ ،(2) رًُكِّ

نزمهٍم رأصٍش انمٍى انًزطشفخ. ٔلذ رى ديظ انطشٌمزٍٍ  β ثبسزخذاو رجبٌٍ (Divergence-based) انزجبٌُبد

َبد ٔاسعخ انُطبق. ٔرظُٓش انزغبسة ثًب ٌغعهّ يلائًبً نهجٍب (SVI) فً إطبس الاسزذلال انزمبسثً انعشٕائً

ً فً دلخ انزمذٌش، ٔيعبٌشح انفٕاصم الاحزًبنٍخ، ٔأداء  ً ٔاضحب انعذدٌخ أٌ الأسبنٍت انًمزشحخ رحمك رحسُب

انزُجؤ حزى فً ٔعٕد رهٕس يشرفع، يع انحفبظ عهى انكفبءح انحسبثٍخ. ٔرؤكذ انُزبئظ أٌ انًزبَخ ٔانمبثهٍخ 

 .يًب ٌٕفش أدٔاد عًهٍخ نزحهٍم انجٍبَبد انُسجٍخ فً انجٍئبد انحمٍمٍخنهزٕسع ًٌكٍ أٌ رزحمك يعبً، 

، انزٕصٌعبد (Variational Inference) :انًُبرط انجبٌضٌخ نهُِّسَت، الاسزذلال انزمبسثًانكهمات انمفحاحية

 .انًهٕصخ، الأسبنٍت انجبٌضٌخ انًزٍُخ، الاسزذلال انمبثم نهزٕسع
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Abstract 

Bayesian proportion models, such as Binomial and Beta regression, are widely 

applied in health sciences, social research, and digital analytics. While these 

models provide coherent uncertainty quantification, they are highly sensitive to 

contamination and outliers. Furthermore, traditional inference methods, 

particularly Markov chain Monte Carlo (MCMC), are computationally 

prohibitive for large datasets. This study develops scalable variational 

inference approaches for Bayesian proportion models under contaminated 

likelihoods. Two complementary strategies are considered: (i) mixture-based 

inference that explicitly models contamination via an ε-contamination 

likelihood, and (ii) divergence-based inference that employs β-divergence to 

reduce the influence of outliers. Both methods are implemented in a stochastic 
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variational framework suitable for large-scale applications. Simulation studies 

demonstrate that the proposed approaches substantially improve estimation 

accuracy, posterior calibration, and predictive performance under contamination, 

while maintaining scalability. The results highlight that robustness and 

efficiency can be achieved simultaneously, providing practical tools for modern 

Bayesian analysis of proportion data. 

Keywords: Bayesian Proportion Models, Variational Inference, Contaminated 

Likelihoods, Robust Bayesian Methods, Scalable Inference 

1. Introduction 

Proportion data are common in many areas of research and practice. They 

appear in situations where interest lies in the share of successes, events, or 

outcomes relative to a total. Examples include disease prevalence in health 

studies, click-through rates in digital platforms, or the fraction of land devoted to 

a crop in agriculture. To analyze such data, Bayesian proportion models are 

widely used because they not only provide flexible modeling but also offer a 

coherent framework for quantifying uncertainty. 

Despite their usefulness, these models face two major challenges in real-world 

applications. The first is data contamination. In practice, datasets often include 

outliers or irregular observations that arise from measurement errors, 

misreporting, or unexpected variation. Standard likelihood-based Bayesian 

inference is highly sensitive to these issues, and even a few problematic data 

points can distort estimates and uncertainty measures. The second challenge is 

scalability. Modern datasets are frequently very large, containing thousands or 

even millions of observations. While traditional sampling-based approaches like 

Markov chain Monte Carlo remain a gold standard for accuracy, they are often 

too slow or computationally demanding for such scales. 

This research addresses these two challenges together. The aim is to develop 

robust and scalable inference methods for Bayesian proportion models. 

Robustness is achieved by explicitly modeling contamination in the likelihood 

or by using generalized divergences that naturally down weight the effect of 

extreme observations. Scalability is ensured through the use of variational 

inference (VI), which approximates posterior distributions by solving an 

optimization problem, making it suitable for large-scale applications. 

The contributions of this work can be summarized as follows: 

1. A framework for incorporating contaminated likelihoods into Bayesian 

proportion models. 

2. Variational inference methods tailored for these models, including efficient 

formulations of the evidence lower bound (ELBO). 
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3. A comparison between mixture-based contamination modeling and 

divergence-based robust objectives. 

4. Empirical studies, both simulated and real, demonstrating improved 

robustness and computational efficiency compared to standard approaches. 

By combining ideas from robust statistics and scalable Bayesian computation, 

this study provides new tools for analyzing proportion data under realistic 

conditions where contamination and large sample sizes cannot be ignored. 

2. Background and Related Work 

Bayesian methods have long been central to the analysis of proportion data. 

Classical models include the Binomial regression, which is suitable when 

observations are expressed as counts of successes out of a fixed number of trials, 

and the Beta regression, which is commonly applied when proportions are 

measured on a continuous scale between zero and one [1], [2]. These models 

allow prior information to be combined with observed data, producing full 

posterior distributions over parameters. Such approaches have been widely used 

in health studies, social sciences, and online platforms, where proportions often 

carry essential decision-making value [3]. 

While effective in principle, standard Bayesian inference for these models is 

often limited by two factors: robustness and scalability. The problem of 

robustness has been studied extensively in statistics. Outliers and contaminated 

data can exert disproportionate influence on likelihood-based inference, leading 

to biased results and misleading uncertainty quantification [4], [5]. To address 

this, a range of robust Bayesian methods have been proposed, including the 

use of heavy-tailed distributions, contamination mixtures, and alternative 

divergence measures [6], [7]. These methods aim to protect inference from the 

harmful impact of extreme or corrupted observations. 

The issue of scalability has gained increasing attention in recent years, 

especially with the growth of large-scale datasets. Markov chain Monte Carlo 

(MCMC) remains the most reliable tool for Bayesian computation, but its high 

computational cost makes it impractical for massive data [8]. This challenge has 

motivated the development of variational inference (VI), an optimization-

based approach that approximates posterior distributions by minimizing a 

divergence between the true posterior and a simpler family of distributions [9], 

[10]. Variational methods trade some accuracy for significant computational 

gains, making them a leading choice for large and complex models. 

More recently, researchers have explored combining these two directions: 

robustness and variational inference. Work in this area has considered 

generalized divergences, such as the β-divergence and Rényi divergence, as well 

as mixture-based approaches for modeling contamination directly [11], [12]. 
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These advances show that robust inference can be made practical at scale, 

though applications to proportion models remain relatively limited. This gap 

provides the motivation for the present research, which brings together the 

robustness of contaminated likelihoods with the scalability of variational 

inference in the context of Bayesian proportion modeling. 

3. Bayesian Proportion Models 

Bayesian proportion models provide a structured way to analyze outcomes 

expressed as fractions or percentages. Two commonly used formulations are 

Binomial regression, suitable when data are represented as counts of successes 

out of a number of trials, and Beta regression, which is applied when outcomes 

are continuous proportions between zero and one [13]. 

3.1 Binomial Regression 

In many applications, the response variable is a count 𝑦𝑖 of successes out of 𝑛𝑖 

trials. The natural model in this case is the Binomial distribution: 

𝑦𝑖 ∼ Binomial(𝑛𝑖 , 𝜋𝑖)  (1) 

Where 𝜋𝑖 is the probability of success. To incorporate covariates, a regression 

structure is introduced through a link function: 

logit(𝜋𝑖) = 𝑥𝑖
⊤𝛽      (2) 

Where 𝑥𝑖 is a vector of predictors and 𝛽 is the vector of regression coefficients. 

A Bayesian formulation places prior distributions on the parameters. A common 

choice is a Gaussian prior for the regression coefficients: 

𝛽 ∼ 𝒩(0, 𝜎𝛽
2𝐼)        (3) 

This structure provides flexibility while allowing prior beliefs about the 

magnitude of coefficients to be encoded [14]. 

3.2 Beta Regression 

When outcomes are expressed as continuous proportions 𝑦𝑖 ∈ (0,1), the Beta 

distribution is a natural choice: 

𝑦𝑖 ∼ Beta(𝛼𝑖, 𝛽𝑖)   (4) 

The distribution can be re-parameterized in terms of a mean parameter 𝜇𝑖 and a 

precision parameter 𝜙: 

𝜇𝑖 =
𝛼𝑖

𝛼𝑖 + 𝛽𝑖
, 𝜙 = 𝛼𝑖 + 𝛽𝑖     (5) 

Thus, 
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𝛼𝑖 = 𝜇𝑖𝜙, 𝛽𝑖 = (1 − 𝜇𝑖)𝜙    (6) 

The mean parameter is typically modeled through a regression structure: 

logit(𝜇𝑖) = 𝑥𝑖
⊤𝛽               (7) 

with priors placed on 𝛽 and 𝜙. A common prior for the precision parameter is a 

log-normal or Gamma distribution, ensuring positivity [15]. 

3.3 Extensions and Applications 

Both Binomial and Beta regression frameworks are widely applied in practice. 

Binomial regression is common in biomedical and clinical research where 

outcomes are naturally counts of events, while Beta regression is favored in 

social and environmental sciences for modeling proportions and rates [16], [17]. 

Bayesian formulations of these models allow not only parameter estimation but 

also coherent uncertainty quantification, posterior predictive inference, and 

hierarchical extensions for complex data structures. 

However, as discussed earlier, both models are sensitive to contamination and 

face challenges when applied to large-scale datasets. These issues motivate the 

robust and scalable approaches developed in the following sections. 

4. Contaminated Likelihoods and Robustness 

Classical Bayesian models rely on the assumption that the specified likelihood 

function accurately reflects the data-generating process. In practice, however, 

real-world data often deviate from these assumptions due to outliers, 

measurement errors, or unmodeled heterogeneity. Even a small fraction of 

corrupted observations can have a disproportionate effect on parameter 

estimation, predictive performance, and posterior uncertainty. This phenomenon 

is particularly severe for likelihood-based Bayesian inference, where each 

observation contributes multiplicatively to the joint likelihood [18]. 

To address this issue, a range of robust Bayesian methods have been developed. 

These methods modify either the likelihood function itself or the inference 

objective so that unusual observations have reduced influence on the posterior 

distribution. Two major approaches dominate the literature: 

4.1 Mixture-Based Contamination Models 

One direct way to model contamination is through a mixture likelihood. In this 

framework, each observation is assumed to arise either from a clean component 

(consistent with the intended model) or from a contamination component 

(representing irregular data) [19]: 

𝑝( 𝑦𝑖 ∣∣ 𝜃, 𝜀 ) = (1 − 𝜀) 𝑝clean( 𝑦𝑖 ∣∣ 𝜃 ) + 𝜀 𝑝cont( 𝑦𝑖 ∣∣ 𝜂 )    (8) 
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Where 𝜃 are the parameters of the clean model, 𝑝cont is a broad or heavy-tailed 

contamination distribution, and 𝜀 is the contamination probability. Priors are 

typically placed on both 𝜀 and the contamination parameters 𝜂. This approach 

provides an explicit mechanism for distinguishing between reliable and 

unreliable data points and has been applied in various domains, including robust 

regression and mixture modeling [20]. 

4.2 Divergence-Based Robust Inference 

An alternative strategy does not modify the likelihood directly but instead 

changes the objective function used in inference. Instead of minimizing the 

Kullback–Leibler (KL) divergence, which corresponds to maximizing the 

standard evidence lower bound (ELBO), robust methods employ generalized 

divergences such as the β-divergence or Rényi divergence [21], [22]. For 

instance, under β-divergence, the log-likelihood contribution of an observation 

is replaced with a downweighted function that penalizes extreme values less 

severely: 

ℓ𝛽(𝑦𝑖 ∣ 𝜃) =
1

𝛽
𝑝(𝑦𝑖 ∣ 𝜃)𝛽 −

1

𝛽 + 1
𝑝( 𝑢 ∣∣ 𝜃)𝛽+1 𝑑𝑢       (9)  

This modification ensures that highly unlikely points under the model exert 

limited influence, improving robustness while maintaining computational 

tractability. Divergence-based methods are particularly attractive for variational 

inference, as they integrate naturally into optimization-based posterior 

approximation frameworks. 

4.3 Relevance for Proportion Models 

For proportion data, contamination can arise from misclassified outcomes, data 

entry errors, or structural deviations such as inflated zeros and ones. In Binomial 

regression, a few corrupted counts can bias the estimated success probabilities, 

while in Beta regression, extreme proportions near the boundaries can distort the 

mean and precision estimates. Both mixture-based and divergence-based 

approaches offer practical solutions: the former provides interpretability by 

explicitly modeling contamination, while the latter offers scalability and 

numerical stability for large datasets [23]. 

In this research, we adopt and extend these two families of methods within 

Bayesian proportion models. The goal is to construct inference procedures that 

remain accurate and stable even in the presence of contaminated observations, 

while being efficient enough to handle modern large-scale datasets. 

5. Variational Inference Framework 

Bayesian inference is based on computing the posterior distribution of model 

parameters given observed data. For most realistic models, including those 



 

828 
 

involving proportion data with contamination, the posterior is not analytically 

tractable. Traditionally, Markov chain Monte Carlo (MCMC) has been used to 

approximate posteriors, but its high computational cost limits scalability in large 

datasets [24]. 

Variational Inference (VI) provides an efficient alternative by transforming the 

inference problem into an optimization task [25], [26]. Instead of drawing 

samples from the posterior, VI selects a simpler family of distributions and finds 

the member of this family that is closest to the true posterior under a divergence 

measure. This approximation enables scalability while retaining the key benefits 

of Bayesian inference. 

5.1 Variational Family 

Let  𝜃 denote the set of model parameters. Variational inference introduces an 

approximating distribution 𝑞(𝜃) from a family 𝒬, such as factorized Gaussians 

or more structured distributions. The goal is to find: 

𝑞∗(𝜃) = arg 𝑚𝑖𝑛 KL(𝑞(𝜃)  ∥  𝑝( 𝜃 ∣∣ 𝑦 ))
𝑞∈𝒬

       (10) 

Where KL(⋅∥⋅) denotes the Kullback–Leibler divergence. This optimization 

favors approximations that capture the bulk of the posterior mass while ignoring 

unlikely regions. 

5.2 Evidence Lower Bound (ELBO) 

Since the true posterior 𝑝( 𝜃 ∣∣ 𝑦 ) is intractable, the optimization is performed 

using the Evidence Lower Bound (ELBO): 

ℒ(𝑞) = 𝔼𝑞(𝜃) ,log 𝑝( 𝑦 ∣∣ 𝜃 )- − KL(𝑞(𝜃)  ∥  𝑝(𝜃))      (11) 

Maximizing the ELBO is equivalent to minimizing the KL divergence between 

the variational approximation and the true posterior. The first term encourages 

good data fit, while the second regularizes against the prior. 

5.3 Stochastic Variational Inference 

To handle large datasets, the ELBO is optimized using stochastic gradient 

methods. Instead of computing expectations across all data points at each step, 

minibatches of observations are used, yielding unbiased gradient estimates [27]. 

This approach, known as Stochastic Variational Inference (SVI), makes VI 

suitable for large-scale problems with millions of observations. 

5.4 Reparameterization Trick 

A practical challenge in VI is estimating gradients of the ELBO with respect to 

variational parameters. The reparameterization trick addresses this by 

expressing samples from 𝑞(𝜃), as deterministic transformations of parameters 
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and independent noise. For example, if 𝑞(𝜃) = 𝒩(𝜇, 𝜎2), samples can be 

written as:  

𝜃 = 𝜇 + 𝜎 ⋅ 𝜖, 𝜖 ∼ 𝒩(0,1)       (12) 

This reduces variance in gradient estimates and accelerates optimization [28]. 

5.5 Application to Proportion Models 

For Bayesian proportion models, VI allows scalable inference even when 

incorporating robustness through contaminated likelihoods or divergence-based 

objectives. By selecting appropriate variational families (e.g., Gaussian for 

regression coefficients, Beta or log-normal for precision parameters), the 

posterior can be approximated efficiently. Moreover, the use of minibatch-based 

optimization ensures that the method remains practical for large datasets, while 

robustness mechanisms protect against contamination [29]. 

 

6. Scalable Inference Algorithms 

The combination of Bayesian proportion models, contaminated likelihoods, and 

variational inference requires specialized algorithms to achieve robustness and 

scalability. In this section, we describe two complementary approaches: (i) 

mixture-based inference under ε-contaminated likelihoods, and (ii) 

divergence-based variational inference using generalized objectives. Both 

methods are implemented with stochastic optimization to handle large-scale data 

efficiently. 

6.1 Mixture-Based Variational Inference 

In the ε-contamination model, each observation is assumed to originate either 

from a clean distribution or from a contamination distribution. The joint 

likelihood takes the form: 

𝑝( 𝑦𝑖 ∣∣ 𝜃, 𝜀 ) = (1 − 𝜀) 𝑝clean( 𝑦𝑖 ∣∣ 𝜃 ) + 𝜀 𝑝cont( 𝑦𝑖 ∣∣ 𝜂 )   (13) 

To approximate the posterior, a mean-field variational family is assumed: 

𝑞(𝜃, 𝜀, 𝑧) = 𝑞(𝜃) 𝑞(𝜀)  ∏ 𝑞(𝑧𝑖)    

𝑖

       (14) 

Where 𝑧𝑖 is a latent indicator for whether observation 𝑖 is contaminated. 

The variational optimization alternates between updating global parameters and 

local responsibilities: 

 Local update: 
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𝑟𝑖 = 𝑞(𝑧𝑖 = 1)   ∝    exp{𝔼𝑞  ,log 𝜀 + log 𝑝cont(𝑦𝑖)- − 𝔼𝑞,log(1 − 𝜀) +

log 𝑝clean( 𝑦𝑖 ∣∣ 𝜃 )-} (15)  

 Global update: regression coefficients 𝛽, contamination parameters 𝜂, and 

contamination rate 𝜀 are updated using reparameterization gradients within 

stochastic optimization [30]. 

This procedure scales linearly with the number of observations and naturally 

downweights points with high contamination responsibility. 

6.2 Divergence-Based Variational Inference 

An alternative is to modify the inference objective rather than the likelihood. 

Using β-divergence, the contribution of each observation becomes: 

ℓ𝛽(𝑦𝑖 ∣ 𝜃) =
1

𝛽
 𝑝(𝑦𝑖 ∣ 𝜃)𝛽 −

1

𝛽 + 1
𝑝( 𝑢 ∣∣ 𝜃)𝛽+1 𝑑𝑢       (16)  

The variational objective, called the β-ELBO, is: 

ℒ𝛽(𝑞) = 𝔼𝑞(𝜃),∑ ℓ𝛽(𝑦𝑖 ∣ 𝜃)- − KL(𝑞(𝜃)  ∥  𝑝(𝜃))

𝑁

𝑖=1

         (17) 

This formulation automatically reduces the weight of extreme observations 

without introducing latent contamination variables. It is especially well suited 

for stochastic variational inference (SVI) since minibatch estimates of the β-

ELBO are unbiased and computationally efficient [31]. 

6.3 Algorithmic Steps 

Both approaches can be summarized as follows: 

Algorithm 1: Mixture-Based VI 

1. Initialize variational parameters for 𝑞(𝜃), 𝑞(𝜀), 𝑞(𝑧𝑖) 

2. Repeat until convergence: 

 Sample minibatch of data. 

 Update local responsibilities 𝑟𝑖. 
 Update global variational parameters via stochastic gradients. 

Algorithm 2: Divergence-Based VI 

1. Initialize variational parameters for 𝑞(𝜃) 

2. Repeat until convergence: 

 Sample minibatch of data. 

 Compute β-ELBO contributions. 

 Update global variational parameters via stochastic gradients. 

6.4 Comparison of Approaches 

 Mixture-based inference offers interpretability by identifying potentially 

contaminated observations, but introduces additional latent variables and may 

face identifiability challenges when contamination is subtle. 



 

831 
 

 Divergence-based inference avoids latent contamination variables and 

provides stable, scalable optimization, though it sacrifices explicit labeling of 

outliers. 

 In practice, the two methods can be complementary: mixture models provide 

insight into contamination structure, while divergence-based methods ensure 

computational efficiency in very large datasets [32]. 

7. Simulation Studies 

Simulation studies provide a controlled environment to evaluate the 

performance of the proposed inference algorithms. By generating synthetic 

datasets with known parameters, it becomes possible to measure robustness, 

scalability, and accuracy under varying levels of contamination. In this section, 

we describe the experimental setup, evaluation metrics, and results. 

7.1 Experimental Setup 

We consider two types of proportion models: 

1. Binomial Regression: 

Data are generated as 

𝑦𝑖 ∼ Binomial(𝑛𝑖 , 𝜋𝑖), 𝑤𝑖𝑡ℎ 𝜋𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(𝑥𝑖
⊤𝛽).   

Predictors 𝑥𝑖 are sampled from a standard normal distribution, and regression 

coefficients 𝛽 are set to fixed known values. 

2. Beta Regression: 

Continuous proportions are generated as 

𝑦𝑖 ∼ Beta(𝜇𝑖𝜙, (1 − 𝜇𝑖)𝜙), 𝜇𝑖 = logit
−1(𝑥𝑖

⊤𝛽). 
Both the mean and precision parameters are controlled, with 𝜙 set to moderate 

values to avoid extreme variance. 

Contamination mechanism: 

A fraction 𝜀 of observations is replaced with values from a contamination 

distribution. 

 For Binomial regression: counts are drawn uniformly from *0, … , 𝑛𝑖+. 

 For Beta regression: proportions are drawn from a near-uniform Beta (1,1). 

We vary 𝜀 between 0% and 30% to assess robustness. 

7.2 Methods Compared 

We evaluate the following inference methods: 

 Standard VI (baseline, no robustness). 

 Mixture-Based VI with ε-contaminated likelihoods. 

 Divergence-Based VI using β-divergence with different β values. 

All methods are trained with stochastic optimization and identical learning rates, 

minibatch sizes, and stopping criteria. 
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The Simulation Code using Python: 

# %% [markdown] 

# === Section 7: Simulation Studies (Simple, Colab-ready) === 

# Dependencies: numpy, matplotlib, statsmodels 

 

# %% 

!pip -q install numpy matplotlib statsmodels 

 

# %% 

import numpy as np 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

 

rng = np.random.default_rng(42) 

 

# ---------- 7.1 Experimental Setup ---------- 

def sigmoid(z): 

    return 1.0/(1.0+np.exp(-z)) 

 

def generate_data(N=3000, p=6, beta_scale=0.8, n_min=5, n_max=30, 

seed=0): 

    rng = np.random.default_rng(seed) 

    X = rng.normal(size=(N, p)) 

    X = sm.add_constant(X)  # intercept 

    beta_true = rng.normal(scale=beta_scale, size=p+1) 

    n_i = rng.integers(n_min, n_max+1, size=N) 

    pi = sigmoid(X @ beta_true) 

    y = rng.binomial(n_i, pi) 

    return X, y, n_i, beta_true 

 

def contaminate_counts(y, n_i, eps_rate=0.2, seed=1): 

    """Replace a fraction eps_rate with uniform counts in [0, 

n_i].""" 

    rng = np.random.default_rng(seed) 

    y2 = y.copy() 

    mask = rng.random(len(y)) < eps_rate 

    if mask.any(): 

        y2[mask] = np.array([rng.integers(0, ni+1) for ni in 

n_i[mask]]) 

    return y2 

 

# ---------- 7.2 Methods Compared ---------- 

def fit_glm_binomial(X, y, n_i): 

    """ 

    Standard GLM Binomial using proportion response with 

var_weights = n_i. 

    Returns params and standard errors. 

    """ 

    prop = y / n_i  

7.3 Evaluation Metrics 

To quantify performance, we measure: 

 Parameter estimation error: root mean squared error (RMSE) between 

estimated and true regression coefficients. 



 

833 
 

 Posterior calibration: coverage probability of 95% credible intervals. 

 Predictive accuracy: log predictive density on held-out data. 

 Robustness: degradation in performance as contamination rate increases. 

 Scalability: wall-clock training time as a function of dataset size 𝑁. 

8. Results and Discussion 

The simulation studies highlight the importance of incorporating robustness into 

Bayesian proportion models. 

 Estimation Accuracy: Figure 1 shows that the standard GLM suffers sharp 

increases in RMSE when contamination exceeds 10%. Both robust approaches 

significantly reduce estimation error, with the mixture-lite method yielding the 

lowest RMSE under severe contamination. 

 Posterior Calibration: As seen in Figure 2, standard inference fails to 

maintain nominal coverage, dropping well below 95% credibility. The robust 

approaches, especially the tempered method, preserve calibration across a wide 

range of contamination levels, ensuring that uncertainty intervals remain 

trustworthy. 

 Predictive Performance: Figure 3 demonstrates that robust methods 

consistently outperform the standard approach in predictive log-likelihood, 

particularly at contamination rates above 15%. This indicates that robustness not 

only improves parameter estimation but also enhances generalization. 

 Tr

ade-

offs

: 

Mix

ture-lite inference offers interpretability by identifying potentially contaminated 

observations, while tempered inference provides computational simplicity and 

stability. In practice, the choice between them may depend on whether 

interpretability or efficiency is prioritized. 

Overall, the results confirm that robust variational inference achieves both 

reliability and scalability for Bayesian proportion models, making it suitable 

for real-world applications where contamination is unavoidable. 
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