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Abstract

Bayesian proportion models, such as Binomial and Beta regression, are widely
applied in health sciences, social research, and digital analytics. While these
models provide coherent uncertainty quantification, they are highly sensitive to
contamination and outliers. Furthermore, traditional inference methods,
particularly Markov chain Monte Carlo (MCMC), are computationally
prohibitive for large datasets. This study develops scalable variational
inference approaches for Bayesian proportion models under contaminated
likelihoods. Two complementary strategies are considered: (i) mixture-based
inference that explicitly models contamination via an g&-contamination
likelihood, and (ii) divergence-based inference that employs B-divergence to
reduce the influence of outliers. Both methods are implemented in a stochastic
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variational framework suitable for large-scale applications. Simulation studies
demonstrate that the proposed approaches substantially improve estimation
accuracy, posterior calibration, and predictive performance under contamination,
while maintaining scalability. The results highlight that robustness and
efficiency can be achieved simultaneously, providing practical tools for modern
Bayesian analysis of proportion data.

Keywords: Bayesian Proportion Models, Variational Inference, Contaminated
Likelihoods, Robust Bayesian Methods, Scalable Inference

1. Introduction

Proportion data are common in many areas of research and practice. They
appear in situations where interest lies in the share of successes, events, or
outcomes relative to a total. Examples include disease prevalence in health
studies, click-through rates in digital platforms, or the fraction of land devoted to
a crop in agriculture. To analyze such data, Bayesian proportion models are
widely used because they not only provide flexible modeling but also offer a
coherent framework for quantifying uncertainty.

Despite their usefulness, these models face two major challenges in real-world
applications. The first is data contamination. In practice, datasets often include
outliers or irregular observations that arise from measurement errors,
misreporting, or unexpected variation. Standard likelihood-based Bayesian
inference i1s highly sensitive to these issues, and even a few problematic data
points can distort estimates and uncertainty measures. The second challenge is
scalability. Modern datasets are frequently very large, containing thousands or
even millions of observations. While traditional sampling-based approaches like
Markov chain Monte Carlo remain a gold standard for accuracy, they are often
too slow or computationally demanding for such scales.

This research addresses these two challenges together. The aim is to develop
robust and scalable inference methods for Bayesian proportion models.
Robustness is achieved by explicitly modeling contamination in the likelihood
or by using generalized divergences that naturally down weight the effect of
extreme observations. Scalability is ensured through the use of variational
inference (VI), which approximates posterior distributions by solving an
optimization problem, making it suitable for large-scale applications.

The contributions of this work can be summarized as follows:

1. A framework for incorporating contaminated likelihoods into Bayesian
proportion models.

2. Variational inference methods tailored for these models, including efficient
formulations of the evidence lower bound (ELBO).
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3. A comparison between mixture-based contamination modeling and
divergence-based robust objectives.

4. Empirical studies, both simulated and real, demonstrating improved
robustness and computational efficiency compared to standard approaches.

By combining ideas from robust statistics and scalable Bayesian computation,
this study provides new tools for analyzing proportion data under realistic
conditions where contamination and large sample sizes cannot be ignored.

2. Background and Related Work

Bayesian methods have long been central to the analysis of proportion data.
Classical models include the Binomial regression, which is suitable when
observations are expressed as counts of successes out of a fixed number of trials,
and the Beta regression, which is commonly applied when proportions are
measured on a continuous scale between zero and one [1], [2]. These models
allow prior information to be combined with observed data, producing full
posterior distributions over parameters. Such approaches have been widely used
in health studies, social sciences, and online platforms, where proportions often
carry essential decision-making value [3].

While effective in principle, standard Bayesian inference for these models is
often limited by two factors: robustness and scalability. The problem of
robustness has been studied extensively in statistics. Outliers and contaminated
data can exert disproportionate influence on likelihood-based inference, leading
to biased results and misleading uncertainty quantification [4], [5]. To address
this, a range of robust Bayesian methods have been proposed, including the
use of heavy-tailed distributions, contamination mixtures, and alternative
divergence measures [6], [7]. These methods aim to protect inference from the
harmful impact of extreme or corrupted observations.

The issue of scalability has gained increasing attention in recent years,
especially with the growth of large-scale datasets. Markov chain Monte Carlo
(MCMC) remains the most reliable tool for Bayesian computation, but its high
computational cost makes it impractical for massive data [8]. This challenge has
motivated the development of variational inference (VI), an optimization-
based approach that approximates posterior distributions by minimizing a
divergence between the true posterior and a simpler family of distributions [9],
[10]. Variational methods trade some accuracy for significant computational
gains, making them a leading choice for large and complex models.

More recently, researchers have explored combining these two directions:
robustness and variational inference. Work in this area has considered
generalized divergences, such as the B-divergence and Rényi divergence, as well
as mixture-based approaches for modeling contamination directly [11], [12].
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These advances show that robust inference can be made practical at scale,
though applications to proportion models remain relatively limited. This gap
provides the motivation for the present research, which brings together the
robustness of contaminated likelihoods with the scalability of wvariational
inference in the context of Bayesian proportion modeling.

3. Bayesian Proportion Models

Bayesian proportion models provide a structured way to analyze outcomes
expressed as fractions or percentages. Two commonly used formulations are
Binomial regression, suitable when data are represented as counts of successes
out of a number of trials, and Beta regression, which is applied when outcomes
are continuous proportions between zero and one [13].

3.1 Binomial Regression

In many applications, the response variable is a count y; of successes out of n;
trials. The natural model in this case is the Binomial distribution:

y; ~ Binomial(n;, ;) (1)

Where m; is the probability of success. To incorporate covariates, a regression
structure is introduced through a link function:

logit(r) = x/ (2
Where x; is a vector of predictors and f is the vector of regression coefticients.

A Bayesian formulation places prior distributions on the parameters. A common
choice is a Gaussian prior for the regression coefficients:

B~N(0,031) (3)

This structure provides flexibility while allowing prior beliefs about the
magnitude of coefficients to be encoded [14].

3.2 Beta Regression

When outcomes are expressed as continuous proportions y; € (0,1), the Beta
distribution is a natural choice:

y; ~ Beta(a;, B;) (4)
The distribution can be re-parameterized in terms of a mean parameter y; and a
precision parameter ¢:
S+ B

Mi ¢p=a+p (5

Thus,
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a; = wd,fi = A —p)e (6)

The mean parameter is typically modeled through a regression structure:

logit(;) = x7 B (7)

with priors placed on f and ¢. A common prior for the precision parameter is a
log-normal or Gamma distribution, ensuring positivity [15].

3.3 Extensions and Applications

Both Binomial and Beta regression frameworks are widely applied in practice.
Binomial regression is common in biomedical and clinical research where
outcomes are naturally counts of events, while Beta regression is favored in
social and environmental sciences for modeling proportions and rates [16], [17].
Bayesian formulations of these models allow not only parameter estimation but
also coherent uncertainty quantification, posterior predictive inference, and
hierarchical extensions for complex data structures.

However, as discussed earlier, both models are sensitive to contamination and
face challenges when applied to large-scale datasets. These issues motivate the
robust and scalable approaches developed in the following sections.

4. Contaminated Likelihoods and Robustness

Classical Bayesian models rely on the assumption that the specified likelihood
function accurately reflects the data-generating process. In practice, however,
real-world data often deviate from these assumptions due to outliers,
measurement errors, or unmodeled heterogeneity. Even a small fraction of
corrupted observations can have a disproportionate effect on parameter
estimation, predictive performance, and posterior uncertainty. This phenomenon
is particularly severe for likelihood-based Bayesian inference, where each
observation contributes multiplicatively to the joint likelihood [18].

To address this issue, a range of robust Bayesian methods have been developed.
These methods modify either the likelihood function itself or the inference
objective so that unusual observations have reduced influence on the posterior
distribution. Two major approaches dominate the literature:

4.1 Mixture-Based Contamination Models

One direct way to model contamination is through a mixture likelihood. In this
framework, each observation is assumed to arise either from a clean component
(consistent with the intended model) or from a contamination component
(representing irregular data) [19]:

p(yi | 9;5) = (1 - E) pclean(yi | 9) + Spcont(yi | 77) (8)
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Where 6 are the parameters of the clean model, p.,, 1s a broad or heavy-tailed
contamination distribution, and &€ is the contamination probability. Priors are
typically placed on both € and the contamination parameters 7. This approach
provides an explicit mechanism for distinguishing between reliable and
unreliable data points and has been applied in various domains, including robust
regression and mixture modeling [20].

4.2 Divergence-Based Robust Inference

An alternative strategy does not modify the likelihood directly but instead
changes the objective function used in inference. Instead of minimizing the
Kullback—Leibler (KL) divergence, which corresponds to maximizing the
standard evidence lower bound (ELBO), robust methods employ generalized
divergences such as the P-divergence or Rényi divergence [21], [22]. For
instance, under PB-divergence, the log-likelihood contribution of an observation
is replaced with a downweighted function that penalizes extreme values less
severely:

1 1
LpOi10) =5p0i16)° =g p(u[0)7* du (9)
This modification ensures that highly unlikely points under the model exert
limited influence, improving robustness while maintaining computational
tractability. Divergence-based methods are particularly attractive for variational
inference, as they integrate naturally into optimization-based posterior
approximation frameworks.

4.3 Relevance for Proportion Models

For proportion data, contamination can arise from misclassified outcomes, data
entry errors, or structural deviations such as inflated zeros and ones. In Binomial
regression, a few corrupted counts can bias the estimated success probabilities,
while in Beta regression, extreme proportions near the boundaries can distort the
mean and precision estimates. Both mixture-based and divergence-based
approaches offer practical solutions: the former provides interpretability by
explicitly modeling contamination, while the latter offers scalability and
numerical stability for large datasets [23].

In this research, we adopt and extend these two families of methods within
Bayesian proportion models. The goal is to construct inference procedures that
remain accurate and stable even in the presence of contaminated observations,
while being efficient enough to handle modern large-scale datasets.

5. Variational Inference Framework

Bayesian inference is based on computing the posterior distribution of model
parameters given observed data. For most realistic models, including those
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involving proportion data with contamination, the posterior is not analytically
tractable. Traditionally, Markov chain Monte Carlo (MCMC) has been used to
approximate posteriors, but its high computational cost limits scalability in large
datasets [24].

Variational Inference (VI) provides an efficient alternative by transforming the
inference problem into an optimization task [25], [26]. Instead of drawing
samples from the posterior, VI selects a simpler family of distributions and finds
the member of this family that is closest to the true posterior under a divergence
measure. This approximation enables scalability while retaining the key benefits
of Bayesian inference.

5.1 Variational Family

Let 6 denote the set of model parameters. Variational inference introduces an
approximating distribution q(8) from a family Q, such as factorized Gaussians
or more structured distributions. The goal is to find:

q*(0) = argminKL(q(8) Il p(01y)) (10)
qeQ

Where KL(:|I-) denotes the Kullback—Leibler divergence. This optimization
favors approximations that capture the bulk of the posterior mass while ignoring
unlikely regions.

5.2 Evidence Lower Bound (ELBO)

Since the true posterior p(8 | y) is intractable, the optimization is performed
using the Evidence Lower Bound (ELBO):

L(q) = Ey) [logp(y 1 6)] —KL(q(®) | p(#)) (A1)

Maximizing the ELBO is equivalent to minimizing the KL divergence between
the variational approximation and the true posterior. The first term encourages
good data fit, while the second regularizes against the prior.

5.3 Stochastic Variational Inference

To handle large datasets, the ELBO is optimized using stochastic gradient
methods. Instead of computing expectations across all data points at each step,
minibatches of observations are used, yielding unbiased gradient estimates [27].
This approach, known as Stochastic Variational Inference (SVI), makes VI
suitable for large-scale problems with millions of observations.

5.4 Reparameterization Trick

A practical challenge in VI is estimating gradients of the ELBO with respect to
variational parameters. The reparameterization trick addresses this by
expressing samples from q(6), as deterministic transformations of parameters
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and independent noise. For example, if q(8) = N (u,0?), samples can be
written as:

O=u+o-¢,e~N(01) (12)
This reduces variance in gradient estimates and accelerates optimization [28].

5.5 Application to Proportion Models

For Bayesian proportion models, VI allows scalable inference even when
incorporating robustness through contaminated likelihoods or divergence-based
objectives. By selecting appropriate variational families (e.g., Gaussian for
regression coefficients, Beta or log-normal for precision parameters), the
posterior can be approximated efficiently. Moreover, the use of minibatch-based
optimization ensures that the method remains practical for large datasets, while
robustness mechanisms protect against contamination [29].

6. Scalable Inference Algorithms

The combination of Bayesian proportion models, contaminated likelihoods, and
variational inference requires specialized algorithms to achieve robustness and
scalability. In this section, we describe two complementary approaches: (i)
mixture-based inference under ¢g-contaminated likelihoods, and (ii)
divergence-based variational inference using generalized objectives. Both
methods are implemented with stochastic optimization to handle large-scale data
efficiently.

6.1 Mixture-Based Variational Inference

In the e-contamination model, each observation is assumed to originate either
from a clean distribution or from a contamination distribution. The joint
likelihood takes the form:

p(yi | 9»‘9) = (1 _8) pclean(yi | 8) +gpcont(yi | 7’) (13)

To approximate the posterior, a mean-field variational family is assumed:

00,62 =904 | [az a9

Where z; is a latent indicator for whether observation i is contaminated.

The variational optimization alternates between updating global parameters and
local responsibilities:

o Local update:
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r = q(Zi = 1) X exp{[Eq [lOgS + logpcont(yi)] - IEq [lOg(l - E) +
logpclean(yi I 9)]} (15)

¢ Global update: regression coefficients 5, contamination parameters 7, and
contamination rate & are updated using reparameterization gradients within
stochastic optimization [30].

This procedure scales linearly with the number of observations and naturally
downweights points with high contamination responsibility.

6.2 Divergence-Based Variational Inference
An alternative is to modify the inference objective rather than the likelihood.

Using B-divergence, the contribution of each observation becomes:

1 1
L5(y; 1 0) = 3 p(y; | 0)F —mp(u | )P+ du  (16)

The variational objective, called the B-ELBO, is:
N

Lg(q) = Eq(@)[z tp(yi 10)] —KL(q(6) I p(6))  (17)
i=1

This formulation automatically reduces the weight of extreme observations
without introducing latent contamination variables. It is especially well suited
for stochastic variational inference (SVI) since minibatch estimates of the [-
ELBO are unbiased and computationally efficient [31].

6.3 Algorithmic Steps

Both approaches can be summarized as follows:

Algorithm 1: Mixture-Based VI

1. Initialize variational parameters for q(8), q(¢), q(z;)

2. Repeat until convergence:

Sample minibatch of data.

Update local responsibilities ;.

Update global variational parameters via stochastic gradients.

Algorithm 2: Divergence-Based VI

1. Initialize variational parameters for q(6)

2. Repeat until convergence:

e Sample minibatch of data.

Compute B-ELBO contributions.

Update global variational parameters via stochastic gradients.

6.4 Comparison of Approaches

« Mixture-based inference offers interpretability by identifying potentially
contaminated observations, but introduces additional latent variables and may
face identifiability challenges when contamination is subtle.
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« Divergence-based inference avoids latent contamination variables and
provides stable, scalable optimization, though it sacrifices explicit labeling of
outliers.

« In practice, the two methods can be complementary: mixture models provide
insight into contamination structure, while divergence-based methods ensure
computational efficiency in very large datasets [32].

7. Simulation Studies

Simulation studies provide a controlled environment to evaluate the
performance of the proposed inference algorithms. By generating synthetic
datasets with known parameters, it becomes possible to measure robustness,
scalability, and accuracy under varying levels of contamination. In this section,
we describe the experimental setup, evaluation metrics, and results.

7.1 Experimental Setup

We consider two types of proportion models:
1. Binomial Regression:
Data are generated as
y; ~ Binomial(n;,m;),  withm; = logit~*(x] B).

Predictors x; are sampled from a standard normal distribution, and regression
coefficients S are set to fixed known values.

2. Beta Regression:
Continuous proportions are generated as
i1 T
yi ~ Beta(u;¢, (1 — py) ), w; = logit ~(x; B).
Both the mean and precision parameters are controlled, with ¢ set to moderate
values to avoid extreme variance.

Contamination mechanism:
A fraction € of observations is replaced with values from a contamination
distribution.

o For Binomial regression: counts are drawn uniformly from {0, ..., n;}.
« For Beta regression: proportions are drawn from a near-uniform Beta (1,1).
We vary ¢ between 0% and 30% to assess robustness.

7.2 Methods Compared

We evaluate the following inference methods:

« Standard VI (baseline, no robustness).

o Mixture-Based VI with e-contaminated likelihoods.

« Divergence-Based VI using B-divergence with different  values.

All methods are trained with stochastic optimization and identical learning rates,
minibatch sizes, and stopping criteria.
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The Simulation Code using Python:

# %% [markdown]

=
Il

== Section 7: Simulation Studies (Simple, Colab-ready) ===
# Dependencies: numpy, matplotlib, statsmodels

# 2%

'pip —-g install numpy matplotlib statsmodels

#
import numpy as np

o°
o

import matplotlib.pyplot as plt
import statsmodels.api as sm

rng = np.random.default rng(42)

# - 7.1 Experimental Setup ----------
def sigmoid(z) :
return 1.0/ (1.0+np.exp(-2))

def generate data (N=3000, p=6, beta scale=0.8, n min=5, n max=30,
seed=0) :

rng = np.random.default rng(seed)

X = rng.normal (size= (N, p))

X = sm.add constant (X) # intercept

beta true = rng.normal (scale=beta scale, size=p+l)

n i = rng.integers(n min, n max+l, size=N)

pl = sigmoid (X @ beta true)

y = rng.binomial(n i, pi)

return X, y, n_i, beta true

def contaminate counts(y, n_i, eps rate=0.2, seed=l):
"""Replace a fraction eps rate with uniform counts in [O,

n i]'"""
rng = np.random.default rng(seed)
y2 = y.copy()
mask = rng.random(len(y)) < eps rate

if mask.any() :
y2 [mask] = np.array([rng.integers (0, ni+l) for ni in
n_i[mask]])
return y2

I 7.2 Methods Compared ----------
def fit glm binomial (X, y, n_1i):

wonn

Standard GLM Binomial using proportion response with
var weights = n i.
Returns params and standard errors.

won

prop =y / n i
7.3 Evaluation Metrics

To quantify performance, we measure:
o Parameter estimation error: root mean squared error (RMSE) between
estimated and true regression coefficients.
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« Posterior calibration: coverage probability of 95% credible intervals.

o Predictive accuracy: log predictive density on held-out data.

« Robustness: degradation in performance as contamination rate increases.
 Scalability: wall-clock training time as a function of dataset size N.

8. Results and Discussion

The simulation studies highlight the importance of incorporating robustness into
Bayesian proportion models.

o Estimation Accuracy: Figure 1 shows that the standard GLM suffers sharp
increases in RMSE when contamination exceeds 10%. Both robust approaches
significantly reduce estimation error, with the mixture-lite method yielding the
lowest RMSE under severe contamination.

o Posterior Calibration: As seen in Figure 2, standard inference fails to
maintain nominal coverage, dropping well below 95% credibility. The robust
approaches, especially the tempered method, preserve calibration across a wide
range of contamination levels, ensuring that uncertainty intervals remain
trustworthy.

o Predictive Performance: Figure 3 demonstrates that robust methods
consistently outperform the standard approach in predictive log-likelihood,
particularly at contamination rates above 15%. This indicates that robustness not
only improves parameter estimation but also enhances generalization.

Figure 1 RMSE of regression coefficients versus contamination rate. Robust methods (tempered and mixture-lite) o T

show significantly lower estimation error compared to the standard GLM under increasing contamination. ade

Figure 2 Coverage probability of 95% credible intervals across contamination levels. Robust methods maintain offs
coverage close to the nominal 95% line (dashed), while the standard GLM undercovers as contamination
increases.

Mix
ture-lite inference offers interpretability by identifying potentially contaminated
observations, while tempered inference provides computational simplicity and
stability. In practice, the choice between them may depend on whether
interpretability or efficiency is prioritized.

Overall, the results confirm that robust variational inference achieves both
reliability and scalability for Bayesian proportion models, making it suitable
for real-world applications where contamination is unavoidable.
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