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ABSTRACT: Combining economics emissions power dispatch (CEED) challenging optimization issue that
involves is a lowering the entire cost of electricity production yet satisfying overall environment emissions
constraints. The issue at hand is complex because of the nonlinear and not convex character of the function's goak
and restrictions. Fuek are the primary form of electrical power production; coal, is the globe's principal fuel,
accounting for 42% of the entire electrical power produced internationally. Energy from electricity s excessively
pricey because of the substantial amounts invested by generation corporations as a consequence of the high
reliability of fuel for generating electricity. A new two ways to solve CEED problem is to use a Algorithnes for
Red-Tailed Hawk Optimize (RTHOA) and Walrus Optimize (WOA). By the advantages of nature-inspired
metaheuristic techniques, we can reduce generation costs and reduce emissions, enhancing power system
efficiency and sustainability. As inspired by walruses' social behavior and movement pattems, the WOA
demonstrates significant potential for exploring and exploiting the solution space. RTHOA, which mimics hawks'
hunting strategy and sharp vision, i just as good. Three examples have been validated by a simulated research
investigated. The IEEE 30-bus with six generators in Case 1 has a power consumption of 2.834 p.u., the 10-unit in
Case 2 has a power requirement of 2000 MW, and the 40-unit in Case 3 has a demand of 10,500 MW.
Comparison with altemative approaches documented in the published works, the simulation outcomes of the
created techniques showed interest in the area of lowering emission and the expenses of electric generation. With a
tiny standard deviations and a significant correlation between the optimum and poorest fitness figures, the WOA
demonstrated strong performance and great consistency, especially in Case 1. As demonstrated in instance 1, the
RTHOA also demonstrated strong features, particularly in preserving stability and attaining targeted fitness goals.
But in Case 3, the RTHOA showed more fluctuations, suggesting a wider capacity for investigation. These results
imply that the two algorithms provide useful methods for solving the CEED phenomenon.

Keywords: Cost minimization, combined economics emissions dispatch, Walrus optimization algorithm, Red
tailed hawk optimization algorithm. Economic load dispatch —®' B

1. INTRODUCTION

Electricity is currently the energy source that is most commonly utilized because of its easy mobility and effective
distribution. Its production, generally in enormous scale infrastructure, transportation, and customer distribution have
traditionally been centralized in industrialized nations, although contemporary legislative changes are beginning to
slant towards decentralization. Although it is less expensive to use fossil fuek to produce power, performing so emits
contaminants like CO2 and SO2, since 40% of global CO2 emissions come from the generation of electricity utilizing
these types of fuek. In additional to introducing pricing turbulence because of variations in gasoline prices, such
reliance raises ongoing economic difficulties. compared to standard sources of energy, unconventional energy sources
do not run out of power. Hydro, geothermal, wind, and solar energy have been regarded as environmentally frien dly
since theyare distributed, satisfy both requirements and supplies, do notproduce greenhouse gases, and never pollute.
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A wide range of optimization methods additionally have simplified the process of improving CEED in power systemns
which may be categorized into conventional, non-conventional and hybrid systems. Energy systens are frequently
optimized for efficacy and sustainability. The CEED issue affecting electrical systems has been tackled in recent
generations using various kinds of strategies for optimization. These strategies can be broadly categorized into three
classes: hybrid methods, non-conventional methods, and conventional, or classic, ways.

Managing energy efficiently and sustainably is important because of growing electricity demand and
environmental concems. CEED, a critical problem for power network working, intends to lower fuel expenditures
while reducing emissions. CEED problems used to be solved with traditional optimization methods, but sometimes they
didn't handle modern power system complexity and dynamics. [1] proposed a method for solving Economic Load
Dispatch (ELD) in micro-grids through metaheuristic algorithms, it established that the suggested procedure worked
well for optimizing EED objectives. [2] came up with the Spiral Optimization Algorithm to solve CEED. A novel
optimization procedure based on fluid mechanics was developed to tackle CEED [3], so it might overlook some
important aspects. The algorithm works great for both economic and environmental goals, based on the study. It's not
as applicable to power system optimization outside of (EED). [4] proposed a method for resolving the ELD challenges
in power scheme called enhancement of the Category Leader Optimizing Process. Study shows the algorithm optimizes
economic goak in power system process. It shows a particular focus on ELD. Crow Search method can optimize
efficient and environmental objectives in power schemes used it to solve the EED problem [5]. These results may not
be generalizable to other kinds of optimization problems in power systens because they focus on EED. In a study
published by [6], the Osprey Algorithmwas found to show promising results in optimizing ELD. Osprey Optimization
method wasn't compared to other optimization algorithms for ELD, so it wasn't a comprehensive evaluation. By using
the Grasshopper Optimization Algorithm (GOA) to solve the CEED problem [7]. the GOA optimized the CEED
problem pretty well. This doesnt talk about how the GOA scales to larger power systems, which might impact its
practical applicability. To resolve the CEED difficulties, [8] aimed a Probability Distribution Arithmetic Optimization
procedure with varying order price utilities. The main finding was that the recommended procedure improved
optimization execution in handling CEED objectives. It didn't provide a detailed comparison with further cutting -edge
methods towards resolving CEED issue, which would have highlighted the algorithm's competitiveness. In [9] authors
provides a comprehensive review of the techniques used to address the CEED problem. Using the Gravitational Search
Algorithm, proposeda solution for EED issue [10].

This papers remaining parts are presented as follows: The CEED definition in Section 2 takes equality and
equality limitations into account. In Section 3, the suggested methods (WOA) and (RTHOA) for the CEED problem
are discussed. In Section 4, the simulation results and discussions are described. Finally, we use a comparative
analysisto arrive at our results. In Section 5, we draw our conclusions.

2. CEED FORMULATION
2.1 ECONOMIC DISPATCHPROBLEM DESIGN

To minimize the schemes overall production costs while meeting the schemes total power demand and several
critical power system criteria, you have to select the ideal mix of power generation. The fuel cost of each unit in a
generatingplant is calculated using Eq. (1) [2].

FCi(R) = %%, {a;B? + bR, +c;} @

FCi(P) signifies the entire production cost ($/hr), calculated as the addition of assembly components (Ng). Pi
denotes the power outcome of production entity i, and ai, bi, and ci are the element's fuel price factors. The "valve point
influence” denotes to the ripple influence on the generating unit curve caused by the opening of individually steam
entrance outlet in a turbine. To accurately model this, an additional term imitating the valve point influence must be
added to the price function, complicating the optimization due to increased local minima and non-linearity. The most
comprehensive explanation of the valve point effect highlights how it makes the generator's incremental fuel cost
function (IFCF) more realistic by accounting for valve-pointeffects.

Non-convex curves might appear if the input-output curve accounts for the valve point effect (VPE) and optimal
precision is required. When non-convexinput-output curves are employed, the equal incremental cost approach cannot
be applied since there are several outputs for each increment cost value. Consequently, the effects of valve loading are
included in the basic quadratic CF as a recurring rectified sinusoid contribution. As previously mentioned, the entire
computation of fuel costs across all units is recognized as the total cost of production function of EDP are mention in
Eq.) [2] ,

Fr =2 {a:B* + b;P, + c; + |d;sinee, (™" — P} @

The unit | expenditure cost variables with valve point impact are di and ei. The revised function for the ED
problems, which is to lower FT, is given by equation 2. The total output cost of the manufacturing plant must be
calculated usingthis equation, which takes into consideration the following equality and inequality restrictions.
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2.2 EQUALITY CONSTRAINTS

Both the loss in transmission and the system’s total demand (PD) must be met by the entire power generated.

Consequently, thereal power balance constraint may be found using the methodbelow in Eq. (3):
TP =R +h @

The total load demand in MW is represented by the symbol PD, and the system's transmission losses are
represented by the symbol PL. The generating power must lie between the lowest output Pimin and the maximum
output Pimax, according to the inequality restrictions showed in Eq. (4).

Pimin = PL = Pimax @

The real power of unit I's lowest and maximum producing constraints are represented by the symbols Pimin and
Pimax It is possible to determine the exact value of the system losses using a power flow solution. Methods based on
the constant loss formula coefficients or B-coefficients can be used to calculate system losses. The system loss
mathematic formula, sometimes referred to as ( Kron's loss formula ([10]) and established on the B-coefficients as
follows in Eq. (5):

B =X.%, BoP, + 5.5 X%, PByB+By, ®

The ith component of the loss factor vector s BOi, and Bij is the jth section of the loss factor matrix. B0O

represents theloss constant. MatrixB influences systemlosses, depending on network admittances and topology.

2.3 EMISSION DISPATCHPROBLEM FORMULATION

The EDP identifies the lowest-cost distribution of power among generating units to meet a given demand.
However, traditional EDP does not consider total pollution emissions. Each fossil-fuel power unit's emissions depend
on its electricity output. Emissions can be modeled as a product of a term derived from output power and a quadratic
function as showed in Eq. (6) [3].

Er= Z?]:% {a;P?+BP, +v;} (6)

The pollutant EDP focuses on optimizing the total pollutant emissions with effects of valve loading are included in
Ea. (7).

E = Zlivfl {a;P* + BB, +y; + &7} @

where ET (emissions totaling pollutants) is measured in pounds per hour. All of the generating units are
represented by NG. Pi is the power outcome of generating element i. The emission coefficients forunitiare, gand &i .

2.4 CEED
As was previously stated, the ED and the emission dispatch are two separate troubles. By merging the ELDP with
an emission constraint, emission dispatch is introduced to conventional economic load dispatch problers. In this

research project, the two points might be joined into a specific objective function by including a cost penalty
component (h) which can becalculated as mention in Eq. (8) [4].

_ @iPhygytbiPimaxtc;

P maxt BPimaxtVi

®

When the cost fine element (h) is considered, the utmost costly fuel unit is i, and the maximum pollution -emitting
entity is j. Emissions and fuel expenditures are joined to formthe cost penalty element h, with fuel cost representing the
total functional expenditure in US dollars per hour. To find out the cost fine feature for a given demand from load, the
following steps are engaged:

* Divide extreme fuel price ofany power generator by extreme pollutants emissions to obtain initial value.

* Arrange the resulting costfactor values in increasing order.

« Starting with the smallest h unit, incrementally increase the maximum capacty of each unit until the total
generated value exceeds the demand.

* The penalty element 'h' for indicated load is then recognized as the penalty element 'h' associated with last entity
that meets demand. Eq. (9) defines collective objective functionof ED and emissions supplies.

FT = I/VecoFT + hWemiET ©)

We define the combined objective function F, where Wemi and Weco stand for weighting factors. There exist
several techniques for ascertaining the two components of weighing. For instance, when Weco =1.0 and Wemi = 0.0,
pure emission dispatch is generated, yet the usual EDP is generated. The optimal combined objective is found using the
cardinal priority ranking method. To create non-inferior solutions, this technique normalizes the weights.
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2.5 MATHEMATICAL MODELLING

The following is the mathematics structure for CEED efficiency issue [4]:
Objective cost formula is specified in Eq. (10):
MinimizeF, = X7, (F;-B) +A. X%, (E; - B) (10)
where: F; represents overall expenditure of production (economic goal),
Fi: is fuelprice factor forentity i,
Pi: refer to producedelectrical energy,
Ei: is emissions cost function forentity i,
A: is emissions price coefficient (balance elementconcerning economics and emissions goals),
n: is the total number of generating units.

3. OPTIMIZATION ALGORITHM
3.1 WALRUS OPTIMIZATION ALGORITHM (WOA)

Every walrus in inhabitants of searchers comprise the WOA procedure is a potential fix for the optimization
problematic. Since individually walrus's position intimate search universe influences parameters of the delinquent, they
are vectors. The walrus population is represented numerically by the population matrix When WOA s first put into

practice, the walrus populations are started randomly. The algorithm starts its search for the best solutions after this
randomsetup. This WOA population matrix is determined by using Eq. (11) [11].

|'X1—| |,x1,1 s xl,j e xl,m'l

: | S P

X= | X; | = | Xi1 Xij vt Xim | (11)
|'XNJN><m lxN,1 XN xN,mJNxm

Important components of the WOA are the amount of variables of decision-making (N) and entire number of
walruses (N), both represented by m. Every walrus, denoted by Xi, offers a nominee (possible) elucidation to the issue.
The qualities that every walrus proposes for the choice variables, denoted as xi, j, impact the evaluation of the objective
function. This procedure demonstrates how every walrus contributes to the algorithmss search for the best solutions.
The assessed principles used for fitness function achieved as of walruses are indicated by Eq. (12)

[F1] F(X,)
F= ‘ F ‘ - F(:Xi) 12)
|‘F:N Nx1 lF()'(N)Jle

The objective function, denoted as Fi, is evaluated for each walrus (i) in the optimization process, where F denotes
object form vector. The superiority of prospective resolutions is assessed over object function quantities. The greatest
member is the solution with the maximum objective function value, while the worst member has the lowest. During
each iteration, participants are regrouped based on changes in their unbiased function principles.

* WOA modelling

Three procedures framework WOA's process for reviewing the walrus's location, which is founded on animal's
distinctive performance.

Stage one:exploration

Walruses have a diverse diet consisting of marine invertebrates like shrimp, aquatic cucumbers, spineless coral
reefs, tube worms, and several mollusks, including above sixty kinds of food. They primarily favor benthic bivalve
mollusks, particularly oysters, using their searching vibrissae and vigorous flipper travek to graze sea bottom. In their
exploration for food, leadership is determined by walrus with lengthiest tusks, specifying sturdiest distinct in grouping.
The object function principles in optimization are equivalent to the tusk length of walruses, where the furthermost
influential walrus represents the finest impending solution with the uppermost charge for the objective function.
Walruses' search patterns create individual perusing neighborhoods inside pursuit planetary, improving the universal
search competence of the WOA. Equations (13) and (14) are used to quantitatively represent the behavior dynamic

[11].

33



Rafid Z. Khlaifand Thamir H. Atyia, Al-Salam Journal for Engineering and Technology Vol. 4, No. 2, (2025), p. 30-46

P.
xi‘}z Xl-,j +T'andl-‘]-.(SVVj—1i’j.xi,j) (13)
P P.
X = Xil’Fi1<Fi' (14)
: X; else,

In the first phase, the new location x; of the ith walrus, x;”* is determined by its jth dimension, , with F;” as the

estimated objective function value.Xfl, is the generated location for the ith walrus. Ii, takes random integer values
between 1 and 2, randi, random values in the range [0,1], and SW is measured strongest walrus and ideal candidate
solution. Typically, 7i,is set to 1, but in this case, it is adjusted to 2 to enhance the algorithm's exploration abilities. This
adjustment leads to more focused and wider shifts in the walruses' positions, enhancing the algorithm's global search
capacity. These conditions enable the algorithm to travel away from resident bests and search the preliminary issue
addressing planetary more efficiently.

Stage tow: Walrus Motion

The travelling machinery of walruses, wherever they travel to stony seashores or ridges as the climate warms in
utilized in the late summer by the WOA to escort the walruses in discovering appropriate places inside the exploration
planetary. According to this modeling, each walrus s motivated to a diverse (at arbitrary picked) location in a
distinctive portion of pursuit universe by using Eq. (15) and Eq. (16) which represent mathematical model [12].

xPZ _ {xi‘j -I-T'andi'j.(xk'j - Ii’j.xi‘j),Fk < Fl’

2 (15)
v x;j+rand;;.(x;; — x, ;). else,
X2 B2 < F;
X;= (16)
X; else,

The location of chosen walrus may track i" course of the algorithm as specified in Xk for ke{1,2,....N} and kdi.
The symbols xk, represent this walrus's jth dimension, and F,, gives us the value of its objective function. Centered on
the secondstage, sz, is the recently discovered ith walrus site.

Stage three: Exploitation

Walruses face threats from killer whales and polar bears, prompting them to adjust their positions for defense and
escape. Mimicking this behavior enhances the WOA's exploitative power within a short search region around viable
solutions. The WOA adopts walrus location variations take place inside a district centered around individually walrus,
by a span that decreases as the algorithm progresses. This strategy helps identify the best search space area, starting
with a global search and focusing on local optimization. An adjustable radius with lower/upper boundaries is used
during iterations. To replicate this in WOA, a municipal is recognized about apiece walrus, and an innovative position
is arbitrarily produced inside this district. In order to simulate the phenomena, a vicinity is taken as surrounding every
walrus, and according to Equations (17) and (18), an alternate location is first produced at random among the specified
region. Subsequently, in accordance with Eq. (19), the current location takes the place of the prior one if the goal
function'sscoreis enhanced [11].

P
xij- = xi'j + (lbltocal,j + (ubfocal’j - Tand. lbltocal,j))' (17)
lbj

Local bounds : e b (18)

ubt . =—

local,j P

P3 P3 .
x, =% F < Fi (19)
X;, else,
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In the repeated form, the low and higher bounds of the jth variable are indicated by t, lbj, and ubj, respectively.
The variables b}, o ;and ubyear j» respectively, denote the allowed resident low and high bounds for the jth variable.
These values mimic local exploration close to the candidate solutions. The third phase is the foundation for the recently
developed ith walrus website,Xf? The WOA implementation flowchart is presented in Figurel , and its pseudo-code is
specified in Algorithm 1.

Algorithm1. Pseudo-code of WOA
Start WOA.
: Enterentire optimizing problematic data.
: Established numeral of walruses (N) thenwhole quantity of repetitions (T).
: Setting up thewalruses' primary placements.
cFort=1T
: Bring up to date resilient walrus established on fitness function assessmentmeasure.
tFori=1:N
: Phasel: Serving tactic (investigation)
: Compute fresh positionofthe jth walrus via (13).
. Informthe ith walrus position via (14).
: Phase 2: Relocation
: Select migration target intended for ith walrus.
: Bvaluate fresh position of jth walrus with (15). (15).
: Update the ith walrus locationusing (16).
: Phase 3: Escaping andfighting against predators (exploitation)
: Calculate anewpositionin the neighborhood of the ith walrus using (17) and (18)
: Update the ith walrus locationusing (19).
:end
: Save finest applicantresolutionto date.
end
- Produce finest quasi-optimal resolution attained by WOA designed for specified case.
: End WOA

ONOOUA WNE

NN R R R ERERRRE R RO
PO WO NOUOBMNWNEREO
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l Input all the Information for Optimization problem I

v

| Set number of Walruses N and total number of iterations T |

I Create initial population set i=1 and t=1 I

| Calculate objective function I

L
.

I Phasel: Update strongest Walrus based on objective function

L

h
I Calculate Xx/* function I
v
| Update X; I
2
I Phase 2: Select X, randomly as the migration Destination for X;
L 2
I Calculate x/™”function |
L 2
| Update X; |
L 2
Phase 3:Calculate X/ function
2
I Update X, I

i=i+1

f

| Save the best candidate solution so far |

|
l—
G |

| Output the Quasi optimal solution found by WOA algorithm |

i

FIGURE 1 FHowchart diagram of Walrusoptimization [11]
3.2 RED TAILED HAWK OPTIMIZATION ALGORITHM (RTHOA)

Based on RTH predatory behaviour, this metaheuristic algorithm optimizes CEEDs. These hawks are known for
their keen hunting skills, precision, and adaptability to environmental conditions. RTHO solves complex optimization
problems by mimicking hawks' hunting strategies and adaptive behaviours. Hawk populations could be a solution to
CEED optimization. They explore the search space and modify their locations centered on their encounters and
collective knowledge. By incorporating exploration and exploitation mechanisms, the hawks can search for promising
areas in the search space and refine the best ones. By dynamically adjusting its search strategies, the algorithm captures
the adaptability of RTHs, ensuring efficient convergence towards the best solution. By balancing economic costs and
emission reductions while ensuring reliable power supply, RTHO is particularly good at handling CEED's diverse and
complex constraints.

eInspiration and behavior during hunting

The RTH is a camivorous predator, primarily hunting mammals like rodents, which make up 85% of their diet, but
also eating birds, fish, invertebrates and amphibians. Their diet varies with geography and season. During flight, they
use a gentle dihedral wing posture to minimize flapping and conserve energy, soaring efficiently with speeds of 32-64
knm/h and pitchingequalto 190 kmv/h. They exhibit powerful flight patterns, especially when defending nests.

*High soaring: Flying at high altitudes through least dithering to preserveenergy though scouting.

*Low soaring: Descendingto a lower altitude and circling prey to assess finest stage and habitation to strike.

*Stooping and swooping: Diving at prey froma high speed in a curved trajectory afterselecting the optimal attack
position.
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*Mathematical model

The hunting strategy and the inspiration source are covered in the first part. Next, a model of the RTH movements
is created, and every phaseofthe process is scrutinized.

*High soaring: In order to find the optimum spot for accessibility to food, the red-tailed hawk will fly high in the
clouds. Ej. (20) is computational representation that describes the altitude soaring phase, and Figure 2 shows how the
red-tailed hawks act throughout this period of flight [13]:

X(®) = Xpese + (Xmean — X( — 1)). Levy(dim). TF (¢) (20)
where X ... IS the position's mean, X, is the best-obtained position, and X(t) is the RTH location at repetition t.

The impose flying circulation function may be computed using Eg. (21) and (22), and the transition factor function,
denoted by TF(t) can be calculated accordingto Eq. (23)

-

FIGURE 2 Performance of Red-Tailed Hawk throughout highest elevated phase

Levy(dim) = SIVLIL% 1)
in("E
O’=< r'(1+p)sin(—=) ) @2
F(1+ﬁ/2).ﬁ.2(1_7)

As uandvare arbitrary numbers [0to 1], Bis fixed (1.5), and s is fixed (0.01). Dim is the issue width.
TF(t) =1 +sin(2.5+ ( ) 23)

T‘max

* Near to the ground soaring: The hawk soars in a series of spirak that bring it much nearer to ground, surrounding
the target. This phase is demonstrated in Fig. 4, and its formula can be stated in Eq. (24), Eq. (25) and Eq. (26) [13].
X(®) = Xpeor + (x(©) + y(t) ). Stepsize(t) 4)
Stepsize(t) =X(@t) — Xmean (25)

t
2(®) = RE). sin(@(®) [R® = Ro(r = 7). rand { () = x(6) Jmax|x(®)|
y(t) = R(t).cos(8(t)) 6(t) = A. (r —;).mnd y( ) =y()/max|y(t)|
Tmax
where A & the angle gain, rand is a arbitrary gain, r is a limit gain, and R, is the radius's initial value. Stooping
and Swooping: The hawk sharply bends to attack the victim by using its best position fromthe low flying stage. These

features let the hawk make spiraling movements around its prey. Figure 3 describes the manners of the red-tailed hawks
throughout this stage.

(26)
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* X(n)

Step Size(f)

i.\'(ul)

X

mean

X best

FIGURE 3 Performance of Red-Tailed Hawk throughout low elevated phase

*Stooping and Swooping: Hawk habits its best-attained location from low-slung flying point to abruptly stoop and
knockout the victim. These features help hawk in flying about the target through corkscrew motions. Fig. 5 explains
the performance of the RTHSs throuahout this phase. This stage can be modeled as follows in Eq. (27):

X(@©) = a(t)-Xbest+x(t).Stepsizel(t)+y(t).Stepsizez(t) @7
It tolerates for the succeeding computation of individually stage size: where individually stage extent can be
computedas showed in Eq. (28) and Eq. (29).
Stepsizel(t) = X(t) — TF().- Xean (28)
Stepsize2(t) = G(t). X(t) —TF(@). X,oq (9)
As o and Gstance for speeding up and gravity modules, are correspondingly specified in equations (30) and (31).
Conductof RTH throughoutstoopinaand swoopinasteps is defined in figure 4.
a(t) = sin?(2.5— —) (30)

Tmax

G(t) =2. (1 - TL) (31)

max:

q,_,“ 7y

S|cpS;/c2m

G(1)

StepSizel ()

Xbest

FIGURE 4 Manners of RTH throughout stoopingand swooping phases [13]

where G represent earth gravity impact, that lowers for lessen form of assault when the hawk is much nearer to its
victim, and a is the hawk's speed, which increases with an upsurge in t to enhance the meeting speed. Step-by-step
algorithmforthe RTHO technique modified for CEED optiming.

Algorithm2. Pseudo-code of RTHO
1: Begin:arbitrary peers inside the pursuit planetary.

2: Whereast <Tma do
3. Exraordinary soaring phase:

4. fori=1: Npopdo

5: Compute Imposeflight scattering
6: Calculate the transition factor TF
7: Update positions

38



Rafid Z. Khlaifand Thamir H. Atyia, Al-Salam Journal for Engineering and Technology Vol. 4, No. 2, (2025), p. 30-46

8. end

9: Low soaring stage:

10: fori = 1. Npopdo

11: Compute direction synchronizes
12: Inform locations

13: end

14 Stooping & Swooping phase:
15: fori = 1. Npopdo

16: Compute speeding up then gravity features
17: Compute stepsize

18: Informlocations

19: end

20: End Even though

4. SIMULATION RESULTS and DISCUSSIONS

In this study: Three cases are considered; the suggested algorithms are implemented on standard IEEE 30-bus
system bearing in mind VPE in existence of two WOA and RTHOA, in mandate to solve CEED problem. The single -
line diagram of which is explained by the Figure 5: Case 1: is six unit (power demand-Pd = 2.834 MW), Case 2: is a
10-unit (power demand-Pd = 2000 MW) and Case 3: is a 40-unit (power demand-Pd = 10,500 MW). The cost function
and emission data’s for the above cases are taken from[14].

FIGURE 5 Singleline diagramof IEEE 30-bus system

4.1 WALRUS OPTIMIZATION RESULTS
The convergence curves of the proposed algorithm for the best solution obtained for the 6-unit, 10-unit and 40-unit

test systems is shownin Figures 6,7 and 8 considered in this simulation using WOA.

39



Rafid Z. Khlaifand Thamir H. Atyia, Al-Salam Journal for Engineering and Technology Vol. 4, No. 2, (2025), p. 30-46

40

Study case One: Sixgenerationunits

1900

1890

1880

1870

1860

1850

Objective function ($/hr)

1840

1830

1820

60 80

No. Of lterations

FIGURE 6 Reaching target of costfunction aimed at study case one with WOA

Study case Two: Ten generation units
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Study case Three: Forty generation units
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Table 1 WOA Results
Study Cases awerage trail SD finestfitness | poorest fitness
1 1.8244 e3 0.7541 1.8239 e3 1.822 e3
2 1.1997 e5 270.93 1.1872 €5 1.2029 e5
3 35.401 35.708 176.0157 340.37

Table 1 provides details on the performance of the WOA across three different cases. For each case, it reports
average trail, normal deviance (SD), finest fitness, and poorest fitness values. In Case 1, the average trail is 1.8244e3
($/hr) with a standard deviation of 0.7541, the finest fitness achieved i 1.823%3 ($/hr), and the poorest fitness is
1.822e3. Case 2 shows a upper average trail of 1.1997e5 and a standard deviation of 270.93, with the best and worst
fitness values being 1.1872e5 ($/hr) and 1.2029e5 ($/hr), respectively. Case 3 has a average trail of 35.4018 and a much
higher normal deviance of 35.708, indicating significant variability, with best and worst fitness values of 176.0157
($/hr) and 340.37 ($/hr), respectively. This data suggests that the algorithm's performance varies considerably
depending on the case, with Case 2 showing relatively high stability and fitness values, while Case 3 displays the most
variability.

4.2 OPTIMUM OUTCOMES RED-TAILED HAWK

Curves of fitness functions values of 6, 10 and 40 generating units were carried out in this simulation study with
RTHO. Figures 9, 10 and 11 represent object function values vs. number of iteration for 6,10 and 40 generators
correspondingly.
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Study case One: Sixgenerationunits

1860 : : : :
1855 |- | 1

1850 | | :

1845 ]

Function ($/hr)

1840 + | 1

ve

.

ject

1835

Ob

1830

1825 N

1820 ' ' , /
0 20 40 60 80 100

No.Of lIterations
FIGURE 9 Reaching target of costfunction aimed at study case onewithRTHOA
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Study case Three: Forty generation units
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Table 2 RTHO Results
Study Cases | Awerage Trail S.D FinestFitness Poorest Fitness
1 1.8242 e3 0.3100 1.8239 e3 1.8250 e3
2 1.2006 e5 342.63 1.184 e5 1.2046 e5
3 295.29 14.7080 251.46 329.94

Table 2 provides the performance metrics for the RTHOA across three different cases. For each case, it lists
average trail, normal deviance, finest fitness, and poorest fitness values. In Case 1, average experiment was
1.8242e3(dollar/hour) of standard deviation with 0.3100, the finest objective was 1.82393 (dollar/hour), and poorest
objective was 1.8250e3 (dollar/hour), indicating high consistency and minimal variation. In Case 2, average trail
increases significantly to 1.2006e5 with a larger standard deviation of 342.63, the finest fitness achieved is
1.184e5(%$/hr), and the poorest fitness is 1.2046e5($/hr), reflecting moderate variability. Case 3 shows average trail of
295.29 and a normal deviance of 14.7080, with the finest fitness documented at 251.46($/hr) and the poorest fitness at
329.94(%/hr), indicating a broader array of aptness principles but less inconsistency compared to study case two.

4.3 COMPARATIVE ANALYSIS

The proposed (WOA) and (RTHOA) were calculated in contradiction of a collection of supplementary
optimization methods to evaluate their usefulness. Including "' Grey wolf optimization (GWO), Math flame optimization
(MFO), Multiverse optimization (MVO), (PSO), Salp swarm optimization (SSO), Whale optimization algorithm
(WHOA)". Outcomes obtained by suggested systems are indicated in table 3.
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Table 3 Comparison of best solutions of Generation Cost of the sixunitsystem (P(ge mand) =2.834 MW)

Generator | Grey wolf Moth flame Multiverse Particle Salp swarm Whale Walrus Red tailed
NO optimization optimization | optimization | swarm optimization_ | optimization | optimization | hawk
—_ optimization optimization
G1 (|\/|W) 0.370957 0.336269 0.367224 0.32366 0.44411 0.232142 0.34896 0.326529
G2 (MW) 0.42794 0.458515 0.415092 0.451174 0.554778 0.354082 0.41964 0.441249
G3 (MW) 0.459082 0.408108 0.574005 0.542828 0.573484 0.923872 0.517481 0.518553
G4 (MW) 0.839106 0.623595 0.649645 0.53769 0.480638 0.228807 0.582539 0.583046
G5 (MW) 0.38333 0.455589 0.510782 0.535346 0.463586 0.682232 0.528159 0.524592
G6 (MW) 0.387833 0.587654 0.347304 0.473374 0.354821 0.435731 0.468302 0.470524

Best 1827.906 1836.306 1833.373 1824.923 1846.322 1933.56 1824.461 1823.908
Score($/hr)

The above Table 3 displays statistics for six unit system, Here the recommended WOA and RTHOA results
compared with some other algorithis, they executes superior and has a least generation cost 1824.461 ($/hr), 1823.908
($/hr) respectively.

Table 4 Comparison of best solutions of Generation Cost of the ten generators system (P(demand)=2000MW)

Generator | Grey wolf Moth flame Multiverse Particle Salp swarm Whale Walrus Red tailed
NO. optimization | optimization | optimization | swarm optimization, | optimization | optimization | hawk
optimization optimization
G1(MW) 52.33413 55 46.68295 54.99413 54.70752 54.95172 55 54.99709
G2 (MW) 80 69.03504 62.57551 79.97392 66.59121 80 79.55938 80
G3(Mw) 72.32635 66.54099 81.54476 79.86829 102.3886 73.81535 81.59243 67.47329
G4 (MW) 90.90867 106.4639 52.94127 82.26748 76.33461 28.93526 83.53782 84.44176
G5 (MW) 159.4585 130.6111 160 159.9702 141.4114 124.1096 159.9919 159.9221
G5 (MW) 227.1962 224.7971 240 239.9784 238.2162 173.5443 239.9742 239.9573
G7(MW) 269.6645 276.2597 295.5875 292.1161 290.0548 271.7285 293.6665 299.9998
G8 (MW) 309.0811 230.4492 279.0359 303.0692 191.9015 339.9791 288.5746 338.0275
G9 (MWw) 399.9091 455.5399 421.0903 384.489 462.0781 470 387.4923 394.7581
G10 (MW) 421.149 470 444.4386 405.2476 460.9165 470 412.6934 361.9683
Best 323084.2 332162.1 326122.1 323825.2 331991 341050 320882.1 321257.9
Score($/hr)
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Table 4 displays statistics intended for ten generator case, The projected WOA and RTHOA gaining finest
resolution of entire budget 320882.1($/hr) and 321257.9 ($/hr) correspondingly. The WOA and RTHOA supply nearly
finest outcomes in decreasing together fuel expenditures and pollutants emissions for the ten generators study case.
Their economical marks and effective unit allocations high spot their prospective as vigorous approaches foraddressing
multi objectiveissues.

5. CONCLUSIONS

WO and RTHO Algorithrms proves that CEED problems can be solved effectively and efficiently. Based on the
comparative analysis, shown in Tables 3 and 4, the performance of the proposed algorithns were the best in
comparison with the other techniques, both algorithms have their strengths and their performance varies. Considering
study case one, (WOA) finest fitness attained is 1.823%e3($/hr) least normal deviance and a adjacent space amid
superior and poorest fitness values, while (RTHOA) showed impressive performance, particularly in retaining
steadiness and reaching necessary fitness results 1.8250e3 ($/hr). In Case 3, the RTHOA showed bigger changeability,
which indicates a widersurnvey ability. These outcomes recommend that both procedures proposal appreciated methods
for augmenting CEED difficulties, with the WO System presence extra reliable and RTHO Procedure providing a
balance between exploration and exploitation. Table 3and4 provide a comprehensive analysis of different methods.
Among them the proposed method delivering best solution in all aspects. It adds to the growing body of research on
nature-inspired optimization, giving us insight into how they can help power systems solve their problems more
economically and with feweremissions. The promising results obtained from the WO and RTHO algorithms for
addressing (CEED) problem surface the way for numerous forthcoming investigation opportunities. First of all,
supplementary examination into crossbreed optimization tactics incorporating assets of both procedures can be
discovered. Joining reliability of WO Procedure through survey competences of RTHO Optimization Procedure might
tip to improved enactment and strength through a broader collection of CEED situations. Furthermore, piloting real-
world applications and challenging on larger-scale power systems can deliver real-world visions into scalability and
applicability ofthese procedures in compound energy administrationsituations.
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