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1. INTRODUCTION 

Electricity is currently the energy source that is most commonly utilized because of its easy mobility and effective 
distribution.  Its production, generally in enormous scale infrastructure, transportation, and customer distribution have 

traditionally been centralized in industrialized nations, although contemporary legislative changes are beginning to 
slant towards decentralization.  Although it is less expensive to use fossil fuels to produce power, performing so emits 

contaminants like CO2 and SO2, since 40% of global CO2 emissions come from the generation of electricity utilizing 
these types of fuels. In additional to introducing pricing turbulence because of variations in gasoline prices, such 
reliance raises ongoing economic difficulties. compared to standard sources of energy, unconventional energy sources 

do not run out of power. Hydro, geothermal, wind, and solar energy have been regarded as environmentally frien dly 
since they are distributed, satisfy both requirements and supplies, do not produce greenhouse gases, and never pollute.   

ABSTRACT: Combining economics emissions power dispatch (CEED) challenging optimization issue that 
involves is a lowering the entire cost of electricity production yet satisfying overall environment emissions 
constraints. The issue at hand is complex because of the nonlinear and not convex character of the function's goals 

and restrictions.  Fuels are the primary form of electrical power production; coal, is the globe's principal fuel, 
accounting for 42% of the entire electrical power produced internationally.  Energy from electricity is excessively 
pricey because of the substantial amounts invested by generation corporations  as a consequence of the high 

reliability of fuel for generating electricity. A new two ways to solve CEED problem is to use a Algorithms for 
Red-Tailed Hawk Optimize (RTHOA) and Walrus Optimize (WOA). By the advantages of nature-inspired 

metaheuristic techniques, we can reduce generation costs and reduce emissions, enhancing power system 
efficiency and sustainability. As inspired by walruses' social behavior and movement patterns, the WOA 
demonstrates significant potential for exploring and exploiting the solution space. RTHOA, which mimics hawks' 

hunting strategy and sharp vision, is just as good. Three examples have been validated by a simulated research 
investigated. The IEEE 30-bus with six generators in Case 1 has a power consumption of 2.834 p.u., the 10-unit in 
Case 2 has a power requirement of 2000 MW, and the 40-unit in Case 3 has a demand of 10,500 MW.   

Comparison with alternative approaches documented in the published works, the simulation outcomes of the 
created techniques showed interest in the area of lowering emission and the expenses of electric generation.  With a 

tiny standard deviations and a significant correlation between the optimum and poorest fitness figures, the WOA 
demonstrated strong performance and great consistency, especially in Case 1.  As demonstrated in instance 1, the 
RTHOA also demonstrated strong features, particularly in preserving stability and attaining targeted fitness goals. 

But in Case 3, the RTHOA showed more fluctuations, suggesting a wider capacity for investigation.  These results 
imply that the two algorithms provide useful methods for solving the CEED phenomenon. 

 

Keywords: Cost minimization, combined economics emissions dispatch, Walrus optimization algorithm, Red 

tailed hawk optimization algorithm. Economic load dispatch   
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A wide range of optimization methods additionally have simplified the process of improving CEED in power systems 
which may be categorized into conventional, non-conventional and hybrid systems. Energy systems are frequently 

optimized for efficacy and sustainability. The CEED issue affecting electrical systems has been tackled in recent 
generations using various kinds of strategies for optimization. These strategies can be broadly categorized into three 
classes: hybrid methods, non-conventional methods, and conventional, or classic, ways.  

Managing energy efficiently and sustainably is important because of growing electricity demand and 
environmental concerns. CEED, a critical problem for power network working, intends to lower fuel expenditures 

while reducing emissions. CEED problems used to be solved with traditional optimization methods, but sometimes they 
didn't handle modern power system complexity and dynamics. [1] proposed a method for solving Economic Load 
Dispatch (ELD) in micro-grids through metaheuristic algorithms, it established that the suggested procedure worked 

well for optimizing EED objectives. [2] came up with the Spiral Optimization Algorithm to solve CEED. A novel 
optimization procedure based on fluid mechanics was developed to tackle CEED [3], so it might overlook some 
important aspects. The algorithm works great for both economic and environmental goals, based on the study. It's not 

as applicable to power system optimization outside of (EED). [4] proposed a method for resolving the ELD challenges 
in power scheme called enhancement of the Category Leader Optimizing Process. Study shows the algorithm optimizes 

economic goals in power system process. It shows a particular focus on ELD.  Crow Search method can optimize 
efficient and environmental objectives in power schemes used it to solve the EED problem [5]. These results may not 
be generalizable to other kinds of optimization problems in power systems because they focus on EED. In a study 

published by [6], the Osprey Algorithm was found to show promising results in optimizing ELD. Osprey Optimization 
method wasn't compared to other optimization algorithms for ELD, so it wasn't a comprehensive evaluation. By using 
the Grasshopper Optimization Algorithm (GOA) to solve the CEED problem [7]. the GOA optimized the CEED 

problem pretty well. This doesn't talk about how the GOA scales to larger power systems, which might impact  its 
practical applicability. To resolve the CEED difficulties, [8] aimed a Probability Distribution Arithmetic Optimization 

procedure with varying order price utilities. The main finding was that the recommended procedure improved 
optimization execution in handling CEED objectives. It didn't provide a detailed comparison with further cutting-edge 
methods towards resolving CEED issue, which would have highlighted the algorithm's competitiveness. In [9] authors 

provides a comprehensive review of the techniques used to address the CEED problem. Using the Gravitational Search 
Algorithm, proposed a solution for EED issue [10].  

This paper's remaining parts are presented as follows: The CEED definition in Section 2 takes equality and 

equality limitations into account.  In Section 3, the suggested methods (WOA) and (RTHOA) for the CEED problem 
are discussed.  In Section 4, the simulation results and discussions are described.  Finally, we use a comparative 

analysis to arrive at our results. In Section 5, we draw our conclusions. 
 

2. CEED FORMULATION  

2.1 ECONOMIC DISPATCH PROBLEM DESIGN 

To minimize the schemes overall production costs while meeting the schemes total power demand and several 
critical power system criteria, you have to select the ideal mix of power generation. The fuel cost of each unit in a 

generating plant is calculated using Eq. (1) [2]. 

                             𝐹𝐶𝑖(𝑃𝑖 ) = ∑  
𝑁𝑔

𝑖=1
{𝑎𝑖𝑃𝑖

2+ 𝑏𝑖𝑃𝑖 + 𝑐𝑖}                          (1) 

𝐹𝐶𝑖(𝑃𝑖) signifies the entire production cost ($/hr), calculated as the addition of assembly components (Ng). Pi 

denotes the power outcome of production entity i, and ai, bi, and ci are the element's fuel price factors. The "valve point 
influence" denotes to the ripple influence on the generating unit curve caused by the opening of individually steam 
entrance outlet in a turbine. To accurately model this, an additional term imitating the valve point influence must be 

added to the price function, complicating the optimization due to increased local minima and non -linearity. The most 
comprehensive explanation of the valve point effect highlights how it makes the generator's incremental fuel cost 

function (IFCF) more realistic by accounting for valve-point effects. 
Non-convex curves might appear if the input-output curve accounts for the valve point effect (VPE) and optimal 

precision is required. When non-convex input-output curves are employed, the equal incremental cost approach cannot 

be applied since there are several outputs for each increment cost value. Consequently, the effects of valve loading are 
included in the basic quadratic CF as a recurring rectified sinusoid contribution. As previously mentioned, the entire 
computation of fuel costs across all units is recognized as the total cost of production function of EDP are mention in 

Eq.(2)  [2]. 

 𝐹𝑇 = ∑  
𝑁𝐺
𝑖=1 {𝑎𝑖𝑃𝑖

2+ 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + |𝑑𝑖sine 𝑒𝑖(𝑃𝑖
𝑚𝑖𝑛 − 𝑃𝑖 )|}                           (2) 

The unit I expenditure cost variables with valve point impact are di and ei. The revised function for the ED 

problems, which is to lower FT, is given by equation 2. The total output cost of the manufacturing plant must be 
calculated using this equation, which takes into consideration the following equality and inequality restrictions.  
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2.2 EQUALITY CONSTRAINTS  

Both the loss in transmission and the system's total demand (PD) must be met by the entire power generated. 

Consequently, the real power balance constraint may be found using the method below in Eq. (3):                                                                                                                                                               

                                     ∑  
𝑁𝐺
𝑖=1 𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿                                                             (3) 

The total load demand in MW is represented by the symbol PD, and the system's transmission losses are 
represented by the symbol PL. The generating power must lie between the lowest output Pimin and the maximum 

output Pimax, according to the inequality restrictions showed in Eq. (4).  
                                                                  𝑃imin ≤ 𝑃𝑖 ≤ 𝑃imax                                                      (4) 

The real power of unit I's lowest and maximum producing constraints are represented by the symbols Pimin and 
Pimax. It is possible to determine the exact value of the system losses using a power flow solution. Methods based on 

the constant loss formula coefficients or B-coefficients can be used to calculate system losses. The system loss 
mathematic formula, sometimes referred to as ( Kron's loss formula ([10]) and established on the B-coefficients as 
follows in Eq. (5): 

             𝑃𝐿 = ∑  
𝑁𝑔

𝑖=1
𝐵0𝑖𝑃𝑖 + ∑  

𝑁𝐺
𝑖=1

∑  
𝑁𝑔

𝑗=1
𝑃𝑖𝐵𝑖𝑗𝑃𝑗+𝐵00                                           (5) 

The ith component of the loss factor vector is B0i, and Bij is the jth section of the loss factor matrix. B00 

represents the loss constant. Matrix B influences system losses, depending on network admittances and topology.  
 
2.3 EMISSION DISPATCH PROBLEM FORMULATION  

The EDP identifies the lowest-cost distribution of power among generating units to meet a given demand. 
However, traditional EDP does not consider total pollution emissions. Each fossil-fuel power unit's emissions depend 

on its electricity output. Emissions can be modeled as a product of a term derived from output power and a quadratic 
function as showed in Eq. (6) [3]. 

        𝐸𝑇 = ∑  
𝑁𝐺
𝑖=1

{𝛼𝑖𝑃𝑖
2+ 𝛽𝑃𝑖 + 𝛾𝑖}                                                                              (6) 

The pollutant EDP focuses on optimizing the total pollutant emissions with effects of valve loading are included  in 

Eq. (7). 

              𝐸𝑇 = ∑  
𝑁𝐺
𝑖=1

{𝛼𝑖𝑃𝑖
2 + 𝛽𝑃𝑖 + 𝛾𝑖 + 𝜉𝑖𝑒

𝜏𝑖𝑃𝑖 }                                                          (7) 

where 𝐸𝑇 (emissions totaling pollutants) is measured in pounds per hour. All of the generating units are 

represented by 𝑁𝐺. 𝑃𝑖 is the power outcome of generating element i. The emission coefficients for unit i are, 𝛽 and 𝜉𝑖 . 
 

2.4 CEED  

As was previously stated, the ED and the emission dispatch are two separate troubles. By merging the ELDP with 
an emission constraint, emission dispatch is introduced to conventional economic load dispatch problems. In this 

research project, the two points might be joined into a specific objective function by including a cost penalty 
component (h) which can be calculated as mention in Eq. (8) [4]. 

 

                 ℎ =
𝑎𝑖𝑃𝑖,𝑚𝑎𝑥

2 +𝑏𝑖𝑃𝑖,𝑚𝑎𝑥+𝑐𝑖

𝛼𝑖𝑃𝑖,𝑚𝑎𝑥
2 +𝛽𝑃𝑖,𝑚𝑎𝑥+𝛾𝑖

                                                                  (8) 

 
When the cost fine element (h) is considered, the utmost costly fuel unit is i, and the maximum pollution -emitting 

entity is j. Emissions and fuel expenditures are joined to form the cost penalty element h, with fuel cost representing the 
total functional expenditure in US dollars per hour. To find out the cost fine feature for a given demand from load, the 

following steps are engaged:  
• Divide extreme fuel price of any power generator by extreme pollutants emissions to obtain initial value. 
• Arrange the resulting cost factor values in increasing order. 

• Starting with the smallest h unit, incrementally increase the maximum capacity of each unit until the total    
generated value exceeds the demand. 

• The penalty element 'h' for indicated load is then recognized as the penalty element 'h' associated with last entity 

that meets demand. Eq. (9) defines collective objective function of ED and emissions supplies. 

 
                 𝐹𝑇 = 𝑊𝑒𝑐𝑜𝐹𝑇 + ℎ𝑊𝑒𝑚𝑖𝐸𝑇                                                              (9) 

We define the combined objective function 𝐹𝑇, where 𝑊𝑒𝑚𝑖 and 𝑊𝑒𝑐𝑜 stand for weighting factors. There exist 

several techniques for ascertaining the two components of weighing. For instance, when Weco = 1.0 and Wemi = 0.0, 
pure emission dispatch is generated, yet the usual EDP is generated. The optimal combined objective is found using the 
cardinal priority ranking method. To create non-inferior solutions, this technique normalizes the weights.  

 
 

 
 



Rafid Z. Khlaif and Thamir H. Atyia, Al-Salam Journal for Engineering and Technology Vol. 4, No. 2, (2025), p. 30-46 
 

 33 

2.5 MATHEMATICAL MODELLING  

The following is the mathematics structure for CEED efficiency issue [4]:  

Objective cost formula is specified in Eq. (10):             
            Minimize𝐹𝑇 = ∑  𝑛

𝑖=1 (𝐹𝑖 ⋅ 𝑃𝑖 ) + 𝜆. ∑  𝑛
𝑖=1 (𝐸𝑖 ⋅ 𝑃𝑖 )                             (10) 

where: 𝐹𝑇 represents overall expenditure of production (economic goal), 

Fi:  is fuel price factor for entity i,  
𝑃i:  refer to produced electrical energy,  

𝐸i: is emissions cost function for entity i,  
 𝜆: is emissions price coefficient (balance element concerning economics and emissions goals),  

n: is the total number of generating units. 
 

3. OPTIMIZATION ALGORITHM  

3.1 WALRUS OPTIMIZATION ALGORITHM (WOA) 

Every walrus in inhabitants of searchers comprise the WOA procedure is a potential fix for the optimization 

problematic. Since individually walrus's position intimate search universe influences parameters of the delinquent, they 
are vectors. The walrus population is represented numerically by the population matrix. When WOA is first put into 

practice, the walrus populations are started randomly. The algorithm starts its search for the best solutions after this 
random setup. This WOA population matrix is determined by using Eq. (11) [11]. 

 

            𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑗 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑗 ⋯ 𝑥𝑖,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

                                                (11) 

 

Important components of the WOA are the amount of variables of decision-making (N) and entire number of 
walruses (N), both represented by m. Every walrus, denoted by Xi, offers a nominee (possible) elucidation to the issue. 
The qualities that every walrus proposes for the choice variables, denoted as xi,j, impact the evaluation of the objective 

function. This procedure demonstrates how every walrus contributes to the algorithm's search for the best solutions. 
The assessed principles used for fitness function achieved as of walruses are indicated by Eq. (12) 

 
 

                     𝐹=

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

                                                                                                      (12) 

 
 
The objective function, denoted as Fi, is evaluated for each walrus (i) in the optimization process, where F denotes 

object form vector. The superiority of prospective resolutions is assessed over object function quantities. The greatest 
member is the solution with the maximum objective function value, while the worst member has the lowest. During 
each iteration, participants are regrouped based on changes in their unbiased function principles. 

• WOA modelling  
Three procedures framework WOA's process for reviewing the walrus's location, which is founded on animal's 

distinctive performance.  
Stage one: exploration  
Walruses have a diverse diet consisting of marine invertebrates like shrimp, aquatic cucumbers, spineless coral 

reefs, tube worms, and several mollusks, including above sixty kinds of food. They primarily favor benthic bivalve 
mollusks, particularly oysters, using their searching vibrissae and vigorous flipper travels to graze sea bottom. In their 
exploration for food, leadership is determined by walrus with lengthiest tusks, specifying sturdiest distinct in grouping. 

The object function principles in optimization are equivalent to the tusk length of walruses, where the furthermost 
influential walrus represents the finest impending solution with the uppermost charge for the objective function. 

Walruses' search patterns create individual perusing neighborhoods inside pursuit planetary, improving the universal 
search competence of the WOA. Equations (13) and (14) are used to quantitatively represent the behavior dynamic 
[11]. 
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                𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 . (𝑆𝑊𝑗 − 𝐼𝑖,𝑗.𝑥𝑖,𝑗)                                                                                 (13) 

                𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖 ,

𝑋𝑖 ,𝑒𝑙𝑠𝑒,
                                                                                                                  (14)    

 

In the first phase, the new location 𝑥𝑖
𝑃1 of the ith walrus, 𝑥𝑖,𝑗

𝑃1 is determined by its jth dimension, , with 𝐹𝑖
𝑃1 as the 

estimated objective function value. 𝑋𝑖
𝑃1, is the generated location for the ith walrus. 𝐼𝑖, takes random integer values 

between 1 and 2, 𝑟𝑎𝑛𝑑𝑖, random values in the range [0,1], and SW is measured strongest walrus and ideal candidate 

solution. Typically, 𝐼𝑖,is set to 1, but in this case, it is adjusted to 2 to enhance the algorithm's exploration abilities. This 

adjustment leads to more focused and wider shifts in the walruses' positions, enhancing the algorithm's global search 
capacity. These conditions enable the algorithm to travel away from resident bests and search the preliminary issue 
addressing planetary more efficiently. 

Stage tow: Walrus Motion  
The travelling machinery of walruses, wherever they travel to stony seashores or ridges as the climate warms in 

utilized in the late summer by the WOA to escort the walruses in discovering appropriate places inside the exploration 

planetary. According to this modeling, each walrus is motivated to a diverse (at arbitrary picked) location in a 
distinctive portion of pursuit universe by using Eq. (15) and Eq. (16) which represent mathematical model [12]. 

 

𝑥𝑖,𝑗
𝑃2 = {

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 . (𝑥𝑘,𝑗 − 𝐼𝑖,𝑗.𝑥𝑖,𝑗),𝐹𝑘 < 𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗. (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗),𝑒𝑙𝑠𝑒,
                                                                (15)     

       𝑋𝑖 = {
𝑋𝑖

𝑃2 ,𝐹𝑖
𝑃2 < 𝐹𝑖;

𝑋𝑖,𝑒𝑙𝑠𝑒,
                                                                                                               (16) 

 
The location of chosen walrus may track ith  course of the algorithm as specified in Xk for k∈{1,2,…,N} and k≠i. 

The symbols 𝑥𝑘, represent this walrus's jth dimension, and 𝐹𝑘 gives us the value of its objective function. Centered on 

the second stage, 𝑋𝑖
𝑃2, is the recently discovered ith walrus site.  

Stage three: Exploitation  
Walruses face threats from killer whales and polar bears, prompting them to adjust their positions for defense and 

escape. Mimicking this behavior enhances the WOA's exploitative power within a short search region around viable 
solutions. The WOA adopts walrus location variations take place inside a district centered around individually walrus, 

by a span that decreases as the algorithm progresses. This strategy helps identify the best search space area, starting 
with a global search and focusing on local optimization. An adjustable radius with lower/upper boundaries is used 
during iterations. To replicate this in WOA, a municipal is recognized about apiece walrus, and an innovative position 

is arbitrarily produced inside this district. In order to simulate the phenomena, a vicinity is taken as surrounding every 
walrus, and according to Equations (17) and (18), an alternate location is first produced at random among the specified 
region. Subsequently, in accordance with Eq. (19), the current location takes the place of the prior one if the goal 

function's score is enhanced [11]. 
 

           𝑥𝑖,𝑗
𝑃3 = 𝑥𝑖,𝑗 + (𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 + (𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡 − 𝑟𝑎𝑛𝑑. 𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 )),                                        (17) 

        𝐿𝑜𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑠 ∶ {
𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 =
𝑙𝑏𝑗

𝑡
,

𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡 =

𝑢𝑏𝑗

𝑡
,
                                                                                    (18) 

         𝑋𝑖 = {
𝑋𝑖

𝑃3 ,𝐹𝑖
𝑃3 < 𝐹𝑖; 

𝑋𝑖 ,𝑒𝑙𝑠𝑒,
                                                                                                             (19) 
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In the repeated form, the low and higher bounds of the jth variable are indicated by t, 𝑙𝑏𝑗, and 𝑢𝑏𝑗, respectively. 

The variables 𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡  and 𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 , respectively, denote the allowed resident low and high bounds for the jth variable. 

These values mimic local exploration close to the candidate solutions. The third phase is the foundation for the recently 

developed ith walrus website, 𝑋𝑖
𝑃3. The WOA implementation flowchart is presented in Figure  1 , and its pseudo-code is 

specified in Algorithm 1. 
 
 

 
Algorithm 1. Pseudo-code of WOA 

Start WOA.  
1: Enter entire optimizing problematic data. 

2: Established numeral of walruses (𝑁) then whole quantity of repetitions (𝑇). 

3: Setting up the walruses' primary placements. 

4: For 𝑡 = 1: 𝑇 

5: Bring up to date resilient walrus established on fitness function assessment measure. 

6: For 𝑖 = 1: 𝑁 

7: Phase1: Serving tactic (investigation) 

8: Compute fresh position of the 𝑗th walrus via (13). 

9: Inform the 𝑖th walrus position via (14). 

10: Phase 2: Relocation 

11: Select migration target intended for 𝑖th walrus. 

12: Evaluate fresh position of 𝑗th walrus with (15). (15). 

13: Update the 𝑖th walrus location using (16). 

14: Phase 3: Escaping and fighting against predators (exploitation) 

15: Calculate a new position in the neighborhood of the 𝑖th walrus   using (17) and (18) 

16: Update the 𝑖th walrus location using (19). 

17: end 

18: Save finest applicant resolution to date. 

19: end 

20: Produce finest quasi-optimal resolution attained by WOA designed for specified case. 

21: End WOA 
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FIGURE 1 Flowchart diagram of Walrus optimization [11] 

3.2 RED TAILED HAWK OPTIMIZATION ALGORITHM (RTHOA)    

Based on RTH predatory behaviour, this metaheuristic algorithm optimizes CEEDs. These hawks are known for 

their keen hunting skills, precision, and adaptability to environmental conditions. RTHO solves complex optimization 
problems by mimicking hawks' hunting strategies and adaptive behaviours. Hawk populations could be a solution to 
CEED optimization. They explore the search space and modify their locations centered  on their encounters and 

collective knowledge. By incorporating exploration and exploitation mechanisms, the hawks can search for promising 
areas in the search space and refine the best ones. By dynamically adjusting its search strategies, the algorithm captures 

the adaptability of RTHs, ensuring efficient convergence towards the best solution. By balancing economic costs and 
emission reductions while ensuring reliable power supply, RTHO is particularly good at handling CEED's diverse and 
complex constraints. 

•Inspiration and behavior during hunting  
The RTH is a carnivorous predator, primarily hunting mammals like rodents, which make up 85% of their diet, but 

also eating birds, fish, invertebrates and amphibians. Their diet varies with geography and season. During flight, they 

use a gentle dihedral wing posture to minimize flapping and conserve energy, soaring efficiently with speeds of 32-64 
km/h and pitching equal to 190 km/h. They exhibit powerful flight patterns, especially when defending nests.  

•High soaring: Flying at high altitudes through least dithering to preserve energy though scouting.  
•Low soaring: Descending to a lower altitude and circling prey to assess finest stage and habitation to strike.  
•Stooping and swooping: Diving at prey from a high speed in a curved trajectory after selecting the optimal attack 

position.  
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•Mathematical model  
The hunting strategy and the inspiration source are covered in the first part. Next, a model of the RTH movements 

is created, and every phase of the process is scrutinized. 
•High soaring: In order to find the optimum spot for accessibility to food, the red-tailed hawk will fly high in the 

clouds. Eq. (20) is computational representation that describes the altitude soaring phase, and Figure 2 shows how the 

red-tailed hawks act throughout this period of flight [13]: 
    

          𝑋(𝑡) = 𝑋𝑏𝑒𝑠𝑡 + (𝑋𝑚𝑒𝑎𝑛 − 𝑋(𝑡 − 1)). 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚).𝑇𝐹(𝑡)                                                  (20) 

 
where 𝑋𝑚𝑒𝑎𝑛 is the position's mean, 𝑋𝑏𝑒𝑠𝑡 is the best-obtained position, and 𝑋(𝑡) is the RTH location at repetition t. 

The impose flying circulation function may be computed using Eq. (21) and (22), and the transition factor function, 
denoted by 𝑇𝐹(𝑡) can be calculated according to Eq. (23) 

 

  
 

FIGURE 2 Performance of Red-Tailed Hawk throughout highest e levated phase 

 

                      𝐿𝑒𝑣𝑦(dim) = 𝑠
𝜇.𝜎

|𝑣|𝛽−1                                                                                                                  (21) 

                

                   𝜎 = (
Γ(1+𝛽).sin (

𝜋𝛽

2
)

Γ(1+𝛽/2).𝛽.2
(1−

𝛽
2)
)                                                                                                                 (22) 

As u and υ are arbitrary numbers [0 to 1], β is fixed (1.5), and s is fixed (0.01). Dim is the issue width.   

                𝑇𝐹(𝑡) = 1 + sin (2.5+ (
𝑡

𝑇𝑚𝑎𝑥
))                                                                                                    (23) 

• Near to the ground soaring: The hawk soars in a series of spirals that bring it much nearer to ground, surrounding 

the target. This phase is demonstrated in Fig. 4, and its formula can be stated in Eq. (24), Eq. (25) and Eq. (26) [13]. 

    𝑋(𝑡) = 𝑋𝑏𝑒𝑠𝑡 + (𝑥(𝑡) + 𝑦(𝑡)).𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑡)                                                                                            (24) 

     𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑡) = 𝑋(𝑡) − 𝑋𝑚𝑒𝑎𝑛                                                                                                                       (25) 

  {
𝑥(𝑡) = 𝑅(𝑡). sin (𝜃(𝑡))
𝑦(𝑡) = 𝑅(𝑡).cos (𝜃(𝑡))

{
𝑅(𝑡) = 𝑅0.(𝑟 −

𝑡

𝑇𝑚𝑎𝑥
). 𝑟𝑎𝑛𝑑

𝜃(𝑡) = 𝐴. (𝑟 −
𝑡

𝑇𝑚𝑎𝑥
). 𝑟𝑎𝑛𝑑

{
𝑥(𝑡) = 𝑥(𝑡)/𝑚𝑎𝑥|𝑥(𝑡)|

𝑦( ) = 𝑦(𝑡)/𝑚𝑎𝑥|𝑦(𝑡)|
                (26) 

where 𝐴 is the angle gain, 𝑟𝑎𝑛𝑑 is a arbitrary gain, r is a limit gain, and 𝑅0 is the radius's initial value. Stooping 
and Swooping: The hawk sharply bends to attack the victim by using its best position from the low flying stage. These 

features let the hawk make spiraling movements around its prey. Figure 3 describes the manners of the red-tailed hawks 
throughout this stage. 
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FIGURE 3 Performance of Red-Tailed Hawk throughout low elevated phase 

 
•Stooping and Swooping: Hawk habits its best-attained location from low-slung flying point to abruptly stoop and 

knockout the victim.  These features help hawk in flying about the target through corkscrew motions. Fig. 5 explains 

the performance of the RTHs throughout this phase. This stage can be modeled as follows in Eq. (27):  

                  𝑋(𝑡) = 𝛼(𝑡). 𝑋𝑏𝑒𝑠𝑡+𝑥(𝑡).𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1(𝑡)+𝑦(𝑡).𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2(𝑡)                                                        (27) 

It tolerates for the succeeding computation of individually stage size: where individually stage extent can be 
computed as showed in Eq. (28) and Eq. (29). 

                                        𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1(𝑡) = 𝑋(𝑡) − 𝑇𝐹(𝑡).𝑋𝑚𝑒𝑎𝑛                                                                                (28) 

                                      𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2(𝑡) = 𝐺(𝑡). 𝑋(𝑡) − 𝑇𝐹(𝑡). 𝑋𝑏𝑒𝑠𝑡                                                                       (29) 

As α and G stance for speeding up and gravity modules, are correspondingly specified in equations (30) and (31). 
Conduct of RTH throughout stooping and swooping steps is defined in figure 4. 

                                                   𝛼(𝑡) = 𝑠𝑖𝑛2(2.5−
𝑡

𝑇𝑚𝑎𝑥
)                                                                                                    (30)                                                                                          

𝐺(𝑡) = 2. (1 −
𝑡

𝑇𝑚𝑎𝑥
)                                                                                                 (31)               

 

FIGURE 4 Manners of RTH throughout stooping and swooping phases [13] 

where G represent earth gravity impact, that lowers for lessen form of assault when the hawk is much nearer to its 
victim, and α is the hawk's speed, which increases with an upsurge in t to enhance the meeting speed. Step-by-step 

algorithm for the RTHO technique modified for CEED optiming. 
 

 
Algorithm 2. Pseudo-code of RTHO  

1: Begin: arbitrary peers inside the pursuit planetary. 

2: Whereas t < 𝑇𝑚𝑎𝑥 do 
3:  Extraordinary soaring phase: 
4:  for 𝑖 =1: 𝑁𝑝𝑜𝑝 do 
5: Compute Impose flight scattering 

6: Calculate the transition factor TF 

7: Update positions 
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8:  end 
9:  Low soaring stage: 
10: for 𝑖 = 1: 𝑁𝑝𝑜𝑝 do 
11: Compute direction synchronizes 

12: Inform locations 
13: end 
14: Stooping & Swooping phase: 
15: for 𝑖 = 1: 𝑁𝑝𝑜𝑝 do 

16: Compute speeding up then gravity features 
17: Compute 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 
18: Inform locations  
19: end 
20: End Even though 

 

4. SIMULATION RESULTS and DISCUSSIONS 

In this study: Three cases are considered; the suggested algorithms are implemented on standard IEEE 30-bus 
system bearing in mind VPE in existence of two WOA and RTHOA, in mandate to solve CEED problem. The single -
line diagram of which is explained by the Figure 5: Case 1: is six unit (power demand-Pd = 2.834 MW), Case 2: is a 

10-unit (power demand-Pd = 2000 MW) and Case 3: is a 40-unit (power demand-Pd = 10,500 MW). The cost function 
and emission data’s for the above cases are taken from [14]. 

 

 

FIGURE 5 Single line diagram of IEEE  30-bus system 

 

 

4.1 WALRUS OPTIMIZATION RESULTS 

The convergence curves of the proposed algorithm for the best solution obtained for the 6-unit, 10-unit and 40-unit 

test systems is shown in Figures 6 ,7 and 8 considered in this simulation using WOA.                    
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Study case One: Six generation units 

 

No. Of  Iterations 
 

FIGURE 6 Reaching target of cost function aimed at study case one with WOA 
 

 
Study case Two: Ten generation units 

 

No. Of  Iterations 

FIGURE 7 Reaching target of cost function aimed at study case tow with WOA 
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Study case Three: Forty generation units 

 

No. Of  Iterations 

 

FIGURE 8 Reaching target of cost function aimed at study case three with WOA 

 

Table 1 WOA Results  

 

 

Table 1 provides details on the performance of the WOA across three different cases. For each case, it reports 
average trail, normal deviance (SD), finest fitness, and poorest fitness values. In Case 1, the average trail is 1.8244e3 

($/hr) with a standard deviation of 0.7541, the finest fitness achieved is  1.8239e3 ($/hr), and the poorest fitness is 
1.822e3. Case 2 shows a upper average trail of 1.1997e5 and a standard deviation of 270.93, with the best and worst 

fitness values being 1.1872e5 ($/hr) and 1.2029e5 ($/hr), respectively. Case 3 has a average trail of 35.4018 and a much 
higher normal deviance of 35.708, indicating significant variability, with best and worst fitness values of 176.0157 
($/hr) and 340.37 ($/hr), respectively. This data suggests that the algorithm's performance varies considerably 

depending on the case, with Case 2 showing relatively high stability and fitness values, while Case 3 displays the most 
variability. 

 

 
4.2 OPTIMUM  OUTCOMES RED-TAILED HAWK  

Curves of fitness functions values of 6, 10 and 40 generating units were carried out in this simulation study with 
RTHO. Figures 9, 10 and 11 represent object function values vs. number of iteration for 6,10 and 40 generators 
correspondingly.  

 
 
 

 
 

 
 
 

Study Cases average trail S.D finest fitness poorest fitness  

1 1.8244 e3 0.7541 1.8239 e3  1.822 e3 

2 1.1997 e5  270.93  1.1872 e5  1.2029 e5 

3 35.401  35.708 176.0157  340.37  

($
/h

r
) 
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Study case One: Six generation units 
 

 

                     No. Of  Iterations  

FIGURE 9 Reaching target of cost function aimed at study case one with RTHO A 

 

Study case Two: Ten generation units 

 

No. Of  Iterations 
FIGURE 10 Reaching target of cost function aimed at study case two with RTHO A 

 

 
 

 
 

($
/h

r
) 

($
/h

r
) 



Rafid Z. Khlaif and Thamir H. Atyia, Al-Salam Journal for Engineering and Technology Vol. 4, No. 2, (2025), p. 30-46 
 

 43 

Study case Three: Forty generation units 

 

No. Of  Iterations 

FIGURE 11 Reaching target of cost function aimed at study case three with RTHO A 

 

Table 2 RTHO Results 

Study Cases  Average Trail  S.D  Finest Fitness  Poorest Fitness  

1  1.8242 e3  0.3100  1.8239 e3  1.8250 e3 

2  1.2006 e5  342.63  1.184 e5  1.2046 e5 

3  295.29  14.7080  251.46  329.94 

 
 

Table 2 provides the performance metrics for the RTHOA across three different cases. For each case, it lists 

average trail, normal deviance, finest fitness, and poorest fitness values. In Case 1, average experiment was 
1.8242e3(dollar/hour) of standard deviation with 0.3100, the finest objective was 1.8239e3 (dollar/hour), and poorest 
objective was 1.8250e3 (dollar/hour), indicating high consistency and minimal variation. In Case 2, average trail 

increases significantly to 1.2006e5 with a larger standard deviation of 342.63, the finest fitness achieved is 
1.184e5($/hr), and the poorest fitness is 1.2046e5($/hr), reflecting moderate variability. Case 3 shows average trail of 

295.29 and a normal deviance of 14.7080, with the finest fitness documented at 251.46($/hr) and the poorest fitness at 
329.94($/hr), indicating a broader array of aptness principles but less inconsistency compared to  study case two. 

 

4.3 COMPARATIVE ANALYSIS  

The proposed (WOA) and (RTHOA) were calculated in contradiction of a collection of supplementary 
optimization methods to evaluate their usefulness. Including "Grey wolf optimization (GWO), Moth flame optimization 

(MFO), Multiverse optimization (MVO), (PSO), Salp swarm optimization (SSO), Whale optimization algorithm 
(WHOA)". Outcomes obtained by suggested systems are indicated in table 3. 
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Table 3 Comparison of best solutions of Generation Cost of the six unit system (P(demand) = 2.834 MW) 

Generator 

NO.  

Grey wolf 
optimization 

Moth flame 
optimization 

Multiverse 
optimization 

Particle 
swarm 

optimization 

Salp swarm 
optimization  

Whale 
optimization  

Walrus  
optimization  

Red tailed 
hawk 

optimization 

G1 (MW) 0.370957  0.336269  0.367224  0.32366  0.44411  0.232142  0.34896  0.326529 

G2 (MW) 0.42794  0.458515  0.415092  0.451174  0.554778  0.354082  0.41964  0.441249 

G3 (MW) 0.459082  0.408108  0.574005  0.542828  0.573484  0.923872  0.517481  0.518553 

G4 (MW) 0.839106  0.623595  0.649645  0.53769  0.480638  0.228807  0.582539  0.583046 

G5 (MW) 0.38333  0.455589  0.510782  0.535346  0.463586  0.682232  0.528159  0.524592 

G6 (MW) 0.387833  0.587654  0.347304  0.473374  0.354821  0.435731  0.468302  0.470524 

Best   

Score($/hr) 

1827.906  1836.306  1833.373  1824.923  1846.322  1933.56  1824.461  1823.908 

 
The above Table 3 displays statistics for six unit system, Here the recommended WOA and RTHOA results 

compared with some other algorithms, they executes superior and has a least generation cost 1824.461 ($/hr), 1823.908 
($/hr) respectively. 

Table 4 Comparison of best solutions of Generation Cost of the ten generators system (P(demand)=2000MW) 

 

Generator 
NO.  

Grey wolf 
optimization 

Moth flame 
optimization 

Multiverse 
optimization 

Particle 
swarm 

optimization 

Salp swarm 
optimization  

Whale 
optimization  

Walrus  
optimization  

Red tailed 
hawk 

optimization 

G1 (MW) 52.33413  55  46.68295  54.99413  54.70752  54.95172  55  54.99709 

G2 (MW) 80  69.03504  62.57551  79.97392  66.59121  80  79.55938  80 

G3 (MW) 72.32635  66.54099  81.54476  79.86829  102.3886  73.81535  81.59243  67.47329 

G4 (MW) 90.90867  106.4639  52.94127  82.26748  76.33461  28.93526  83.53782  84.44176 

G5 (MW) 159.4585  130.6111  160  159.9702  141.4114  124.1096  159.9919  159.9221 

G5 (MW) 227.1962  224.7971  240  239.9784  238.2162  173.5443  239.9742  239.9573 

G7 (MW) 269.6645  276.2597  295.5875  292.1161  290.0548  271.7285  293.6665  299.9998 

G8 (MW) 309.0811  230.4492  279.0359  303.0692  191.9015  339.9791  288.5746  338.0275 

G9 (MW) 399.9091  455.5399  421.0903  384.489  462.0781  470  387.4923  394.7581 

G10 (MW)  421.149  470  444.4386  405.2476  460.9165  470  412.6934  361.9683 

Best   
Score($/hr) 

323084.2  332162.1  326122.1  323825.2  331991  341050  320882.1  321257.9 
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Table 4 displays statistics intended for ten generator case, The projected WOA and RTHOA gaining finest 
resolution of entire budget 320882.1($/hr) and 321257.9 ($/hr) correspondingly. The WOA and RTHOA supply nearly 

finest outcomes in decreasing together fuel expenditures and pollutants emissions for the ten generators  study case. 
Their economical marks and effective unit allocations high spot their prospective as vigorous approaches for addressing 
multi objective issues.  

 

5. CONCLUSIONS  

WO and RTHO Algorithms proves that CEED problems can be solved effectively and efficiently. Based on the 

comparative analysis, shown in Tables 3 and 4, the performance of the proposed algorithms were the best in 
comparison with the other techniques, both algorithms have their strengths and their performance varies. Considering 

study case one, (WOA) finest fitness attained is 1.8239e3($/hr) least normal deviance and a adjacent space amid 
superior and poorest fitness values, while (RTHOA) showed impressive performance, particularly in retaining 
steadiness and reaching necessary fitness results 1.8250e3 ($/hr). In Case 3, the RTHOA showed bigger changeability, 

which indicates a wider survey ability. These outcomes recommend that both procedures proposal appreciated  methods 
for augmenting CEED difficulties, with the WO System presence extra reliable and RTHO Procedure providing a 
balance between exploration and exploitation. Table 3and4 provide a comprehensive analysis of different methods. 

Among them the proposed method delivering best solution in all aspects. It adds to the growing body of research on 
nature-inspired optimization, giving us insight into how they can help power systems solve their problems more 

economically and with fewer emissions. The promising results obtained from the WO and RTHO algorithms for 
addressing (CEED) problem surface the way for numerous forthcoming investigation opportunities. First of all, 
supplementary examination into crossbreed optimization tactics incorporating assets of both proced ures can be 

discovered. Joining reliability of WO Procedure through survey competences of RTHO Optimization Procedure might 
tip to improved enactment and strength through a broader collection of CEED situations. Furthermore, piloting real-
world applications and challenging on larger-scale power systems can deliver real-world visions into scalability and 

applicability of these procedures in compound energy administration situations. 
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