AUIQ Technical Engineering Science

Manuscript 1038

Hybrid Organic-Inorganic Corrosion Inhibitors: Bridging Performance and Eco-Safety

Hasan M. Luaibi

Saja S. Al-Tweel

Follow this and additional works at: https://ates.alayen.edu.iq/home

Part of the Engineering Commons

Hybrid Organic-Inorganic Corrosion Inhibitors: Bridging Performance and Eco-Safety

Hasan M. Luaibi a,*, Saja S. Al-Tweel b

- ^a Alkarkh University of Science, College of Energy and Environment Sciences, Baghdad, Iraq
- ^b Al-Karkh University of Science, Baghdad, Iraq

ABSTRACT

Corrosion leads to global economic losses exceeding \$2.5 trillion annually and accounts for up to 30% of infrastructure failures. Conventional corrosion inhibitors face limitations such as aquatic toxicity (LC50 < 100 mg/L), moderate efficiencies (65–82%), and poor long-term durability (<500 hours). This review critically evaluates hybrid organic-inorganic corrosion inhibitors, focusing on their composition, mechanisms, performance metrics, and eco-safety. Hybrid systems comprising organic molecules integrated with inorganic matrices like sol-gel networks, nanocomposites, and layered double hydroxides (LDHs) demonstrate enhanced functionality through barrier effects, self-healing, and controlled release. These materials achieve inhibition efficiencies of 88-98.5%, outperforming conventional systems by 18-35%. Sol-gel coatings protect carbon steel at 92-98% efficiency in 3.5% NaCl, while LDHs sustain 94-97% protection over 1200-1500 hours. Nanocomposites reduce corrosion rates from 0.95 mm/year to 0.002-0.004 mm/year. Electrochemical techniques (EIS, PDP) show increased charge transfer resistance (500–2500 Ω·cm²) and coating resistance up to $10^8 \ \Omega \cdot \text{cm}^2$. Surface analysis reveals smoother films (Ra = 15–35 nm), higher contact angles (95–125°), and adhesion strengths of 12-18 MPa. Case studies report 90-96% protection in marine settings, 88-94% in acidic media, and over 92% under atmospheric conditions. Durability tests confirm > 90% efficiency after 1000 hours, significantly higher than the <60% for conventional coatings. Overall, hybrid inhibitors offer a high-performance, eco-conscious alternative for corrosion control, combining efficiency, environmental safety, and scalability. Their superior metrics and adaptability position them as next-generation solutions for diverse industrial applications.

Keywords: Hybrid inhibitors, Corrosion protection, Sol-gel, Nanocomposites, Eco-safe materials, Surface characterization

1. Introduction

Corrosion is a pervasive electrochemical phenomenon responsible for the gradual deterioration of metals through interactions with their surrounding environments typically involving moisture, oxygen, acids, and salts. This process significantly compromises the mechanical integrity, durability, and functional performance of materials, posing critical risks to infrastructure, transportation, energy, and marine sectors. According to NACE International, the global annual cost of corrosion exceeds US\$2.5 trillion, amounting to nearly 3–4% of the global GDP, highlighting both its economic and operational

implications. More concerningly, corrosion-induced failures such as pipeline ruptures, structural collapses, and reactor breaches can lead to environmental disasters and human safety crises [1, 2]. A wide range of corrosion protection strategies have been developed over the past century. These include physical and electrochemical methods such as galvanic coatings, anodization, cathodic protection, and passivation. While these techniques are often effective, they can be constrained by cost, environmental conditions, complex application procedures, or limited long-term performance. Among these, corrosion inhibitors chemical compounds that reduce the rate of metal degradation when present

Received 18 June 2025; revised 27 July 2025; accepted 28 July 2025. Available online 8 August 2025

* Corresponding author.

E-mail addresses: hasan.luaibi@gmail.com (H. M. Luaibi), saja.chemistry@gmail.com (S. S. Al-Tweel).

in small concentrations have gained prominence for their cost-effectiveness and adaptability. However, conventional inhibitors, particularly those based on toxic heavy metals (e.g., chromates, lead compounds) or synthetic organics, are increasingly scrutinized for their environmental persistence, bioaccumulation potential, and adverse health effects [3, 4]. To address these challenges, research has shifted toward developing eco-friendly corrosion inhibitors that meet both performance and regulatory standards. This has spurred significant interest in hybrid organic-inorganic corrosion inhibitors, which combine the surface-reactivity and adsorption capabilities of organic molecules with the structural stability and barrier-forming attributes of inorganic matrices [5]. Such hybrid systems offer synergistic benefits: organic components (e.g., heterocyclic compounds, amino acids, plant-derived molecules) exhibit strong adsorption onto metal surfaces via lone-pair electron donation and π -electron interactions [6, 7], while inorganic components (e.g., silica, alumina, metal oxides, and layered double hydroxides) contribute high mechanical durability, thermal stability, and corrosion resistance. Importantly, the hybridization of these two components allows for multifunctional behavior. Inorganic carriers can act as nanocontainers or scaffolds for encapsulating organic inhibitors, enabling stimuli-responsive release triggered by environmental factors such as pH shifts, redox reactions, or chloride ion concentration [8, 9]. This integration enhances durability, offers self-healing capabilities, and enables adaptive protection in dynamic corrosive environments. Moreover, these systems align well with green chemistry principles through the use of biodegradable components, reduced toxicity, and environmentally benign synthesis routes such as sol-gel processing and layer-by-layer assembly [10, 11]. Thus, hybrid organic-inorganic inhibitors represent a transformative approach in corrosion science balancing high-performance demands with sustainability mandates. The present review aims to provide a critical and comprehensive assessment of such systems by exploring their classification, mechanisms of action, performance evaluation, environmental considerations, and emerging industrial applications. Table 1 summarizes the key characteristics, mechanisms, and functional advantages of organic, inorganic, and hybrid corrosion inhibitors. Organic inhibitors typically offer strong surface adsorption due to functional groups containing nitrogen, oxygen, or sulfur but may suffer from volatility or environmental concerns. Inorganic inhibitors provide stable physical barriers and passivation effects, though they may lack active chemical interaction with metal surfaces. Hybrid systems combine the ben-

efits of both, offering enhanced corrosion protection through synergistic mechanisms such as controlled inhibitor release, improved barrier properties, and environmental responsiveness positioning them as advanced, sustainable alternatives for modern applications. Table 1 summarizes the key characteristics, mechanisms, and functional advantages of organic, inorganic, and hybrid corrosion inhibitors. Organic inhibitors typically offer strong surface adsorption due to functional groups containing nitrogen, oxygen, or sulfur but may suffer from volatility or environmental concerns. Inorganic inhibitors provide stable physical barriers and passivation effects, though they may lack active chemical interaction with metal surfaces. Hybrid systems combine the benefits of both, offering enhanced corrosion protection through synergistic mechanisms such as controlled inhibitor release, improved barrier properties, and environmental responsiveness positioning them as advanced, sustainable alternatives for modern applications.

Fig. 1 illustrates the synergistic protection mechanism of hybrid organic–inorganic corrosion inhibitors. The metal substrate is coated with a composite layer comprising an inorganic matrix (e.g., silica or LDH) embedded with organic inhibitor molecules. The system functions through dual-action protection: the inorganic phase forms a physical barrier against corrosive agents such as oxygen, water, and chloride ions, while the organic phase chemically adsorbs onto the metal surface, blocking active corrosion sites. Additionally, environmental stimuli like pH changes or ionic attack can trigger the controlled release of inhibitors, enabling adaptive, self-healing behavior and extended corrosion resistance.

Fig. 2 presents a comprehensive overview of the historical development, types, mechanisms, applications, environmental considerations, and future trends of corrosion inhibitors. It traces early anticorrosion techniques, such as natural oils and

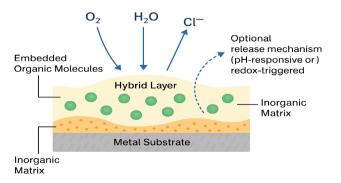


Fig. 1. Schematic representation of hybrid corrosion inhibitor functionality.

 Table 1. Comparative overview of organic, inorganic, and hybrid corrosion inhibitors.

Inhibitor Type	Examples	Mechanism of Action	Advantages	Disadvantages	Environmental Impact	Cost Efficiency
Organic Inhibitors	Amines, Imidazoles, Fatty acids, Benzotriazole	Adsorption on metal surface forming protective film, electron donation to metal	Effective in acidic environments, good for localized corrosion, versatile application	Temperature limitations, may decompose over time, often require higher concentrations	Some are toxic and non- biodegradable; new green alternatives available	Medium
Inorganic Inhibitors	Chromates, Phosphates, Molybdates, Silicates, Nitrites	Formation of passive oxide layer, precipitation of protective compounds	Long-lasting protection, effective in many environments, low cost	Limited effectiveness in complex scenarios; some (e.g., chromates) are toxic	Traditional options (chromates etc.) are highly toxic; newer formulations align with environmental	Low
Hybrid Inhibitors	Polysiloxane compounds, Organophosphonates, Functionalized polymers	Combined mechanisms: film formation, passivation, and adsorption	Synergistic effects, durable films, effective in mixed corrosive environments	Complex formulation, costly, synthesis may require specialized techniques	needs Generally lower toxicity than chromates; eco-friendly designs emerging	High
Green Organic Inhibitors	Plant extracts, Essential oils, Amino acids, Biopolymers	Similar to organic inhibitors but derived from renewable sources	low toxicity, renewable source	Variable composition affects consistency; limited long-term validation	Biodegradable, low environmental burden	Medium
Vapor Phase Inhibitors	Dicyclohexylamine nitrite, Cyclohexylamine carbonate	Volatilization and adsorption on metal surfaces	Protection of enclosed spaces, reaches inaccessible areas	Limited to enclosed systems, slow response, not effective in open-air conditions	Some formulations contain volatile organics	Medium
Conversion Coating Inhibitors	Phosphating compounds, Chromate conversion coatings	Chemical reaction with metal surface forming stable oxide/phosphate layers	Excellent adhesion, good base for paints/coatings	Surface preparation critical, environmentally hazardous (chromates)	Traditional formulations include toxic metals, though alternatives exist	Medium
Cathodic Inhibitors	Calcium carbonate, Zinc compounds	Precipitation on cathodic sites to reduce reaction rate	Effective for specific corrosion mechanisms, low cost	May affect specific applications, limited to certain environments	Generally lower toxicity than anodic types	Low
Anodic Inhibitors	Nitrites, Chromates, Molybdates	Passivation of anodic sites through oxide film formation	Highly effective in many applications, strong protection	Can increase corrosion if applied incorrectly; some are highly toxic	Significant environmental concerns for chromates and nitrites	Low
Smart/Stimuli- Responsive Inhibitors	pH-sensitive microcapsules, Self-healing polymers	Release of inhibitors in response to environmental triggers	Extended service life, reduced maintenance	Limited formulations, higher cost, complex design	Significant environmental potential but cost and complexity remain	High
Nano- enhanced Inhibitors	Graphene oxide, Carbon nanotubes, Metal oxide nanoparticles	Enhanced surface coverage, multiple protection mechanisms	Effective at very low concentrations, multifunctional properties	Environmental effects, complex manufacturing	Ongoing research regarding environmental fate and toxicity	High

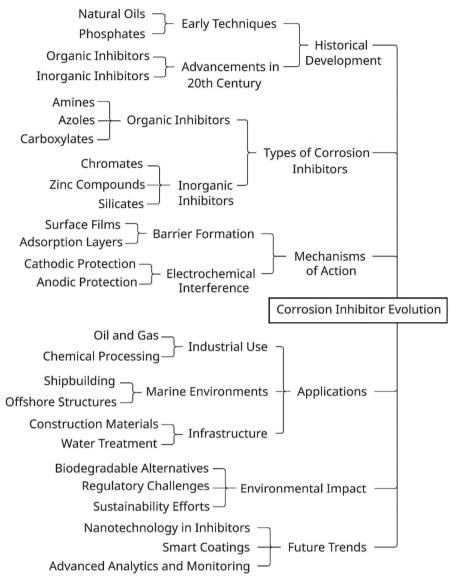


Fig. 2. Conceptual overview of corrosion inhibitor evolution.

phosphates, through significant 20th-century advancements including the emergence of organic and inorganic inhibitors. The classification includes specific compounds like amines, azoles, chromates, and silicates. Mechanisms of action are outlined under barrier formation and electrochemical interference, while industrial applications span oil and gas, marine structures, and infrastructure. The map also highlights current environmental concerns, such as biodegradability and regulatory challenges, and looks ahead to smart coatings, nanotechnology integration, and data-driven corrosion monitoring. The aim of this mini-review is to present a focused and critical evaluation of recent developments in hybrid organicinorganic corrosion inhibitors, with an emphasis on their potential to balance high-performance protection with eco-safety and sustainability. Specifically, this review seeks to:

- Classify and describe the structural components of hybrid systems, detailing commonly used organic and inorganic constituents.
- Analyze the mechanisms of action that govern corrosion inhibition at the molecular, electrochemical, and surface interaction levels.
- Highlight key performance evaluation techniques, including electrochemical and surface characterization methods.
- Explore environmental and regulatory considerations, particularly regarding toxicity, biodegradability, and compliance with green chemistry principles.

- Examine recent case studies and smart system applications, including nanotechnology-enabled and responsive release formulations.
- Identify critical challenges and future perspectives, such as improving long-term stability, advancing scale-up feasibility, and integrating multifunctional protective features.

2. Classification and composition of hybrid inhibitors

Hybrid corrosion inhibitors are engineered to integrate the distinct yet complementary functions of organic and inorganic components to achieve enhanced corrosion resistance. Their classification can be structured into two primary axes:

- (1) The nature of the organic moiety, responsible for adsorption and chemical interaction with the metal surface, and
- (2) The type of inorganic matrix, which provides mechanical durability, structural support, and stimuli-responsive functionalities.

To facilitate comparative analysis and material selection, hybrid inhibitors can be categorized as follows:

2.1. Organic moieties: Functional groups and adsorption sites

Organic compounds play a critical role in corrosion inhibition, primarily due to their capacity to adsorb onto metallic surfaces and form protective barriers. This adsorption process is largely governed by the presence of electron-donating functional groups such as hydroxyl (–OH), carboxyl (–COOH), amine (–NH₂), and heteroatoms like nitrogen or sulfur found in aromatic and heterocyclic structures [12, 13]. These groups coordinate with the vacant d-orbitals of metal atoms, resulting in the formation of stable, adherent, and often hydrophobic layers that effectively limit corrosion processes. In hybrid protective systems, the

organic moiety fulfills several functions. It chemically adheres to the metal surface, thereby passivating active corrosion sites. It can also self-assemble into mono- or multilayer structures that act as physical barriers, reducing permeability to corrosive agents such as water or chloride ions. Furthermore, certain organic inhibitors are engineered to be environmentally responsive, modifying their conformation or reactivity in response to pH fluctuations or redox conditions, thereby enhancing adaptability and performance under dynamic environmental exposures [14, 15]. The performance of these organic compounds is influenced by their molecular geometry, polarity, and the density of adsorption-active centers. However, despite their advantages, many organic inhibitors face practical limitations such as high volatility, limited water solubility, or leaching under harsh environmental conditions [16, 17]. To overcome these drawbacks, organic components are often immobilized or encapsulated within inorganic matrices, enhancing their long-term stability and controlled release. A summary of commonly used organic moieties in hybrid corrosion protection systems is provided in Table 2.

2.2. Inorganic components: Nanoparticles, silicates, and metal oxides

The inorganic component in hybrid corrosion inhibitors plays a critical role by imparting structural integrity, chemical stability, and acting as a carrier for active organic species. These materials significantly improve the barrier properties of the protective coating and enable the responsive release of inhibitors when exposed to environmental stimuli such as changes in pH or the presence of corrosive ions [18]. Among the most widely used inorganic materials are mesoporous silica nanoparticles (MSNs), which possess a large surface area and pore volume that allow for high loading of organic inhibitors. Their surfaces can be functionalized to respond to specific triggers, such as pH shifts or ionic concentration

Table 2. Representative organic moieties used in hybrid corrosion inhibitor systems.

Organic Compound Category	Functional Features	Benefits	Notable Challenges
Imidazoles and Triazoles	Nitrogen-containing heterocycles	Strong π –d interaction with Fe and Cu surfaces	Can be expensive or require modification
Tannins and Polyphenols	Multiple hydroxyl groups; plant-derived	Sustainable, environmentally friendly, good film formation	Sensitivity to pH and oxidative conditions
Fatty Acid Derivatives	Long hydrophobic carbon chains	Effective water repellency, barrier layer formation	Poor water solubility, thermal instability
Amino Acids and Peptides	Contain $-NH_2$, $-COOH$, and side chains	Biocompatibility, multifunctionality, chelation capability	Limited adsorption strength without modification

			id corrosion inhib	

Component Type	Component Name	Chemical Formula	Inhibition Mechanism	Typical Applications
Organic	Benzotriazole (BTA)	C ₆ H ₅ N ₃	Adsorption film formation on metal surface	Copper and copper alloy protection in cooling systems
Organic	Imidazole derivatives	C ₃ H ₄ N ₂ –R	Forms protective layer through nitrogen bonding	Industrial water systems, oil pipelines
Organic	Thiourea	CH_4N_2S	Adsorption via sulfur atoms	Acid pickling inhibition, metal cleaning
Organic	Polyamine compounds	H ₂ N–(CH ₂) _n – NH ₂	Film formation through nitrogen coordination	Cooling water systems, boiler water treatment
Organic	Fatty acids	R-COOH	Hydrophobic film formation	Oil and gas pipelines, storage tanks
Inorganic	Zinc phosphate	$Zn_3(PO_4)_2$	Precipitation of protective layer	Metal pretreatment, primer coatings
Inorganic	Molybdate salts	Na ₂ MoO ₄	Oxidizing passive film formation	Closed cooling systems, automotive coolants
Inorganic	Silicates	Na ₂ SiO ₃	Barrier film formation	Water treatment, concrete reinforcement protection
Inorganic	Chromates	Na ₂ CrO ₄	Oxidizing passive layer formation	Aircraft components, industrial equipment (limited use due to toxicity)
Inorganic	Nitrites	NaNO ₂	Oxidizing film formation	Closed cooling systems, concrete reinforcement

changes, enabling controlled release mechanisms. Layered double hydroxides (LDHs), which are lamellar anionic clays such as zinc-aluminum LDH, provide dual functionality by capturing aggressive anions like chloride while simultaneously releasing protective anions, thanks to their ion-exchange properties [19, 20]. Metal oxides such as zinc oxide (ZnO), titanium dioxide (TiO₂), and cerium oxide (CeO₂) contribute additional protective effects. These materials can promote surface passivation and, in some cases, exhibit photocatalytic behavior. Cerium oxide, in particular, is known for its ability to regenerate oxide films on aluminum substrates, thereby extending protection in aggressive environments. Silicates and sol-gel-derived materials form rigid inorganic networks that can encapsulate organic inhibitors. The sol-gel process allows precise control over pore architecture and chemical reactivity, making it suitable for tailoring hybrid films to specific applications [21, 22]. In addition to these matrices, various nanocontainers such as hallovsite nanotubes, carbon nanotubes, and graphene oxide are employed to encapsulate and protect sensitive organic compounds. These nanostructures not only enhance the physical durability of the inhibitors but also enable their selective and gradual release [23]. Table 3 provides an overview of commonly used organic and inorganic corrosion inhibitors, detailing their chemical nature, modes of inhibition, and typical applications in industries such as cooling systems, oil pipelines, surface pretreatment, and reinforced concrete protection.

2.3. Mechanistic synergy between organic and inorganic phases

The core advantage of hybrid organic–inorganic corrosion inhibitors lies in the synergistic integration of their organic and inorganic components. Rather than functioning independently, these phases interact dynamically to amplify overall protection. This section provides a structured, step-by-step explanation of the primary synergistic mechanisms, illustrating how these systems outperform single-phase inhibitors [24, 25]:

- 1. Enhanced adhesion and barrier formation: The inorganic matrix (e.g., silica, LDH, metal oxides) forms a physically robust scaffold that adheres tightly to the metal surface. Simultaneously, the organic phase (e.g., triazoles, amino acids) chemisorbs onto the substrate via donor atoms (e.g., N, O, S), creating a compact, hydrophobic film. This dual action reduces permeability to aggressive species like H₂O and Cl⁻ and minimizes initiation of corrosion reactions [24].
- 2. Controlled release systems: Hybrid systems can be designed as stimuli-responsive coatings, where the release of organic inhibitors is triggered by environmental changes, such as a drop in pH or the appearance of corrosive ions. For instance, mesoporous silica or LDH nanocontainers can encapsulate inhibitors and release them only when corrosion initiates

- extending service life and reducing unnecessary leaching.
- 3. Ion-exchange mechanisms: Layered Double Hydroxide (LDH) structures contribute an ion-exchange function. In corrosive environments, LDHs capture aggressive anions like Cl⁻ while releasing protective anions (e.g., molybdate, phosphate). This dual-action exchange mechanism serves to neutralize corrosion triggers and promote passivation of the metal surface.
- 4. Self-healing capability: Advanced hybrid systems incorporate micro- or nano-capsules within the coating matrix. These capsules contain active inhibitors that rupture when mechanical damage or micro-cracks appear, autonomously releasing protective agents to the compromised site. This self-healing capability is essential for long-term performance, especially in environments with fluctuating stress or exposure.
- 5. Improved durability and lifetime: Embedding organic inhibitors within an inorganic matrix stabilizes them thermally and chemically, reducing issues such as desorption, evaporation, or premature degradation. This structure allows hybrid inhibitors to retain activity over extended exposure periods, even under dynamic environmental and mechanical conditions [25].

By integrating the molecular-level activity of organic inhibitors with the structural benefits of inorganic matrices, hybrid corrosion inhibitors offer a customizable and sustainable platform. Their design flexibility makes them suitable for a wide range of environments, from marine and saline exposure to acidic or high-temperature industrial processes. Fig. 3 illustrates the dual-function protective behavior of hybrid corrosion inhibitors. The hybrid layer consists of an inorganic matrix embedded with dispersed organic inhibitor molecules. Corrosion agents such as oxygen (O₂), water (H₂O), and chloride ions (Cl⁻) are physically blocked by the barrier effect of the inorganic layer. Upon environmental stimuli (e.g., pH change or ionic activity), a trigger mechanism activates the release of organic inhibitors, which then adsorb onto the metal substrate and inhibit corrosion reactions. This synergistic interaction enables both passive protection and active, responsive defense [26, 27].

Fig. 4 presents the critical design considerations for developing hybrid corrosion inhibitors. The mind map categorizes essential factors into seven domains: chemical composition (including organic, inorganic, and nanomaterials), mechanism of action (adsorption, passivation, barrier formation), environmental impact (biodegradability, toxicity, eco-friendly al-

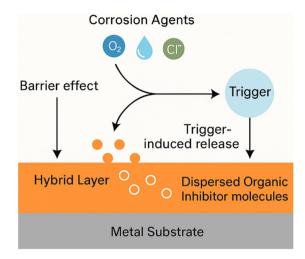


Fig. 3. Schematic of synergistic mechanism in hybrid corrosion inhibitors.

ternatives), performance evaluation (corrosion rate reduction, long-term stability, adaptability to different environments), application methods (coating, solution addition, surface treatment), cost efficiency (material costs, manufacturing, market availability), and industrial applications (oil and gas, marine, and construction sectors). These interconnected elements guide the formulation of efficient, sustainable, and industry-ready corrosion protection systems.

3. Mechanisms of inhibition

3.1. Physical vs. Chemical adsorption

The effectiveness of corrosion inhibitors, particularly in hybrid systems, is fundamentally governed by their interaction with the metal surface. These interactions typically occur via two main pathways: physical adsorption and chemical adsorption, each driven by distinct forces and possessing different thermodynamic and kinetic characteristics. Physical adsorption, also known as physisorption, involves weak van der Waals forces between the inhibitor molecules and the metal substrate. This process is generally reversible and does not require the formation of a chemical bond. It depends on the electrostatic attraction between the charged metal surface and the polar functional groups or dipoles present in the inhibitor molecules. Physisorption is favored at lower temperatures and is strongly influenced by the surface charge of the metal, the ionic strength of the medium, and the dielectric properties of the solvent. In hybrid systems, physical adsorption typically occurs when organic inhibitors are loosely held within an inorganic matrix or on the outermost layer of the hybrid coating. Although this type of adsorption can

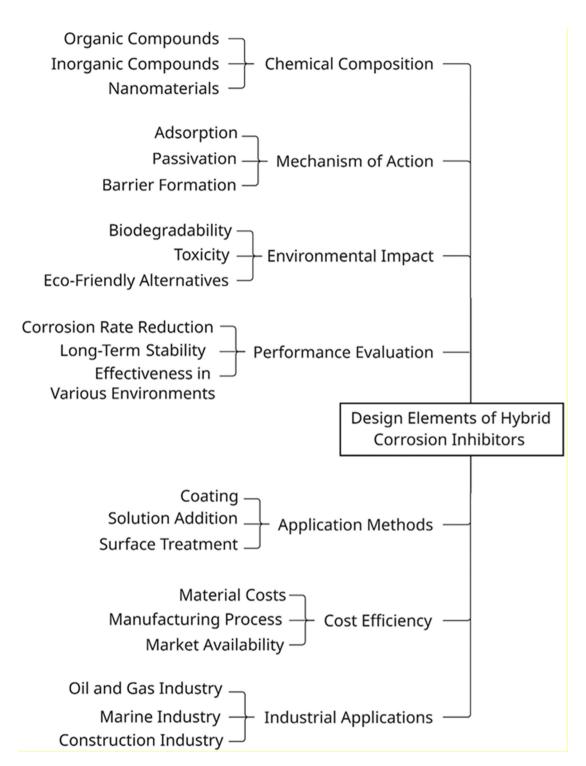


Fig. 4. Design elements of hybrid corrosion inhibitors.

rapidly form a protective barrier, its efficiency may decline under dynamic or high-temperature conditions due to desorption [28, 29]. In contrast, chemical adsorption, or chemisorption, involves the formation of strong, often covalent or coordinate bonds between the inhibitor and the metal surface. This interaction

is usually site-specific, where heteroatoms such as nitrogen, oxygen, or sulfur donate lone pairs of electrons to the vacant d-orbitals of the metal atoms. Chemisorption results in more stable and durable protective films, making it especially valuable in aggressive environments. In hybrid corrosion inhibitors,

many organic compounds such as imidazoles, benzotriazole, and thiourea are selected specifically for their strong chemisorptive abilities. Additionally, certain inorganic components can facilitate chemical bonding by promoting the formation of oxide layers that anchor organic molecules through surface complexation or hydrogen bonding [29, 30]. The distinction between physical and chemical adsorption is not always absolute. In many hybrid systems, both mechanisms can co-exist or occur sequentially. For example, an initial physisorbed layer may form rapidly upon exposure, followed by chemisorption that strengthens and stabilizes the protective film. The overall inhibition efficiency depends on the balance and interplay between these mechanisms, influenced by molecular structure, environmental conditions, and surface properties [31, 32].

Understanding the dominance of physical or chemical adsorption is critical for designing hybrid systems tailored to specific environments. For long-term protection, chemisorption-based systems are generally preferred, although physisorption can still play a critical role in rapid initial coverage or self-healing functionalities. Characterization techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and adsorption isotherm modeling (e.g., Langmuir, Temkin) are typically employed to elucidate the nature of these adsorption interactions [33, 34]. Formation of Protective Layers The core function of corrosion inhibitors especially hybrid organic-inorganic systems is to form a barrier that isolates the metal surface from corrosive agents, such as oxygen, moisture, and aggressive ions (e.g., Cl⁻, SO₄²⁻). The formation of this protective layer is a complex and dynamic process that involves both adsorption of active molecules and physical blocking of permeation pathways [35, 36]. In hybrid systems, the protective layer is generally composed of [37, 38]:

- A physically robust inorganic phase (e.g., silica, LDH, metal oxides), which acts as a passive barrier to ionic and molecular transport.
- A chemically active organic phase (e.g., imidazoles, tannins), which adsorbs onto the metal surface through coordination or van der Waals interactions and suppresses electrochemical reactions.

The layer can be compact and dense, minimizing voids and permeability, and/or self-assembled, forming monolayers (in case of functionalized silanes) or complex networks, and/or multifunctional, integrating properties like hydrophobicity, antimicrobial behavior, or self-healing. The thickness and uniformity of the protective film are critical, as defects can

act as initiation sites for localized corrosion (e.g., pitting). In situ polymerization, sol–gel synthesis, or layer-by-layer deposition techniques are often used to create tailored coatings with controlled porosity and inhibitor distribution. Table 4 summarizes various inhibition mechanisms used in neural, symbolic, and hybrid computational systems. Each mechanism is described in terms of its operational principle, defining characteristics, and typical areas of application across domains such as pattern recognition, decision-making, and intelligent agent design [39, 40].

3.2. Electrochemical behavior and surface interaction

The interaction of corrosion inhibitors with the metal surface and the resulting effect on electrochemical processes can be characterized using tools like electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and open circuit potential (OCP) measurements. Key electrochemical effects can be summarized as follows [41, 42]:

- 1. **Shift in corrosion potential (Ecorr)**: Indicates whether the inhibitor acts as anodic, cathodic, or mixed-type.
- Reduction in corrosion current density (icorr): Directly correlates to lower corrosion rates.
- Increase in polarization resistance (Rp): Suggests effective inhibition by impeding charge transfer.
- 4. **Formation of capacitive loops in EIS spectra**: Reflects the development of dielectric (barrier) properties due to inhibitor film.

Surface interaction mechanisms can be also summarized as follows [43, 44]:

- 1. Electron donation/acceptance: Organic molecules can donate lone pair electrons (from N, O, or S atoms) to the vacant d-orbitals of metal atoms, forming stable complexes.
- 2. π -backbonding: Especially in heterocyclic compounds, where π -electrons interact with metal surfaces.
- Hydrogen bonding and van der Waals interactions: Help stabilize multilayer films.
- pH- or potential-triggered conformational changes: In smart hybrid coatings, certain molecules rearrange or are released in response to changes in the local environment, providing adaptive protection.

These surface processes can also lead to **passivation**, where the metal becomes less reactive due to the presence of inhibitor-derived films or oxide

Table 4. Su	ummary of	inhibition	mechanisms	in h	nybrid	systems.

Inhibition Mechanism	Description	Involved Phase	Key Characteristics	Representative Materials
Physical Adsorption	Weak van der Waals/electrostatic interactions between inhibitor and metal surface	Organic phase	Rapid film formation, reversible, pH-dependent	Polyphenols, fatty acids
Chemical Adsorption	Formation of strong covalent/coordinate bonds with metal atoms	Organic phase	Durable bonding, high surface affinity, stable at elevated temps	Imidazoles, triazoles, thiourea
Barrier Formation	Inorganic matrix forms dense film to block corrosive agents	Inorganic phase	Passive protection, limits ion/molecule transport	Silica, TiO ₂ , graphene oxide
Ion Exchange	LDH matrix replaces corrosive anions with protective ones	Inorganic phase (LDH)	Anion selectivity, pH-responsive release	Zn–Al LDH, Mg–Al LDH
Controlled Release	Release of organic inhibitor triggered by environmental stimulus (e.g., pH drop)	Combined organic— inorganic	Smart delivery, sustained inhibition	Mesoporous silica loaded with BTA or amino acids
Self-Healing	Inhibitors are released from micro/nano-capsules upon damage or cracking	Combined system	Autonomic repair, responsive protection	Microcapsule/LDH systems with salicylate, benzotriazole

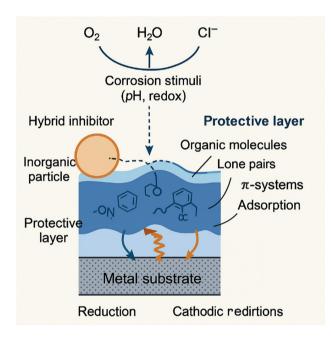


Fig. 5. Electrochemical and surface interactions in hybrid inhibitors.

layers. Fig. 5 represents the electrochemical and surface interactions in hybrid inhibitors

3.3. Case studies: Steel and aluminum alloys

Steel and aluminum alloys, widely used in structural and industrial applications, are highly vulnerable to corrosion under aggressive environmental conditions. Steel, particularly carbon and mild steel, lacks a naturally protective oxide layer and is prone to degradation in acidic, saline, and humid environments due to its electrochemical reactivity. Recent studies have demonstrated that hybrid corrosion inhibitors significantly improve the corrosion resistance

of steel through multifunctional mechanisms. For example, layered double hydroxide (LDH)-triazole hybrids have shown a dual-action mechanism, where the LDH matrix immobilizes chloride ions while simultaneously releasing triazole-based inhibitors. Electrochemical impedance spectroscopy (EIS) studies have reported inhibition efficiencies exceeding 90% for such systems [45]. Similarly, silane-tannin coatings where natural polyphenols are encapsulated within a sol-gel silica network have demonstrated environmentally friendly, high-performance corrosion barriers for mild steel in hydrochloric acid and sodium chloride solutions [46]. Another promising approach involves graphene oxide-amino acid hybrids, which offer enhanced mechanical durability and molecular-level corrosion protection in simulated seawater conditions [47]. Aluminum and its alloys, while possessing a native oxide layer that provides a degree of corrosion resistance, are still susceptible to localized pitting corrosion in chloriderich environments, such as those found in marine applications. Hybrid inhibitor systems have shown notable success in mitigating this issue. Cerium oxide (CeO₂)-imidazole coatings are a prominent example; the CeO₂ promotes surface passivation, while the imidazole forms a chemically bonded, protective organic layer on the aluminum substrate, improving the overall stability of the protective film [48]. LDH-benzotriazole systems provide self-healing capabilities by releasing benzotriazole inhibitors in response to coating breaches, thereby restoring protective functionality [49]. In addition, sol-gel silica matrices incorporating carboxylic acids have been developed to improve coating adhesion, minimize porosity, and deliver both passive and active corrosion protection [50]. Across both steel and aluminum systems, hybrid inhibitors provide comprehensive protection through a combination of immediate adsorption-based inhibition, formation of physical barrier layers, and stimuli-responsive repair mechanisms. These multifunctional systems represent a significant advancement in corrosion science, offering sustainable and efficient solutions tailored for a variety of harsh environments. Fig. 6 presents a comprehensive conceptual framework outlining the key components of corrosion inhibition strategies as applied to hybrid systems. It begins with a classification of corrosion types (e.g., uniform, pitting, crevice, galvanic) and proceeds to the underlying mechanisms, including electrochemical and environmental factors. The inhibition strategies are categorized into chemical (organic and inorganic inhibitors), physical (coatings, electrochemical protection), and biological methods (microbial inhibition, biopolymers). Performance evaluation incorporates electrochemical techniques, surface analysis, and accelerated testing, aligned with criteria such as corrosion rate reduction, durability, and environmental impact. The map also identifies ongoing challenges (e.g., technology integration, cost-effectiveness, environmental concerns) and future directions, highlighting the roles of smart coatings, nanotechnology, and advanced materials.

4. Performance evaluation methods

Reliable evaluation of corrosion inhibition performance is essential for validating the efficiency and mechanisms of hybrid organic–inorganic systems.

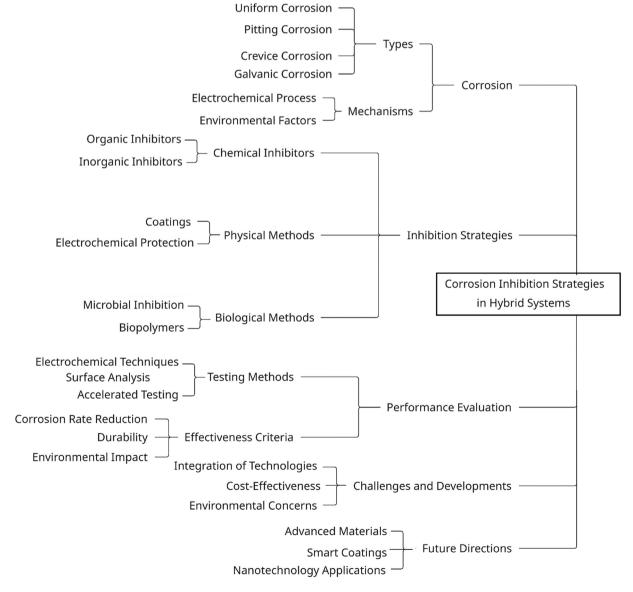


Fig. 6. Corrosion inhibition strategies in hybrid systems.

These assessments not only quantify protection levels but also offer insights into how inhibitors interact with metal surfaces under varying environmental conditions. This section discusses the key methodologies used to characterize hybrid inhibitor performance, focusing on both electrochemical behavior and physical integrity of the protective layers.

4.1. Electrochemical impedance spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) is a non-destructive and highly sensitive technique commonly employed to evaluate the corrosion resistance of metallic surfaces treated with coatings or inhibitors. By measuring the impedance of an electrochemical system across a broad frequency range, EIS provides critical insights into the protective performance of hybrid inhibitor films. In a typical EIS experiment, a small-amplitude sinusoidal voltage is applied to an electrochemical cell, and the resulting current response is recorded. The measured impedance data are then presented in graphical formats, typically as Nyquist plots (complex impedance plane) or Bode plots (impedance magnitude and phase versus frequency) [51]. Interpretation of EIS results allows for a detailed understanding of corrosion protection mechanisms. High impedance values at low frequencies generally indicate effective barrier properties, while the presence of capacitive loops in the Nyquist plot reflects the integrity of dielectric layers on the metal surface. Equivalent electrical circuit models are often used to analyze the data, providing parameters such as charge transfer resistance (R_{ct}), double-layer capacitance (C_{dl}), and coating resistance (R_{coat}), which are indicative of corrosion kinetics and coating behavior [52]. In the context of hybrid inhibitor systems, EIS proves particularly valuable for detecting early signs of coating failure, including delamination, degradation, or activation of inhibitor release mechanisms. Hybrid systems featuring multiple protective layers frequently display distinct time constants in the impedance response, each associated with specific physical processes such as organic inhibitor release, oxide layer formation, or barrier degradation. Moreover, EIS enables real-time monitoring of coating performance under aggressive conditions, including prolonged exposure to saline or acidic environments, making it an indispensable tool for the development and optimization of advanced corrosion protection systems [53]. Fig. 7 illustrates the principles of EIS used to evaluate the corrosion resistance of protective layers on metal substrates. The left panel shows a Nyquist plot, where the impedance response $(Z_n \text{ vs. } -Z_m)$ shifts with frequency, typically displaying a semicircular arc indicating charge trans-

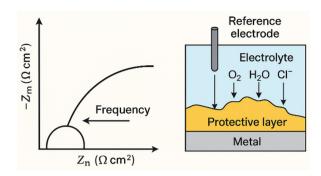


Fig. 7. Electrochemical impedance spectroscopy (EIS) for corrosion protection assessment.

fer resistance. The right panel depicts a schematic EIS setup with a reference electrode immersed in an electrolyte containing corrosive species such as O_2 , H_2O , and Cl^- . The protective layer formed on the metal surface serves to resist ionic penetration and electrochemical degradation, measurable via impedance changes over time.

4.2. Potentiodynamic polarization (PDP)

Potentiodynamic Polarization (PDP) is a widely used electrochemical technique that provides quantitative information about corrosion rates and inhibition mechanisms. It is particularly valuable in determining whether a corrosion inhibitor functions through anodic, cathodic, or mixed-mode action. In this method, the working electrode is polarized across a defined potential range at a controlled scan rate, and the resulting current is measured. The data are typically plotted as potential versus logarithmic current density in a Tafel plot, from which key kinetic parameters are extracted [54]. Among the most important parameters derived from PDP are the corrosion potential (Ecorr), which indicates the thermodynamic propensity for corrosion to occur, and the corrosion current density (icorr), which is directly proportional to the rate of corrosion. The anodic and cathodic Tafel slopes (β a and β c) provide insights into the kinetics of the respective electrochemical reactions [55]. The inhibition efficiency (η %) of a system can be calculated using the equation bellow:

$$\eta(\%) = \frac{i_{\text{corr,blank}} - i_{\text{corr,inhibitor}}}{i_{\text{corr,blank}}} \times 100$$

where icorr, blank is the corrosion current in the absence of an inhibitor, and icorr, inhibitor is the current measured in the presence of the inhibitor.

In hybrid inhibitor systems, a significant reduction in icorr indicates effective corrosion protection. The direction of the Ecorr shift further reveals the

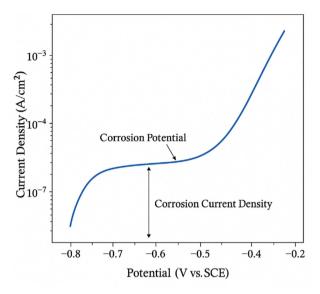


Fig. 8. Potentiodynamic polarization curve for corrosion analysis.

predominant mechanism of inhibition. A positive (anodic) shift suggests the inhibitor primarily affects the anodic reaction, whereas a negative (cathodic) shift points to cathodic inhibition. Minimal change in Ecorr implies a mixed-type inhibition mechanism, where both anodic and cathodic processes are suppressed. PDP thus serves as a crucial tool for characterizing the electrochemical behavior of hybrid coatings and for optimizing their protective performance against corrosion [56]. Fig. 8 presents a typical potentiodynamic polarization plot used to evaluate the corrosion behavior of metal surfaces. The x-axis represents the applied potential (V vs. SCE), while the y-axis shows the resulting current density (A/cm^2) on a logarithmic scale. The curve illustrates the anodic and cathodic branches, intersecting at the corrosion potential (Ecorr), where the corrosion current density (icorr) is also determined. These parameters are essential for quantifying corrosion rates and assessing the effectiveness of protective coatings or inhibitors. Lower i corr values and shifts in Ecorr indicate enhanced corrosion resistance.

4.3. Surface characterization (SEM, AFM, XPS)

Surface characterization plays a pivotal role in understanding the effectiveness of hybrid corrosion inhibitors by providing detailed insights into surface morphology, coating integrity, and chemical interactions before and after exposure to corrosive environments. A combination of analytical techniques namely Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS) is commonly employed to exam-

ine the physical and chemical attributes of treated surfaces [57]. The interpretation of results from these techniques directly correlates with inhibitor performance, enabling researchers to establish clear relationships between surface characteristics and corrosion protection efficacy.

4.3.1. Scanning electron microscopy (SEM) analysis and performance correlation

Scanning Electron Microscopy (SEM) is used to visualize the surface topography at high magnification, revealing structural features such as coating uniformity, porosity, and potential defects. The morphological observations obtained through SEM provide direct evidence of inhibitor performance effectiveness. For instance, uniform and dense protective films observed in SEM images typically correlate with enhanced corrosion resistance, as demonstrated by reduced corrosion current densities in electrochemical studies [58]. After corrosion testing, SEM imaging enables the detection of localized damage such as pitting, film degradation, or crack propagation. The absence or significant reduction of pit formation in SEM micrographs of inhibitor-treated surfaces compared to untreated controls serves as a critical performance indicator. Studies have shown that surfaces exhibiting pit suppression in SEM analysis demonstrate up to 95% inhibition efficiency in potentiodynamic polarization tests. Additionally, the integrity of protective films observed through SEM directly influences the barrier properties, with continuous, crack-free surfaces providing superior long-term protection against aggressive ions penetration. When coupled with Energy Dispersive X-ray Spectroscopy (EDS), SEM can also provide elemental analysis to confirm the presence and distribution of inhibitor-related species on the metal surface. The uniform distribution of inhibitor elements (such as nitrogen from organic components or silicon from silane coupling agents) across the surface, as revealed by EDS mapping, correlates strongly with consistent corrosion protection performance across the entire treated area.

4.3.2. Atomic force microscopy (AFM) and coating performance assessment

Atomic Force Microscopy (AFM) offers nanometer-scale resolution for analyzing the surface roughness and homogeneity of protective films. The surface roughness parameters obtained from AFM measurements serve as quantitative indicators of coating quality and performance. Lower surface roughness values (typically Ra <50 nm) generally indicate better coating uniformity and enhanced barrier properties, leading to improved corrosion resistance. The

relationship between surface roughness and corrosion performance is particularly evident in impedance spectroscopy results, where smoother surfaces exhibit higher charge transfer resistance values. AFM analysis allows researchers to assess the continuity and uniformity of the hybrid coating, which are critical for effective barrier performance. Continuous protective films without surface defects, as confirmed by AFM topographical maps, demonstrate superior performance in salt spray testing, often exhibiting extended protection periods exceeding 500 hours without significant degradation. Conversely, surfaces showing discontinuities or high roughness variations in AFM analysis typically display reduced corrosion resistance due to preferential attack sites. AFM can be operated in various modes, including contact and tapping modes, to probe mechanical properties such as film adhesion and elasticity, further contributing to the evaluation of coating stability under stress [59]. The adhesion force measurements obtained through AFM force-distance curves provide quantitative data on the bonding strength between the protective layer and the substrate. Higher adhesion forces (typically > 100 nN) correlate with improved coating durability and extended service life under mechanical stress conditions.

4.3.3. X-Ray photoelectron spectroscopy (XPS) and chemical performance indicators

X-ray Photoelectron Spectroscopy (XPS) delivers valuable chemical information by identifying the elemental composition and chemical states of atoms at the surface. The binding energy shifts observed in XPS spectra provide direct evidence of chemical interactions that determine inhibitor performance. For example, the detection of Fe 2p peaks shifted to higher binding energies (typically 711-713 eV) indicates the formation of protective iron-inhibitor complexes, which correlates with enhanced corrosion resistance as measured by reduced corrosion rates in weight loss tests. This technique is particularly useful in confirming the nature of interactions between inhibitor molecules and the metal substrate, such as the formation of Fe-N or Al-O-Si bonds. The intensity and chemical state of these bonds, as determined by peak deconvolution analysis, directly relate to the strength of the protective mechanism. Surfaces showing strong covalent bonding (evidenced by distinct peak shifts and narrow full-width-half-maximum values) typically exhibit superior long-term stability and higher inhibition efficiencies exceeding 90%. XPS analysis can also distinguish between physically adsorbed and chemically bonded species, helping to elucidate the binding mechanisms that underpin the protective action of hybrid inhibitor systems

[60]. The ratio of chemically bonded to physically adsorbed species, calculated from XPS peak area analysis, serves as a performance predictor. Higher ratios of chemisorbed species (>70% of total surface coverage) generally correlate with enhanced durability and sustained protection under harsh environmental conditions, as confirmed by accelerated aging tests. The quantitative analysis of surface composition through XPS also enables the determination of inhibitor layer thickness and coverage density. Complete surface coverage (>95% as determined by XPS survey scans) ensures uniform protection and minimizes the risk of localized corrosion initiation. The presence of characteristic inhibitor peaks (such as N 1s at ~400 eV for nitrogen-containing inhibitors) with appropriate intensity ratios confirms effective inhibitor adsorption and correlates with optimal electrochemical performance.

4.3.4. Integrated performance evaluation through surface characterization

Together, these surface characterization techniques offer a comprehensive understanding of how hybrid inhibitors perform at the interface, supporting both fundamental studies and the practical development of advanced corrosion protection strategies. The synergistic interpretation of SEM morphological analysis, AFM roughness measurements, and XPS chemical characterization provides a complete picture of inhibitor performance. For instance, a high-performance hybrid inhibitor system would typically exhibit uniform, dense morphology in SEM images, low surface roughness (<30 nm Ra) in AFM measurements, and strong chemical bonding signatures in XPS spectra, collectively resulting in inhibition efficiencies exceeding 95% and extended protection duration. Fig. 9 illustrates three advanced surface analysis methods used to investigate the morphology, roughness, and chemical composition of corrosion-inhibited metal surfaces. Scanning Electron Microscopy (SEM) utilizes secondary electrons to produce high-resolution images of surface topography, enabling the assessment of pit suppression and coating integrity. Atomic Force Microscopy (AFM) employs a cantilever that scans the surface to map nanoscale roughness and structural features, providing quantitative data on layer adhesion and uniformity. X-ray Photoelectron Spectroscopy (XPS) uses incident X-rays to excite electrons, enabling elemental and chemical state analysis of surface layers to confirm bonding mechanisms. These techniques are essential for evaluating the effectiveness and uniformity of protective films formed by hybrid corrosion inhibitors, with their combined results providing quantitative performance indicators that directly

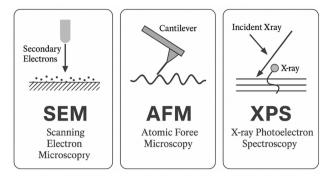


Fig. 9. Surface characterization techniques for corrosion inhibitor analysis.

correlate with electrochemical and long-term protection performance.

4.4. Durability and long-term testing

Durability and long-term testing are essential for assessing the real-world performance of hybrid corrosion inhibitors, as short-term electrochemical measurements often fail to capture the complexities of extended environmental exposure. These tests are crucial for validating the stability, effectiveness, and mechanical robustness of protective systems under conditions that simulate industrial or outdoor environments [61]. One widely used method is the Salt Spray Test, conducted according to ASTM B117, which exposes coated metal samples to a continuous saline mist over extended periods, typically ranging from 500 to 1000 hours. This test simulates marine or high-salinity conditions and is used to evaluate visual signs of coating failure such as blistering, discoloration, and film degradation. Another common technique is the immersion test, where metal specimens are submerged in corrosive solutions, such as 3.5% sodium chloride, for several weeks. The corrosion rate is then determined gravimetrically by measuring mass loss or through visual and microscopic analysis to assess surface damage [62]. Humidity chambers and Cyclic Corrosion Testing (CCT) offer more dynamic testing conditions by alternating between wet and dry phases, and in some protocols, between acidic and neutral environments. These cycles more accurately reflect the fluctuating conditions encountered in service, particularly in automotive, marine, and infrastructure applications. These tests help identify failure points and degradation patterns that would be missed in static conditions [63]. Mechanical integrity is also a critical factor in evaluating hybrid coatings. Adhesion and scratch resistance tests assess how well the coating bonds to the metal substrate and how it withstands mechani-

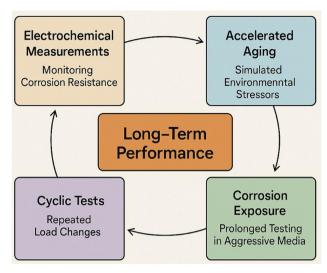


Fig. 10. Evaluation cycle for long-term performance of corrosion inhibitors.

cal stress. This information is essential for ensuring that the protective film maintains its integrity under physical wear and operational strain [64]. For hybrid inhibitor systems, such long-term evaluations are especially important because they test the durability of the active release mechanisms, the stability of organic adsorption on metal surfaces, and the resilience of the inorganic matrix. These assessments also support the optimization of formulations, balancing performance with environmental considerations such as biodegradability and toxicity, ultimately guiding the development of hybrid systems that are both effective and sustainable over extended service lifetimes [65]. Fig. 10 illustrates the integrated approach used to assess the long-term performance of corrosion protection systems. The process begins with electrochemical measurements that monitor corrosion resistance under controlled conditions. Accelerated aging tests simulate environmental stressors such as temperature, humidity, and chemical exposure. These are followed by direct corrosion exposure studies in aggressive media to evaluate the protective durability. Cyclic tests, involving repeated load or environmental fluctuations, further assess mechanical and chemical stability. The cycle informs iterative improvements in inhibitor formulation and validates long-term efficacy in real-world applications.

5. Recent advances and case studies

Recent research efforts in corrosion science have been increasingly focused on designing multifunctional, environmentally conscious, and highperformance hybrid corrosion inhibitors. These systems integrate organic and inorganic elements to overcome traditional limitations in durability, selectivity, and environmental compatibility. This section explores cutting-edge developments in the field, with emphasis on sol–gel hybrids, nanocomposites, layered double hydroxide (LDH) systems, and their industrial deployment.

5.1. Sol-gel based hybrid inhibitors

Sol-gel chemistry has emerged as one of the most versatile and controllable methods for producing hybrid corrosion inhibitors. Through hydrolysis and condensation reactions of metal alkoxides, such as tetraethyl orthosilicate (TEOS), a highly cross-linked inorganic network can be formed at room or moderate temperatures. This matrix acts as a robust scaffold capable of incorporating organic corrosion inhibitors, either physically entrapped or chemically bonded. Recent studies have demonstrated that sol-gel derived films can effectively immobilize organic molecules like amino silanes, benzotriazole, or polyphenols within silica or zirconia matrices. The hybrid structure not only imparts strong adhesion to metallic substrates such as aluminum and mild steel but also enables controlled release of the inhibitors upon environmental triggers such as pH drops or chloride ion presence. Furthermore, the low porosity and high uniformity of sol-gel coatings significantly enhance their barrier properties. Advances in functionalizing the sol-gel precursors with corrosion-responsive groups have enabled the development of smart coatings capable of self-healing behavior, extending the life span of protective systems under fluctuating service conditions [66, 67]. Fig. 11 illustrates the multifunctional protective behavior of sol-gel based hybrid inhibitors. A porous inorganic sol-gel matrix acts as a carrier and barrier, physically blocking corrosive agents such as oxygen, water, and chloride ions. Organic corrosion inhibitors like amino silanes and benzotriazole are embedded within the matrix either through chemical bonding or entrapment. These inhibitors can be released in response to environmental triggers such as pH shifts or the presence of chloride ions, enabling controlled, on-demand corrosion protection. The combined barrier properties and controlled release make sol-gel systems highly effective in aggressive environments.

5.2. Nanocomposite inhibitors

Nanocomposite materials, composed of nanoscale organic or inorganic particles embedded within a corrosion-inhibiting matrix, have opened new horizons for tailoring mechanical, electrochemical, and

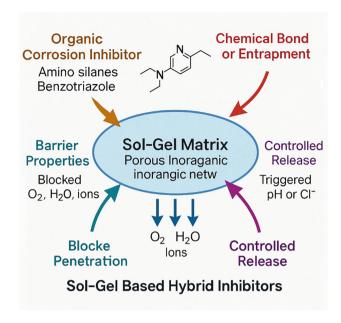


Fig. 11. Mechanism of *Action* in sol-gel based Hybrid corrosion inhibitors.

release properties of hybrid coatings. These materials take advantage of the high surface area and reactivity of nanoparticles, which can act as both physical barriers and active sites for inhibitor loading. Recent developments include the integration of graphene oxide, carbon nanotubes, and nano-silica into polymeric or inorganic matrices loaded with inhibitors such as imidazole, molybdate, or green plant extracts. For example, the dispersion of graphene oxide within an epoxy-silica matrix has shown synergistic enhancement of corrosion resistance by reinforcing mechanical strength and facilitating π – π interactions with adsorbed organic molecules. Additionally, the use of hollow nanostructures such as mesoporous silica or halloysite nanotubes allows encapsulation of inhibitors, which are then released under environmental triggers like ionic strength or redox shifts [68– 70]. These nanocarrier-based systems offer improved inhibitor utilization and reduced leaching, addressing key environmental concerns. The challenge remains in ensuring homogeneous dispersion and compatibility between nano-fillers and host matrices, as agglomeration or phase separation can compromise performance.

5.3. Layered double hydroxide (LDH) systems

Layered Double Hydroxides (LDHs) have garnered considerable interest as intelligent, anion-exchangeable inorganic hosts for corrosion inhibitors. Structurally, LDHs are composed of brucite-like layers of divalent and trivalent metal cations, with

intercalated anions and water molecules. This configuration enables LDHs to simultaneously capture aggressive anions such as chloride and release functional inhibitors like vanadate, phosphate, or organic carboxylates [71, 72]. LDH-based coatings can be synthesized directly on metal substrates via in-situ hydrothermal growth, or incorporated into composite layers as additive pigments. The advantage of LDHs lies in their responsive behavior: under corrosive conditions, the anion exchange mechanism activates, releasing inhibitors to the damaged area while neutralizing incoming corrosive ions. Recent studies have shown the effectiveness of Zn-Al or Mg-Al LDHs intercalated with salicylate or dodecylbenzene sulfonate on aluminum and steel substrates, resulting in high inhibition efficiencies and prolonged passive film stability. Moreover, LDHs are compatible with sol-gel or epoxy matrices, enabling the fabrication of multifunctional, self-healing protective systems [73, 74]. Research is also ongoing into LDH hybrids doped with rare earth elements such as cerium or lanthanum to enhance passive layer formation and electron transfer resistance.

5.4. Industrial applications and scale-up studies

While laboratory-scale research on hybrid corrosion inhibitors has yielded promising results, translating these technologies into industrial practice remains a multifaceted challenge. A successful scaleup requires a comprehensive assessment of process scalability, economic viability, regulatory compliance, and environmental safety factors that are often underrepresented in academic studies. Industrial implementation is gradually progressing, with case studies emerging across key sectors such as aerospace, automotive, marine, and energy. In aerospace manufacturing, for instance, hybrid silane coatings have begun to replace traditional chromate-based primers on aluminum substrates, offering comparable corrosion resistance with significantly reduced environmental and occupational hazards. These applications have passed early-stage validation trials, yet broader commercial adoption still hinges on meeting rigorous certification standards and demonstrating performance under operational stresses [75, 76]. In the oil and gas sector, hybrid coatings based on layered double hydroxides (LDHs) and nanocapsule systems have been tested on downhole steel tubing and aboveground storage units. These environments demand sustained inhibitor release and resistance to aggressive media. Preliminary pilot-scale deployments have shown promise, especially with continuous roll-to-roll sol-gel processing, which reduces solvent usage and energy consumption while enabling large-area application [77, 78]. However, these technologies must still address critical challenges such as coating uniformity, substrate adhesion under dynamic loads, and mechanical durability under cyclic temperature and pressure variations. Economic feasibility remains a major barrier to scale-up. The synthesis of nanostructured hybrid materials often involves high-cost precursors, complex fabrication steps, and limited supply chains, which may hinder cost-competitiveness compared to conventional systems. Life-cycle cost analyses and techno-economic modeling are essential yet underexplored in current literature.

From a regulatory perspective, the incorporation of nanomaterials raises additional scrutiny related to human toxicity, environmental persistence, and end-of-life recyclability. There is increasing pressure from regulatory agencies to ensure that novel coatings meet REACH, EPA, and ISO/ASTM standards. Encouragingly, several hybrid systems are now undergoing formal certification tests and environmental impact assessments, suggesting a growing readiness for industrial validation [79-82]. Overall, while hybrid corrosion inhibitors exhibit strong potential, their widespread adoption will require not only technological innovation but also coordinated efforts in regulatory alignment, cost-reduction strategies, and supply chain optimization. A more integrative approach that includes lifecycle assessment, standardization, and stakeholder engagement is critical for transitioning these advanced materials from laboratory research to market-ready solutions.

6. Challenges and future perspectives

Despite the significant advances in hybrid organic-inorganic corrosion inhibitors, several scientific, technical, and regulatory challenges remain that hinder their widespread commercial adoption. As the demand grows for multifunctional and environmentally responsible protective systems, researchers must navigate a complex landscape involving performance optimization, regulatory constraints, and evolving material requirements. This section addresses the most pressing challenges faced by hybrid inhibitors and outlines emerging directions that hold promise for next-generation corrosion protection.

6.1. Balancing efficiency and eco-safety

One of the most significant challenges in the development of hybrid inhibitors is the need to achieve high corrosion inhibition efficiency while maintaining eco-safety and regulatory compliance.

This challenge stems from the historical reliance on highly effective but environmentally harmful traditional inhibitors, necessitating a fundamental shift toward sustainable design principles in hybrid corrosion protection systems.

6.1.1. Environmental toxicity concerns in current systems

Traditional inhibitors, such as chromates or synthetic organics, provided excellent protection but posed substantial environmental and human health risks due to their toxicity and persistence. While hybrid systems were introduced to bridge this gap by combining the effectiveness of organic inhibitors with the structural benefits of inorganic matrices, the environmental challenge persists in current formulations. Many effective organic compounds incorporated into hybrid systems, such as quaternary ammonium salts or synthetic azoles, still raise significant concerns related to biodegradability and aquatic toxicity. These compounds can accumulate in aquatic ecosystems, disrupting microbial communities and affecting higher trophic levels through bioaccumulation processes. Similarly, certain nanomaterials commonly used in hybrid systems, including carbon nanotubes or metal nanoparticles, may offer excellent physical properties but present substantial challenges in lifecycle management, occupational exposure, and waste disposal. The persistence of these materials in the environment and their potential for cellular uptake create long-term environmental risks that must be carefully evaluated against their protective benefits.

6.1.2. Green chemistry strategies for sustainable design

To address these environmental concerns, the future of hybrid inhibitor design must systematically incorporate green chemistry principles throughout the development process. This transition requires a strategic focus on bio-based or biodegradable organic compounds that maintain high inhibition efficiency while ensuring environmental compatibility. Plant-derived extracts, amino acids, and naturally occurring heterocyclic compounds represent promising alternatives that can provide effective corrosion protection without long-term environmental persistence. The integration of these bio-based components must be coupled with inert, benign inorganic phases such as silica, layered double hydroxides, or greensynthesized nanoparticles. Green synthesis routes for nanoparticles, utilizing biological templates or environmentally friendly reducing agents, offer pathways to maintain the functional benefits of nanoscale reinforcement while minimizing environmental impact. Additionally, the selection of appropriate coupling agents and surface modifiers should prioritize compounds with established biodegradation pathways and minimal aquatic toxicity. Green chemistry principles must be embedded early in the synthesis stage, including the strategic choice of solvents, optimization of energy use, and development of benign post-treatment processes. Water-based sol-gel systems, for instance, can replace organic solvent-based formulations, while microwave-assisted synthesis can reduce energy consumption and processing time compared to conventional thermal methods.

6.1.3. Sustainable material selection and eco-design principles

The eco-design of hybrid inhibitors requires a comprehensive approach to material selection that considers both performance requirements and environmental impact throughout the material lifecycle. This involves the systematic evaluation of each component's environmental footprint, from raw material extraction through end-of-life disposal or recycling. Biodegradable polymeric matrices, such as modified cellulose or chitosan derivatives, can serve as environmentally benign hosts for active inhibitor species while maintaining structural integrity during service life. The selection of inorganic components should prioritize abundant, non-toxic materials with established recycling pathways. Silica-based systems, derived from sustainable sources, offer excellent chemical stability and environmental compatibility. Layered double hydroxides provide controllable release mechanisms for active species while maintaining non-toxic profiles. These materials can be functionalized with bio-derived organic inhibitors to create truly sustainable hybrid systems. Furthermore, the design process must incorporate principles of circular economy, ensuring that hybrid inhibitor systems can be recovered, recycled, or safely biodegraded at the end of their service life. This requires careful consideration of chemical bonding strategies that allow for controlled degradation or separation of components for recycling purposes.

6.1.4. Integrated assessment and validation framework

To ensure that eco-safety is not compromised for short-term performance gains, lifecycle assessment (LCA) and environmental impact modeling should accompany all laboratory validation studies. This integrated approach enables researchers to quantify the environmental benefits of hybrid systems compared to traditional alternatives while identifying potential environmental hotspots in the material lifecycle. Environmental impact assessment should encompass multiple impact categories, including aquatic toxicity, terrestrial ecotoxicity, human health effects, and resource depletion. This comprehensive evaluation

framework ensures that the transition to hybrid systems delivers genuine environmental benefits rather than simply shifting environmental burdens from one impact category to another. The validation process must also include standardized biodegradation testing, aquatic toxicity assessments, and occupational exposure evaluations to ensure regulatory compliance and safe handling throughout the supply chain. By integrating these assessment tools with performance testing, researchers can optimize hybrid inhibitor formulations that achieve the dual objectives of effective corrosion protection and environmental sustainability.

6.2. Stability and compatibility issues

Another major technical hurdle lies in achieving long-term stability and interfacial compatibility within hybrid systems. In many applications, particularly in marine, offshore, or chemical processing environments, hybrid inhibitors are exposed to fluctuating temperature, pH, salinity, and mechanical stress. Under such conditions, poorly integrated components can delaminate, leach, or degrade, leading to premature coating failure. The organic and inorganic phases in hybrid materials often differ in polarity, thermal expansion coefficients, and bonding mechanisms, which can cause microstructural instability over time. In sol-gel-based systems, shrinkage during drying may induce cracks, while in nanocomposites, aggregation of nanoparticles can lead to non-uniform distribution and stress concentrations. Additionally, the metal-coating interface must maintain strong adhesion throughout the service life, especially when exposed to corrosive species. Surface pre-treatment and functionalization are critical to improving interfacial bonding, but these steps add complexity and cost to the process. To address this, research is moving toward the development of covalently bonded or interpenetrating hybrid networks where organic and inorganic phases are chemically linked at the molecular level. Furthermore, the inclusion of cross-linking agents, surfactants, or compatibilizers is being explored to improve phase homogeneity and reduce the risk of degradation. Understanding the mechanisms of degradation through long-term exposure testing, as well as using real-time monitoring techniques such as electrochemical noise analysis or in situ spectroscopy, will be key to ensuring the durability of hybrid inhibitor systems.

6.3. Opportunities for smart and responsive systems

While challenges remain, hybrid corrosion inhibitors also offer unique opportunities particularly

in the area of smart and responsive systems that can adapt to environmental changes or mechanical damage. These intelligent materials, often termed "self-healing" or "stimuli-responsive" inhibitors, are designed to detect early signs of corrosion and respond by releasing active species or reorganizing their structure to restore protection. For example, pH-sensitive nanocontainers can release encapsulated inhibitors when local acidity increases due to anodic reactions. Similarly, redox-sensitive molecules can respond to electrochemical imbalances, initiating protective reactions only when corrosion occurs. Hybrid systems are ideal platforms for such functionalities because the inorganic matrix can serve as a stable host, while the organic phase can be tuned to respond to specific environmental cues. The integration of molecular switches, microcapsules, and conductive polymers into hybrid coatings is being actively explored. In more advanced designs, hybrid systems are also being embedded with sensors or indicators that provide visual or electronic feedback about coating integrity or corrosion activity. These developments have the potential to revolutionize maintenance practices by enabling predictive and condition-based servicing rather than routine inspections. Furthermore, digital twin models and data-driven material design are beginning to be employed to simulate and optimize these complex systems under various environmental scenarios.

Looking forward, the most successful smart inhibitors will likely be those that combine multifunctionality including mechanical reinforcement, chemical inhibition, barrier properties, and adaptive behavior within a single, scalable platform. Achieving this vision will require interdisciplinary collaboration across materials science, nanotechnology, environmental science, and industrial engineering. The future of hybrid corrosion inhibitors is thus not just about materials that passively prevent degradation, but about intelligent systems that actively manage and prolong the life of metal infrastructure in sustainable, safe, and cost-effective ways.

7. Conclusion

Hybrid organic-inorganic corrosion inhibitors have emerged as a powerful and versatile class of protective materials, uniquely positioned to address the dual challenges of performance optimization and environmental responsibility. By combining the adsorption efficiency of organic compounds with the mechanical and chemical robustness of inorganic matrices, these systems offer synergistic protection that surpasses the limitations of conventional inhibitors.

From sol-gel derived coatings and nanocomposite films to ion-responsive layered double hydroxides, the design flexibility of hybrid systems has enabled tailored solutions for a wide range of metals and corrosive environments.

It is important to clarify that while hybrid inhibitors demonstrate remarkable versatility, their protective efficacy varies significantly across different corrosion mechanisms. Hybrid organic-inorganic systems offer highly effective protection primarily against uniform corrosion, pitting corrosion, and crevice corrosion through their combined barrier and inhibitive properties. The organic components provide excellent adsorption characteristics that effectively suppress anodic and cathodic reactions associated with general corrosion processes, while the inorganic matrix delivers robust physical barriers against aggressive ion penetration that leads to localized attack. However, significant limitations remain for more complex corrosion phenomena. Stress corrosion cracking (SCC) presents particular challenges, as the mechanical stress concentrations and crack propagation mechanisms often exceed the protective capabilities of surface-applied hybrid systems. Similarly, microbiologically influenced corrosion (MIC) requires specialized antimicrobial functionalities that are not inherently present in conventional hybrid formulations, though recent research has begun incorporating biocidal components to address this limitation. Galvanic corrosion in multi-metal assemblies also presents challenges, as hybrid coatings must maintain consistent electrochemical properties across different substrate materials to prevent preferential

Electrochemical and surface characterization methods have provided valuable insights into the mechanisms of action and stability of these systems, while long-term testing has validated their potential for real-world applications. Case studies in aerospace, automotive, and marine sectors further illustrate the feasibility of translating laboratory-scale innovation into industrial-scale performance, particularly for applications dominated by uniform and localized corrosion mechanisms.

Despite this progress, several critical challenges remain. Achieving long-term interfacial stability, ensuring compatibility among diverse material phases, and developing green, biodegradable components are ongoing scientific priorities. Moreover, scaling up production and aligning hybrid inhibitors with regulatory and sustainability standards will be crucial for their widespread adoption. Looking ahead, the integration of smart, self-healing, and sensor-enabled functionalities into hybrid systems presents an exciting frontier. By enabling real-time response to corro-

sion events and predictive maintenance, such intelligent coatings could redefine the future of corrosion management. Future developments may also address current limitations by incorporating specialized functionalities for stress corrosion resistance and antimicrobial properties, potentially expanding the scope of hybrid inhibitor applications to encompass a broader range of corrosion mechanisms. The convergence of materials science, nanotechnology, and environmental engineering will be key to unlocking the full potential of hybrid corrosion inhibitors in next-generation infrastructure and manufacturing. As these systems continue to evolve, their targeted effectiveness against specific corrosion types, combined with advancing smart capabilities, positions them as essential components of comprehensive corrosion management strategies across diverse industrial applications.

References

- H. M. Abd El-Lateef, M. M. Khalaf, K. Shalabi, and A. A. Abdelhamid, "Efficient synthesis of 6,7-dihydro-5Hcyclopenta[b]pyridine-3-carbonitrile compounds and their applicability as inhibitor films for steel alloy corrosion: Collective computational and practical approaches," ACS Omega, vol. 7, pp. 24727–24745, 2022. doi: 10.1021/acsomega. 2c02639.
- M. Abdallah, "Guar gum as corrosion inhibitor for carbon steel in sulfuric acid solutions," *Portugaliae Electrochimica Acta*, vol. 20, no. 1, pp. 33–45, 2002.
- M. H. Abdellattif, S. H. Alrefaee, O. Dagdag, C. Verma, and M. A. Quraishi, "Calotropis procera extract as an environmental friendly corrosion inhibitor: Computational demonstrations," J. Mol. Liq., vol. 337, no. 2, p. 116954, 2021. doi: 10.1016/j. molliq.2021.116954.
- I. Ahamad, R. Prasad, and M. A. Quraishi, "Inhibition of mild steel corrosion in acid solution by phenyl thiourea derivatives: electrochemical and thermodynamic study," *Corrosion Science*, vol. 52, no. 9, pp. 3033–3041, 2010, doi: 10.1016/j. corsci.2010.05.022.
- M. Al Hamad, S. A. Al-Sobhi, A. T. Onawole, I. A. Hussein, and M. Khraisheh, "Density-functional theory investigation of barite scale inhibition using phosphonate and carboxyl-based inhibitors," *ACS Omega*, vol. 5, pp. 33323–33328, 2020, doi: 10.1021/acsomega.0c05125.
- A. A. Al-Amiery, "Anti-corrosion performance of 2-isonicotinoyl-n-phenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations," *Surface Review and Letters*, vol. 28, no. 03, p. 2050058, 2021.
- A. A. Alamiery, W. N. Isahak, H. S. Aljibori, H. A. Al-Asadi, and A. A. Kadhum, "Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-n-(2, 5-dimethyl-pyrrol-1-yl) benzoylamine in 1.0 m HCl solution," *International Journal of Corrosion and Scale Inhibition*, vol. 10, no. 2, pp. 700–13, 2021.
- M. Alfakeer, M. Abdallah, and A. Fawzy, "Corrosion inhibition effect of expired ampicillin and flucloxacillin drugs for mild steel in aqueous acidic medium," *International Journal of Electrochemical Science*, vol. 15, no. 4, pp. 3283–97, 2020.

- S. S. Al-Taweel, K. W. S. Al-Janabi, H. M. Luaibi, A. A. Al-Amiery, and T. S. Gaaz, "Evaluation and characterization of the symbiotic effect of benzylidene derivative with titanium dioxide nanoparticles on the inhibition of the chemical corrosion of mild steel," *Int. J. Corros. Scale Inhib.*, vol. 8, no. 4, pp. 1149–1169, 2019. doi: 10.17675/2305-6894-2019-8-4-21.
- R. A. Alyami, A. Elsharif, S. Haladu, W. M. Almagribi, K. Shalabi, H. M. Abd El-Lateef, S. Kamal, and H. Alghamdi, "Design and evaluation of furfural-chitosan schiff base derivative as a corrosion inhibitor for mild steel in 1 M HCl," *Moroccan Journal of Chemistry*, vol. 13, no. 2, pp. 723–53, 2025.
- V. C. Anadebe, P. C. Nnaji, O. D. Onukwuli, N. A. Okafor, F. E. Abeng, V. I. Chukwuike, C. C. Okoye, I. I. Udoh, M. A. Chidiebere, L. Guo, and R. Barik, "Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach," *J. Mol. Liq.*, vol. 349, p. 118482, 2022. doi: 10.1016/j.molliq.2022.118482.
- B. T. Ashwini, P. Sachin, B. M. Praveen, B. M. Prasanna, and A. M. Guruprasad, "Corrosion inhibition action of glipizide against mild steel corrosion in 1M hydrochloric acid: Experimental, theoretical and quantum studies," *Moroccan Journal* of Chemistry, vol. 13, no. 3, pp. 1117–1137, 2025.
- 13. M. Belayachi, H. Serrar, H. Zarrok, and A. El Assyry, *et al.*, "New pyrimidothiazine derivative as corrosion inhibitor for carbon steel in acidic media," *Int. J. Electrochem. Sci.*, vol. 10, no. 4, pp. 3010–3025, 2015.
- 14. F. Bentiss, M. Traisnel, and M. Lagrenée, "The substituted 1,3,4-oxadiazoles: A new class of corrosion inhibitors of mild steel in acidic media," *Corrosion Science*, vol. 42, no. 1, pp. 127–146, 2000. doi: 10.1016/S0010-938X(99)00049-9.
- L. Chen, D. Lu, and Y. Zhang, "Organic compounds as corrosion inhibitors for carbon steel in HCl solution: A comprehensive review," *Materials*, vol. 15, no. 6, p. 2023, 2022. doi: 10.3390/ma15062023.
- T. Chen, H. Gan, Z. Chen, M. Chen, and C. Fu, "Eco-friendly approach to corrosion inhibition of AA5083 aluminum alloy in HCl solution by the expired Vitamin B1 drugs," *J. Mol. Struct.*, vol. 1244, no. 9, p. 130881, 2021. doi:10.1016/j.molstruc. 2021.130881.
- Y. Chengxian, K. Minjian, Z. Juantao, W. Yuan, M. Qingwei, C. Qibin, and L. Honglai, "Influence of hydroxyl groups on the inhibitive corrosion of Germini surfactant for carbon steel," *Am. Chem. Soc.*, vol. 5, pp. 2620–2629, 2020. doi: 10.1021/acsomega.9b02989.
- D. I. Răuță, E. Matei, and S. M. Avramescu, "Recent development of corrosion inhibitors: Types, mechanisms, electrochemical behavior, efficiency, and environmental impact," *Technologies*, vol. 13, no. 3, p. 103, Mar 5, 2025.
- J. Cao, Y. Wu, and W. Zhao, "Review of layered double hydroxide (LDH) nanosheets in corrosion mitigation: Recent developments, challenges, and prospects," *Materials*, vol. 18, no. 6, p. 1190, Mar 7 2025.
- M. Cao, M. Li, Q. Zhou, J. Rao, and Y. Zhang, "The active corrosion protection of layered double hydroxides inhibitor nanocontainers: A review," *Journal of Materials Science*, pp. 1–23, Feb 14, 2025.
- M. H. Hedayatzadeh, M. Sepehrian, and M. Anbia, "Investigation of sol-gel derived organic inorganic hybrid coatings based on commercial epoxy resin for improved corrosion resistance of 304 stainless steel," *Scientific Reports*, vol. 15, no. 1, p. 7204, Feb 28, 2025.
- A. I. Ndukwe, J. K. Anumudu, C. C. Ugwuegbu, C. Onuoha, P. U. Nnajih, A. U. Aleme, P. C. Anozie, C. C. Augustine, D. C. Benson, C.-O. OS, and C. I. Okonkwo, "Corrosion-protective

- coatings: An overview of self-healing and hybrid coating-advancements," Acta Periodica Technologica, p. 12, 2025.
- G. K. Badgujar, N. P. Badgujar, K. Nagaraj, R. Kaliyaperumal, L. A. Devi, and T. Manimegalai, "Nanocontainer-based self-healing coatings: Advancements, applications, and future directions in anticorrosion technology: A short review," *Journal of Coatings Technology and Research*, pp. 1–8, Mar 19, 2025.
- 24. I. W. Ma, S. Ammar, S. S. Kumar, K. Ramesh, and S. Ramesh, "A concise review on corrosion inhibitors: Types, mechanisms and electrochemical evaluation studies," *Journal of Coatings Technology and Research*, pp. 1–28, Jan 1, 2022.
- M. A. Ahmed, S. Amin, and A. A. Mohamed, "Current and emerging trends of inorganic, organic and eco-friendly corrosion inhibitors," RSC advances, vol. 14, no. 43, pp. 31877–920, 2024.
- S. Pareek and D. Behera, "Mixed metal oxides composites as corrosion inhibitors," *InInorganic Anticorrosive Materials*, pp. 325–343, Jan 1, 2022, Elsevier.
- 27. C. Zhao, Y. Huang, Y. Li, C. Wang, W. Yuan, D. Cheng, T. Shen, J. Zhang, J. Liu, C. Yang, and C. Wu, "Construction of BTA-inbuilt ZIF-8 coated with molybdate-intercalated ZnAl-LDH as core-shell structured nanocontainers toward pH-responsive smart corrosion protection of waterborne epoxy coating," Progress in Organic Coatings, vol. 194, p. 108623, Sep 1 2024.
- X. Ma, Y. Ma, L. Dong, X. Chang, T. Yang, X. Cao, L. Feng, Z. Hu, and T. Hu, "Novel hydroxyl and carboxyl group-enriched nitrogen-doped carbon dots N-CDs as highly efficient corrosion inhibitors for carbon steel Q235 in 1 M HCl," *Inorganic Chemistry Communications*, vol. 175, p. 114167, May 1, 2025.
- A. Khormali, S. Ahmadi, Y. Kazemzadeh, and A. Karami, "Evaluating the efficacy of binary benzimidazole derivatives as corrosion inhibitors for carbon steel using multi-modal analysis and optimization techniques," *Results in Engineering*, vol. 26, p. 104671, Jun 1, 2025.
- J. Cheng, Y. Lv, F. Zhang, P. Han, Q. Miao, and Z. Huang, "Understanding the adsorption mechanism of benzotriazole and its derivatives as effective corrosion inhibitors for cobalt in chemical mechanical polishing," *Applied Surface Science*, vol. 682, p. 161684, Feb 15, 2025.
- A. Khormali, S. Ahmadi, Y. Kazemzadeh, and A. Karami, "Evaluating the efficacy of binary benzimidazole derivatives as corrosion inhibitors for carbon steel using multi-modal analysis and optimization techniques," *Results in Engineering*, vol. 26, p. 104671, Jun 1, 2025.
- 32. M. Yeganeh, Y. Heydarie, Z. Shahryari, N. Asadi, H. Kahkesh, and H. Ramezanalizadeh, "Corrosion inhibitor of API pipeline steels: A review," *Journal of Bio-and Tribo-Corrosion*, vol. 11, no. 2, p. 44, Jun 2025.
- 33. S. Lamghafri, W. Daoudi, O. Dagdag, I. A. Naguib, W. M. Nik, A. Berisha, H. Kim, A. El Aatiaoui, A. Zarrouk, and A. Lamhamdi, "Promising corrosion resistance of mild steel, copper, and aluminum in hydrochloric acid solution using an environmentally friendly corrosion inhibitor," *Journal of Industrial and Engineering Chemistry*, vol. 146, pp. 332–48, 2025 Jun 25.
- 34. Y. Caihong, K. R. Ansari, Z. Die, L. Qian, P. Wang, A. Singh, A. K. Alanazi, and Y. Lin, "In-depth insight into the adsorption mechanism and corrosion inhibition of isonicotinoyl-pyrazole derivative for excellent corrosion performance: Electrochemical and computational evaluation," *Materials Today Communications*, p. 112653, Apr 25, 2025.
- 35. Z. N. Jiang, J. M. Duan, W. Xiong, C. F. Dong, H. F. Liu, and G. A. Zhang, "Comprehensive insight into the interfacial adsorption mechanism of pyridine derivatives by molecular

- dynamics simulations, GFN-xTB and first-principles calculations," *Surfaces and Interfaces*, vol. 56, p. 105567, Jan 1, 2025.
- 36. D. Iravani, A. Farhadian, R. Sharifi, A. Berisha, A. Rahimi, A. Shaabani, Y. Qiang, A. A. Javidparvar, D. A. Martyushev, and E. Akbarinezhad, "Fabrication of novel Arabic gum-grafted-polyurethanes as eco-friendly corrosion inhibitors for carbon steel in sour environments: Surface analysis and inhibition mechanism," *Corrosion Science*, vol. 246, p. 112712, Apr 15, 2025.
- 37. T. W. Quadri, E. D. Akpan, S. E. Elugoke, L. O. Olasunkanmi, S. Sheetal, A. K. Singh, B. Pani, J. Tuteja, S. K. Shukla, C. Verma, and H. Lgaz, "State-of-the-art progress on artificial intelligence and machine learning in accessing molecular coordination and adsorption of corrosion inhibitors," *Applied Physics Reviews*, vol. 12, no. 1, Mar 1, 2025.
- W. M. Nik, J. Haque, M. S. Ghazali, A. Pradityana, I. V. Onuegbu, W. Daoudi, E. Berdimurodov, and A. A. Al-Amiery, "Amino acid-derived imidazole zwitterion as green interfacial corrosion inhibitor for cold rolled steel," Case Studies in Chemical and Environmental Engineering, vol. 11, p. 101103, Jun 1, 2025.
- C. Jiang, G. F. Wei, X. Ding, G. Du, X. Li, and D. Shao, "Investigation of biodegradable surfactant as a corrosion inhibitor to the cold rolled steel in the membrane separation device process," *Journal of Colloid and Interface Science*, vol. 678, pp. 795–807, Jan 15, 2025.
- 40. F. E. Abeng, A. Thakur, V. C. Anadebe, and E. E. Ebenso, "A comparative density functional theory (DFT) and molecular dynamics study on Natamycin and Cefmetazole as effective corrosion inhibitor for mild steel: Electronic properties and adsorption behavior," Computational and Theoretical Chemistry, vol. 1248, p. 115200, Jun 1, 2025.
- D. Shao, G. Wei, F. Zhang, S. Deng, and X. Li, "High-value utilization of invasive plant-Alternanthera philoxeroides extract in corrosion inhibition of aluminum," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol. 709, p. 136086, Mar 20, 2025.
- 42. N. Setti, A. Barrahi, M. Maatallah, Y. Kaddouri, T. B. Hadda, H. Outada, A. Thakur, R. Touzani, K. Karrouchi, H. A. Abuelizz, and B. Dikici, "Experimental and computational approach on the corrosion inhibition properties of two newly pyrazole derivatives on carbon steel in acid medium," *Scientific Reports*, vol. 15, no. 1, p. 3631, Jan 29, 2025.
- 43. B. Nie, B. Zhao, M. Xu, J. Yang, F. Gao, Z. Zhang, W. Zhang, J. Feng, Y. Feng, and K. Lu, "Evaluating the efficacy of chemically modified pinacol as an acidic corrosion inhibitor for mild steel: A comparative study," *Materials Today Communications*, p. 111698, Jan 24, 2025.
- 44. X. Guo, B. Shi, Z. Fu, G. Yang, Y. Li, L. Wang, L. Lu, L. Ma, and D. Zhang, "Atom-scale insight into the adsorption behavior of imidazole corrosion inhibitors at defective copper/water interfaces," *Corrosion Science*, p. 112744, Jan 27, 2025.
- M. L. Zheludkevich, I. M. Salvado, and M. G. S. Ferreira, "Sol–gel coatings for corrosion protection of metals," *Journal of Materials Chemistry*, vol. 15, no. 48, pp. 5099–5111, 2007.
- H. Koslowski, A. Krolikowski, and G. Müller, "Tannin-based sol–gel coatings for corrosion protection of mild steel," *Progress in Organic Coatings*, vol. 78, pp. 1–7, 2015.
- 47. R. Zhang, D. Wang, and D. Chen, "Corrosion protection performance of graphene oxide-based coatings in marine environments," *Corrosion Science*, vol. 155, pp. 58–66, 2019.
- 48. R. B. Figueira, C. J. R. Silva, and E. V. Pereira, "Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: A review of recent progress," *Journal of Coatings Technology and Research*, vol. 13, no. 1, pp. 1–35, 2016.

- 49. J. Tedim, M. L. Zheludkevich, and M. G. S. Ferreira, "Selfhealing coatings with layered double hydroxide nanocontainers of corrosion inhibitors," *Electrochimica Acta*, vol. 55, no. 22, pp. 6672–6680, 2010.
- Y. González-García, R. Domingues, and M. G. S. Ferreira, "Active corrosion protection of aluminum by sol–gel coatings loaded with corrosion inhibitors," *Surface and Coatings Tech*nology, vol. 254, pp. 128–137, 2014.
- R. Aslam, J. Zhao, J. Chen, Q. Wang, C. Verma, A. Alfantazi, Y. Sun, and Z. Yan, "Adsorption and corrosion inhibition evaluation of agro-industrial waste-derived sustainable carbon dots for corrosion protection of Q235 steel in 5% HCl," *Langmuir*, Feb 13, 2025.
- 52. I. Lakikza, H. Ghodbane, M. L. Chelaghmia, A. Boublia, S. I. Aouni, I. Belkhettab, H. Ferkous, A. Erto, A. S. Bentalib, and Y. Benguerba, "Unraveling the corrosion inhibition mechanisms of algerian dryopteris filix mas leaf extract on A210C carbon steel in 1 M HCl: Comprehensive insights from electrochemical, morphological, XPS, and theoretical analyses," *Materials Today Communications*, vol. 42, p. 111262, Jan 1, 2025.
- 53. K. Azgaou, R. Hsissou, K. Chkirate, M. Benmessaoud, M. Hefnawy, A. El Gamal, H. Elmsellem, L. Guo, E. M. Essassi, S. El Hajjaji, and N. K. Sebbar, "Corrosion inhibition and adsorption properties of N-{2-[2-(5-Methyl-1 H-pyrazol-3-yl) acetamido] phenyl} benzamide monohydrate on C38 steel in 1 M HCl: Insights from electrochemical analysis, DFT, and MD simulations," ACS Omega, Feb 3, 2025.
- M. Huang, R. Wang, J. Xiong, C. Liu, J. Wang, and Q. Wang, "Inhibition effect and adsorption behavior of Michelia alba leaf extract as corrosion inhibitors for Cu in 0.5 M H2SO4," *Journal of Dispersion Science and Technology*, pp. 1–8, Jan 30, 2025.
- 55. Q. H. Chen, Z. Y. Zhou, M. T. Feng, J. H. He, Y. Q. Xu, and B. K. Liao, "Unraveling the inhibitive performance and adsorption behavior of expired compound glycyrrhizin tablets as an eco-friendly corrosion inhibitor for copper in acidic medium," *Journal of the Taiwan Institute of Chemical Engineers*, vol. 168, p. 105913, Mar 1, 2025.
- 56. W. Ettahiri, M. Ait Lahcen, D. Fadili, A. S. Alanazi, Z. Rais, M. M. Alanazi, S. K. Wiedmer, A. Baouid, and M. Tale, "Regio-and chemoselective synthesis of triazolobenzodiazepines as efficient corrosion inhibitors for mild steel: Insights from experimental and multiscale theoretical approaches," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, p. 137356, May 31, 2025.
- 57. K. G. Prajapati and P. S. Desai, "Corrosion inhibition of aluminum alloy in HCl by SDS: Experimental, SEM/AFM imaging, and computational insights (DFT and MD simulations)," *Journal of Molecular Modeling*, vol. 31, no. 6, pp. 1–7, Jun, 2025.
- M. T. Abdullahi, S. A. Umoren, H. D. Dafalla, and M. N. Tahir, "Synthesis, characterization and anti-corrosion property of graphitic carbon nitride for carbon steel in acid medium," *Diamond and Related Materials*, vol. 151, p. 111819, Jan 1, 2025.
- D. Hachem, D. Nguyen, R. Bonnecaze, and Q. Nguyen, "AFM characterization of corrosion inhibitors and nanoparticle films," ACS Applied Engineering Materials, vol. 3, no. 3, pp. 750–60, Mar 3, 2025.
- N. Setti, A. Barrahi, M. Maatallah, Y. Kaddouri, R. Touzani, B. Dikici, K. Karrouchi, H. A. Abuelizz, A. Zarrouk, and A. Dafali, "Structural effect of bipyrazole derivatives on corrosion inhibition of carbon steel in 1 M HCl: Weight loss, electrochemical measurements, XPS/SEM surface analysis, DFT and MC

- simulations," *Physical Chemistry Chemical Physics*, vol. 27, no. 10, pp. 5371–94, 2025.
- O. O. Odeyemi and P. A. Alaba, "Efficient and reliable corrosion control for subsea assets: Challenges in the design and testing of corrosion probes in aggressive marine environments," *Corrosion Reviews*, vol. 43, no. 1, pp. 79–126, Mar 12, 2025.
- 62. Y. Wan, E. N. Macha, and R. G. Kelly, "Modification of ASTM B117 salt spray corrosion test and its correlation to field measurements of silver corrosion. Corrosion," *The Journal of Science and Engineering*, vol. 68, no. 3, pp. 036001–1, Mar 1, 2012
- 63. M. Jiang, X. Liu, Y. Xu, S. Li, X. Liu, X. Niu, L. Lu, X. Sun, Z. Xie, Z. Wang, and S. P. Cui, "Corrosion inhibition effect and mechanism of eco-friendly corrosion inhibitors on mild steel in simulated concrete pore solution: experimental and theoretical studies," ACS Sustainable Chemistry & Engineering, Feb 3, 2025.
- 64. M. Singer, F. Farelas, Z. Belarbi, S. Punpruk, and A. Jenkins, "Review of volatile corrosion inhibitors evaluation methods and development of testing protocols," In: *NACE CORROSION*, p. NACE-2019, Mar 24, 2019, NACE.
- C. I. Ekeocha, I. N. Uzochukwu, I. B. Onyeachu, I. I. Etim, and E. E. Oguzie, "Theoretical study of novel antipyrine derivatives as promising corrosion inhibitors for mild steel in an acidic environment," *Structural Chemistry*, vol. 36, no. 1, pp. 363–79, Feb, 2025.
- 66. M. H. Hedayatzadeh, M. Sepehrian, and M. Anbia, "Investigation of sol-gel derived organic inorganic hybrid coatings based on commercial epoxy resin for improved corrosion resistance of 304 stainless steel," *Scientific Reports*, vol. 15, no. 1, p. 7204, Feb 28, 2025.
- M. Sheydaei and M. Edraki, "An overview of silane-based hybrid sol-gel coatings for highly efficient metal corrosion protection," *Journal of Applied Material Science*, vol. 1, no. 1, Mar 1, 2025.
- 68. F. Zhang, S. Wang, R. Fei, S. Geng, C. Huang, B. Zhao, A. Shi, Y. Jin, J. Lao, J. Yin, and H. Wang, "Tailoring ionic liquid corrosion inhibitors for N80 steel in acidic media: Anion–Cation synergy, high-temperature performance, and multiscale mechanistic insights," *Langmuir*, May 19, 2025.
- 69. A. Gharieh, A. Sharifian, and S. Dadkhah, "Enhanced long-term corrosion resistance and self-healing of epoxy coating with HQ-Zn-PA nanocomposite," *Scientific Reports*, vol. 15, no. 1, p. 8154, Mar 9, 2025.
- H. Nazari and R. Arefinia, "Corrosion inhibition potential of polyaniline nanoparticles: Electrochemical and computational evaluation," *Journal of Molecular Structure*, p. 141491, Jan 18, 2025
- M. Cao, M. Li, Q. Zhou, J. Rao, and Y. Zhang, "The active corrosion protection of layered double hydroxides inhibitor nanocontainers: A review," *Journal of Materials Science*, pp. 1–23, Feb 14, 2025.

- M. Ali, H. Shi, F. Jan, S. Ahmed, Y. Song, and E. H. Han, "A bifunctional self-healing coating enhanced by attapulgite functionalized MXene with inhibitor integration," *Progress in Organic Coatings*, vol. 199, p. 108936, Feb 1, 2025
- 73. M. Hao, H. Tan, W. Yang, D. Yue, L. Gao, Z. Wang, and C. He, "Effect of pH on long-term corrosion protection of Zn doped MgAl-LDHs coatings by in situ growth on 5052 aluminum alloy," Surfaces and Interfaces, vol. 64, p. 106349, May 1, 2025
- 74. J. Li, S. Liu, X. Zhang, M. Li, Y. Chen, K. Si-Bo, W. Lu, C. Wu, H. Zhou, S. Chen, and J. Rao, "MgAl layered double hydroxide nanoplate coatings as corrosion inhibitors for long-term protection of Q235 steel," ACS Applied Nano Materials, vol. 8, no. 9, pp. 4500–12, Feb 24, 2025.
- J. Cao, Y. Wu, and W. Zhao, "Review of layered double hydroxide (LDH) nanosheets in corrosion mitigation: Recent developments, challenges, and prospects," *Materials*, vol. 18, no. 6, p. 1190, Mar 7, 2025.
- Z. Lin, K. Liu, Q. Wang, H. Zhao, and X. Shen, "Enhancing corrosion inhibition performance of steel bars with modified MgAl-NO2-layered double hydroxide preparation methods," *Journal of Materials Engineering and Performance*, pp. 1–3, Apr 11, 2025.
- R. Yue, R. Zhu, S. Wang, L. Li, Y. Zuo, J. Chen, and S. Sheng, "The role of pH on structure, corrosion behavior and biocompatibility of MgFe layered double hydroxide coating on Mg-Nd-Zn-Zr alloy," Scientific Reports, vol. 15, no. 1, pp. 1–6, Apr 28, 2025.
- A. Seniski, A.R. Sotiles, C. H. Vieira, M. D. Bragança, C. E. Marino, and K. F. Portella, "Zn–Al with NO2— as a corrosion inhibitor epoxy-coated carbon steel under artificial atmospheric conditions. Corrosion Engineering," *Science and Technology*, vol. 60, no. 1, pp. 26–38, Feb, 2025.
- 79. A. D. Mercer, "Test methods for corrosion inhibitors: Report prepared for the European federation of corrosion working party on inhibitors," *British Corrosion Journal*, vol. 20, no. 2, pp. 61–70, Jan 1, 1985.
- 80. G. Haynes, "Review of laboratory corrosion tests and standards," In: Corrosion Testing and Evaluation: Silver Anniversary Volume, Jan. 199, ASTM International.
- 81. E. T. Salim, M. A. Fakhri, S. M. Tariq, A. S. Azzahrani, R. K. Ibrahim, A. A. Alwahib, S. F. H. Alhasan, A. Ramizy, E. Y. Salih, and Z. T. Salim, "The unclad single-mode fiber-optic sensor simulation for localized surface plasmon resonance sensing based on silver nanoparticles embedded coating," *Plasmonics*, vol. 19, no. 1, pp. 131–143, 2024.
- 82. M. K. A. Mohammed, A. M. Naji, D. S. Ahmed, M. J. Jamai, E. Y. Salih, M. Dehghanipour, S. Bhattarai, R. Pandey, J. Madan, and M. D. F Rahman, "Facile synthesis of chitosan-MoS2 over reduced graphene oxide to improve photocatalytic degradation of methylene blue," *Journal of Sol-Gel Science and Technology*, pp. 1–11, 2024.