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1. INTRODUCTION 

In the fast-expanding field of software engineering, developers sometimes have to make difficult decisions under tight 

deadlines. Those decisions affect how performance, maintainability, and quality regarding software systems remain 

[1]. Still, it is quite difficult to derive voluminous and complex codebases into actionable insights. Meaningful patterns 

and metrics extracted from software code provide a means of data-driven, informed decision-making. Developers have 

quantifiable data from metrics, like test coverage, code complexity, security vulnerabilities, and performance 

bottlenecks which could direct their decision-making [2]. By helping to identify areas needing 

refactoring, optimization, or extra testing, such data-driven method guarantees a more consistent and high-

performance result. Studies have found, for example, that code complexity closely corresponds with maintenance 

difficulties and that high complexity is usually sign of bugs or performance problems. Objective 

measure regarding code fitness could be obtained by means of tools and approaches assessing such criteria: LOC, code 

complexity, function/method analysis, and code duplication [3]. Furthermore, including such criteria into the software 

development lifecycle—particularly in the phases of testing, development, and maintenance—helps to improve 

decision-making. Teams may guarantee that quality is kept throughout the development process instead of at the end 

through constantly monitoring such measures using automated technologies linked with Continuous Deployment 

(CD) and Continuous Integration (CI) pipelines [4]. Instead of waiting for later-stage discovery of possible problems, 

the real-time feedback such technologies provide helps developers to constantly modify their strategies. Even with the 
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possible advantages, though, obtaining and analyzing metrics from large codebases comes with difficulties. Manual 

examination is time-consuming and error-prone in codes since they sometimes show complex relations, modular 

structures, and several layers of abstraction [5]. Streamlining such procedure depends much on automation using 

software tools, which provides code quality analysis and detects problems in many aspects. Together with appropriate 

metric selection, such tools provide a clearer view regarding the condition of the software, which helps developers 

make better decisions directly affecting the general product quality [6]. This article presents a new tool meant to help 

developers make informed decisions all across the software development lifecycle by parsing software code. Through 

offering analysis of important indicators such documentation quality, code complexity, and resource efficiency, the 

suggested solution helps developers to maximize their processes and provide better-quality software. The tool's 

capacity to handle Java and Python codebases guarantees its relevance over many different projects, Since these two 

languages are widely used currently. This study mostly offers the following contributions: 

1-  Development of a Code Parsing Tool: The suggested tool extracts from software code important data including 
complexity, lines of code, duplication ratio, and memory use, such easily available metrics help developers to 
evaluate code complexity and condition. 

2-  Enhanced Decision-Making Support: Consolidating important insights into a single platform helps developers 
to find bottlenecks, prioritize refactoring projects, and guarantee improved resource allocation. 

3- Applicability across Languages: Supporting Java and Python, the tool fits a broad range of software 
development environments, therefore enhancing its adaptability and possible adoption. 

4-  Facilitation of Best Practices: Automating the presentation and extraction of software metrics helps the tool 
support adherence to best practices in testing, coding, and documentation. 

The related work in section 2, the metrics obtained by the tool explained in section 3, the approaches utilized for 

building tool as well as the ways where such insights could drive in section 4, the case study present in section 5, after 

that discussion and results explained in section 6, then a comparison with other tools present in section 7, lastly the 

conclusion present in section 8. 

2. RELATED WORKS  
Recent studies in software engineering focusing on code analysis, quality assurance, and maintenance offer critical 
insights into the challenges and advancements within this domain, which depending on information extracted from 
code. 

In 2019, Mamun et al. conducted a comprehensive study to investigate the effects of measurement techniques on the 

correlations of software code metrics. They highlighted the importance of methodological rigor in empirical software 

engineering, emphasizing how different measurement choices can significantly influence the observed relationships 

between metrics. The authors found inconsistencies in previously published metric correlations through 

systematically analyzing several datasets as well as measurement techniques, therefore highlighting the possibility of 

misleading conclusions in the case when methodological factors are neglected. They gave practitioners 

and researchers instructions to guarantee the validity of metric-based studies, therefore helping to improve empirical 

approaches in software engineering [7]. 

In 2020, Zagane et al. used software code metrics as features and investigated the application of deep learning 

(DL) approaches for software vulnerability detection. Their study emphasizes how well deep neural networks 

(DNNs) combine with automatically generated code metrics to efficiently predict vulnerabilities. The work shows 

how DL could find patterns in code that conventional methods could overlook through combining advanced learning 

models with static code properties. Under the framework of vulnerability prediction, the authors underlined the 

importance of feature extraction as well as representation and the use of software measurements as inputs for training 

neural networks (NNs) [8].  

In 2021, Jiang et al. published Cure, a code-aware neural machine translation (NMT) model meant for 

automatic program repair (APR). They underlined the limits of conventional NMT-based APR methods, which may 

ignore syntactic and structural constraints particular to programming languages. Through introducing code-aware 

elements including Abstract Syntax Tree (AST) representations and tokenized code inputs to improve the model's 
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understanding regarding program structure, Cure addresses such challenges. Leveraging both contextual knowledge 

and semantic correctness, they made notable increases in repair accuracy [9]. 

In 2022, Duque-Torres et al. addressed a fundamental difficulty in metamorphic testing (MT) by investigating with 

the use of source code metrics for the prediction of the metamorphic relations (MRs) at the method level. They looked 

at how predictors for MRs—which are crucial for evaluating programs without an oracle—static code properties 

including coupling, complexity, and cohesion might be found. The work shows the viability of using code metrics to 

automate and improve MR identification by use of an extensive dataset of code and application of machine learning 

(ML) methods [10]. 

In 2023, Park et al. suggested a technique to visualize software quality by use of normalizing static code 

building information. They sought to organize data for better comparability so that complex quality metrics could be 

interpreted more simply. The framework improved knowledge of software properties like complexity and 

maintainability. Their efforts expanded on earlier studies in software visualization and static analysis, offering tools to 

help with quality assessment decision-making. The authors provide a useful approach for enabling developers to make 

software quality measurements more actionable through combining table normalization with visualization methods. 

Their approach sought to raise awareness of and application for quality indicators in software development projects 

[11]. 

In 2024, Mashhadi et al. projected bug frequency by means of static analysis as well as source code metrics. Their 

research included measures like code complexity and churn to enhance earlier work on defect prediction. They showed 

how this analysis might help to estimate severity more precisely, therefore offering a better basis for bug effect 

prediction. They developed on earlier research using statistical approaches and ML to predict defects. The authors 

demonstrated how valuable it is to combine analysis methods with static code features. Their results underlined the 

need of better models in the prediction of software quality. By more consistent severity assessments, they helped to 

improve software defect management [12]. In the same year, Huang et al. enhanced comment generating models by 

means of bytecode for extracting more semantic information from code. As a low-level, machine-readable 

representation, bytecode allowed the model to record information that higher level code analysis would overlook. The 

method improved program behavior by means of control flow graphs as well as transformer-based NNs. Emphasizing 

the need of obtaining more detailed knowledge from code, their approach greatly raised the accuracy and relevance of 

produced comments. Their use of bytecode for improved semantic extraction advanced automated software 

documentation. They demonstrated how more accurate software documentation could result from lower-level code 

representations enhancing comment [13]. 

In 2025, Jiang et al. enhanced code summarization prompt tuning by means of meta-data derived from codes. To direct 

the model in producing more accurate summaries, their approach included more meta-information including variable 

names as well as function signatures. Using such details will help the model for extracting more semantic insights, 

thereby increasing the relevance regarding the produced summaries. Emphasizing the need of information extraction 

from code, the study focused on how meta-data clarifies context and program behavior for the model. Building on 

earlier code summarizing studies, this study shows that meta-data greatly enhances the quality of summary. The 

method underlined the need of more accurate code interpretation depending on richer, context-aware information. 

Their results offer a new path for improving automated code summarization tools [14]. 

By means of a comprehensive, automated solution which extracts important software information and metrics like 

documentation quality, code complexity, dead code detection, and memory consumption, the suggested CodeLens 

tool presents a major breakthrough over current software analysis tools. CodeLens distinguishes itself from other tools 

that concentrate on particular elements or support limited programming languages through providing broad 

application, supporting both Java and Python, which qualifies for a wide range of software projects. Moreover, its 

real-time feedback features and simple interface let programmers quickly evaluate code quality and guide decisions 

all through the software development life. Different from other solutions, such special combination of features puts 

CodeLens as a potent instrument in the continuous endeavor to enhance decision-making in software development. 

3.   SOFTWARE INFORMATION EXTRACTION 

https://doi.org/10.25195/ijci.v51i2.550
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Modern software engineering methods depend much on the extracted information from software codes. Scholars and 

organizations could better understand the behavior, structure, and evolution of a system through 

systematically examining and deriving significant insights from code [15]. This technique helps to find code smells, 

uncover hidden dependencies, and spot patterns influencing maintainability and software quality. Such extracted 

information is important since it can guide decision-making made at several phases of the software development life 

[16]. For performance improvement, debugging, and coding standard compliance, for example, both dynamic and 

static code analysis approaches offer essential data. Comparably, mining code repositories track historical trends to 

support predictive maintenance and better resource allocation [17][18]. Furthermore, the extracted insights helps to 

solve new issues in the software field including controlling technical debt, enabling automated refactoring, and 

guaranteeing code consistency in large-scale systems[19]. Machine learning (ML) as well as data-driven techniques 

have greatly opened the possibility to use acquired code information, thereby supporting intelligent recommendation 

systems as well as predictive analytics. Basically, the information extraction and use from software code enable 

developers, maintainers, and researchers to improve software reliability, adaptability, and 

scalability, thus guaranteeing long-term sustainability in an always changing technological landscape [20][21]. 

Figure 1 shows a three-main phase cycle of constant improvement for software split into planning, decision-making, 

and information extraction. The process starts in the planning phase, in which case aims, problem-solving, and criteria-

establishing define the extent. Procedures defined in this phase define standards, techniques for data collecting, 

analysis, and feedback systems. The information extraction phase follows, in which data is acquired by methods of 

recording and storage together with procedures of review and improvement. The collected data then is examined to 

create reports and show results. The last phase, decision-making, emphasizes on improving the process by assessing 

results and development, thereby facilitating well-informed choices that advance it even more. This cycle stresses an 

iterative approach meant to enhance procedures constantly and reachable, meaningful improvements. 

 

Fig. 1. Software improvement cycle 

 Extracted information from software code is critical for computing various software metrics, which are quantitative 

measures that provide insight into the quality, and performance of a codebase [22]. Extracting these metrics allows 

developers to identify improvement areas and make data-driven decisions. Software measurement is a progressing 

cycle where information on the cycle of product improvement and its items are recognized, gathered and examined 

for the purpose of comprehending and screening the cycle and its items and to give valuable data for the purpose of 

improving the cycle and its products [23]. Without estimation, developer can’t make quality programming, for 

accomplishing fundamental administration goals of the assessment, improvement, and cycle changes, estimation is 

necessary[24]. The properties of good measurements include:  

● Reliability: The yield of estimation cycle should be accurate. In addition to that, comparative aftereffects of 
the estimation cycle extra time and across the circumstances [25][26].  

●  Sensitivity: in a case where there is an event or trigger, the estimating component uncovers the changeability 
in the reactions [27][28].  

https://doi.org/10.25195/ijci.v51i2.550
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●  Validity: The measurement process tests what it professes to calculate [29][30]. 

 

4. METHODOLOGY  

The methodology outlines the systematic approach employed to design, develop, and validate the proposed automated 

tool (CodeLens) for software information extraction. This process began with identifying key metrics critical for 

assessing software quality and its importance as illustrate in table 1 including:  

1- Lines of Code (LOC): Total number of lines in the code, including comments and blank lines.  

2- Comment Lines: Number of lines containing comments in the code.  

3- Function Count: Total number of functions or methods in the code. 

4- Code Complexity: Number of independent execution paths in the code.  

5- Documentation Ratio: Ratio of comment lines to total lines of code. 

6- Memory Usage: Memory consumed by the code during execution.  

7- Nesting Depth: Maximum depth of nested structures like loops and conditionals.  

8- Duplication Ratio: Percentage of duplicate code in the project.  

9- Class Count: Number of classes defined in the codebase. 

10- Dead Code Detection: Identifies code that is not referenced or executed during program execution. 

 

 

Fig. 2. CodeLens methodology 

 

The tool steps to analysis and parse code illustrate in the Figure 2. After building the code of tool, the interface 

integrated with the code to make the tool more simple and visual to the user which contain the Browse and 

Extract Information button, in addition to eleven edit box one that show path of chosen file and the other ten 

for show result of extracted information as shown in figure (3)and (4). When clicked buttons including: 

● Browse: Opens a file dialog to select a file and displays the file path in the first edit box. 

● Extract Information: Simulates analysis of the chosen file and displays the result in the others edit boxes. 

https://doi.org/10.25195/ijci.v51i2.550
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Table I. Code metrics covered by CodeLens tool. 

No. Metric Type Importance Implementation Phase Benefit From It 

1.  Lines of Code 
(LOC) 

Code Size Measures the size of the 
code and reflects its 

complexity. 

Development, 
Maintenance 

Estimate the effort required for maintenance 
and development. 

Estimate project cost. 

2.  Lines of 
Comments 

Documentation Measures the extent of 
code documentation. 

Development, 
Maintenance 

Improve documentation quality and reduce the 
time required to understand the code. 

A high percentage of comments reflects quality 

documentation. 

3.  Number of 
Functions 

Code Modularity Measures the number of 
functions or methods in the 

code. 

Development, 
Maintenance 

Determine the reusability and maintainability of 
the code. 

A large number of functions may indicate 

excessive modularization. 

4.  Code 

Complexity 

Complexity Measures the number of 

execution paths in the 

code. 

Development, 

Maintenance 

Identify the complex parts of the code that need 

refactoring. 

High complexity means difficulty in testing and 
maintenance. 

5.  Documentation 

Ratio 

Documentation Measures the ratio of 

comments to total lines of 
code. 

Development, 

Maintenance 

Improve documentation quality and reduce the 

time required to understand the code. 
A low ratio reflects poor documentation. 

6.  Memory Usage Performance Measures the amount of 

memory used during code 

execution. 

Testing, Maintenance Improve code performance and reduce resource 

usage. 

High memory usage may indicate performance 
issues. 

7.  Nested Depth Complexity Measures the level of 

nesting in the code. 

Development, 

Maintenance 

Identify the complexity of the code and 

difficulty in understanding it. 
High nesting depth means difficulty in 

maintenance. 

8.  Duplicate Code 

Ratio 

Reusability Measures the percentage of 

duplicated code in the 
project. 

Development, 

Maintenance 

Improve code reusability and reduce its size. 

Duplicated code increases maintenance 
difficulty. 

9.  Number of 

Classes 

Code Structure Measures the number of 

classes in the code. 

Development, 

Maintenance 

Understand the structure of the code and its 

complexity. 

A large number of classes may indicate 

excessive complexity. 

10.  Dead Code 

Detection 
 

Optimization 

 

Detect the dead code Testing, 

Maintenance  

 makes the codebase cleaner and easier to 

understand. 
Optimizes memory usage by removing unused 

entities. 

 

5. Case study  

The case study showcases the practical use of the Codelens tool in real-world scenarios, demonstrating its versatility 

across various software projects. In this study, the Codelens tool is applied to two popular open-source software 

repositories obtained from GitHub: Flask (a Python web framework) and JUnit (a widely used testing framework in 

Java). These repositories were chosen due to their widespread usage and complexity, providing a robust testing ground 

for the CodeLens tool. The tool has two basic steps including: 

● Browsing the Code in CodeLens: Following software file downloads, they have been imported into the 
CodeLens tool for analysis. The tool was set to search the code, compile important statistics on the codebase 
like Lines of Comment (LC), Lines of Code (LOC),Code Complexity (CC), and more. 

● Extracting Information: The tool's central ability was applied for extracting from the code comprehensive 
metrics. Clicking the "Extract Information" button allowed the tool to process the code and show the findings 
in an easily interpretable format, therefore enabling the discovery of important elements including unused 
functions, documentation coverage, and code duplication. 

 Figure (3) and (4) shows the result of flask and juint software respectively. 

https://doi.org/10.25195/ijci.v51i2.550
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                Fig. 3. Extracted Information of flask software   Fig. 4. Extracted Information of junit software 

6. Results and Discussion 

For assessing the overall quality regarding software projects, the Codelens tool turned out to be a useful tool. Easy 

identification of possible problems, like unused code, code duplication, and too complex code was made possible by 

the capacity for extracting important metrics and present them in a complete form. Applying this tool to real-

words projects like JUnit and Flask shows clearly that it could be used in a broad range of software development 

environments to guarantee code quality and maintainability. Using color gradients, Figure (5) shows the degree of 

connection between certain code metrics whereby the colors depict different degrees of interaction between these 

metrics. With brighter colors denoting a more important association, the heatmap shows the degree of the 

relations between the measures. Lighter colors suggest less connection. Those relations could provide insightful 

analysis of how various metrics interact and how changes to one metric might affect other measures. The 

relations among the collected data including: 

• Lines of Code (LOC) and Lines of Comments (LC): 

There is typically a positive correlation between the number of lines of code (LOC) and the number of 

lines of comments (LC). In well-written code, it is essential to maintain an appropriate balance of 

comments alongside the code to properly document the functionality and logic. 

• Lines of Code (LOC) and Number of Classes (NC): 

A positive relationship is usually observed between the number of lines of code and the number of classes 
(NC). As the codebase grows in size, it generally results in an increased number of classes, which reflects 
the structural complexity of the code. 

• Number of Functions (NF) and Duplicate Code Ratio(DCR): 

The number of functions (NF) can be associated with the duplicate code ratio (DCR). In some cases, an 
increased number of functions may lead to higher code duplication, especially if several functions perform 
similar tasks, leading to redundant code. 

• Dead Code Detection and Number of Classes (NC): 

Dead code detection is often related to metrics such as the number of functions and the number of classes. 
Unused or redundant functions and classes contribute to dead code, which can increase the overall size of 
the codebase without adding any functional value. 

https://doi.org/10.25195/ijci.v51i2.550
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• Documentation Ratio (DR) and Code Complexity (CC): 

The documentation ratio (DR) may indirectly help reduce code complexity (CC). Well-documented code 
enhances its readability and maintainability, thereby making complex code easier to understand and 
modify. 

By understanding these interdependencies, developers can better balance the metrics to optimize code quality, 

maintainability, and efficiency. Through the case study, it becomes clear that the CodeLens tool is an invaluable 

resource for developers looking to improve efficiency and cleanliness of their codebases. By identifying areas for 

refactoring and optimization, developers can make more informed decisions about how to streamline their code, reduce 

technical debt, and maintain a high standard of quality throughout the software development lifecycle. The figure (6) 

illustrates visually the estimated impact of each extracted information from code on decision-making in software 

development life cycle. 

      

    Fig. 5. The correlation between Extracted Information from code               Fig. 6. Impact of Extracted Information on Decision-Making 

7. Competitive Comparison of the Proposed Tool 

There are many tools that help developers evaluate and analyze software quality. Table 2 provides a detailed 

comparison between the proposed  tool and the top tools currently available in the market for this purpose.                          

The proposed tool (CodeLens) distinguishes itself by employing development metrics which help programmers 

comprehend their code and make improved choices. Different metrics used in various software development phases 

significantly influence code size documentation modularity complexity performance reuse structure and optimization. 

This tool excels by integrating various software metrics which help developers achieve thorough understanding of 

their code. Software developers benefit from this tool because it consolidates various insights which streamline their 

decision-making tasks while also supporting software evaluation and enhancement. 

 

8. Conclusion 

Modern software engineering methods revolve around extracting information from software code. Using automated 

tools, advanced analysis tools, and visualizations helps developers make better decisions which produces 

maintainable, robust and high-quality software. Using such techniques not just simplifies the development process, 

yet helps teams to anticipate and handle challenges early on. Moreover, including such tools into the software life 

promotes a culture of ongoing development in which data-driven insights and real-time feedback drive innovation. 

Setting the basis for long-term success in a competitive market, teams could successfully minimize risks early, 

prioritize efforts, and guarantee that the final product satisfies business and technical objectives through concentrating 

on metrics that matter. With the intention of obtaining a better idea what's happening, evaluating any features 

https://doi.org/10.25195/ijci.v51i2.550
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regarding a software product, estimating the quality of software and lastly track the project for ensuring that 

everything is under control, the suggested tool CodeLens collecting data on some features of software products. Future 

studies can investigate enhancing the tool's capacity to support other programming languages and frameworks, hence 

facilitating more general adoption over several development environments. Furthermore improving its value would be 

including ML methods for predicting possible code vulnerabilities and optimization opportunities. 

 

 

 

Table II. Comparison between the proposed  tool and the top tools available in the market 

No. Tool                                                                                                                                     Features  Strengths                                                                  Weaknesses     

1. SonarQube   
Static code, analysis, bug detection, 

security vulnerabilities, and code smells. 

Supports multi-language, easy to use, 

integrates with CI/CD tools. 

Requires initial setup, slow for 

large projects.                          

2.  ESLint                 

Analyzes JavaScript/ TypeScript code, 

identifies errors, and auto-fixes formatting 
issues. 

Lightweight and fast, highly 

customizable, supports auto-fixing.                

Limited to JavaScript and its 

variants, requires initial 
configuration. 

3. Checkmarx                                                    
Security-focused code analysis, detects 

vulnerabilities. 

Strong focus on security, supports multi-

language, integrates with development 
tools. 

Expensive, user interface can 

complex.   

4. 
PMD              
 

Static code analysis for Java, JavaScript, 
XML, and more. 

Open-source, supports multi-language, 
easy to integrate.                    

Limited in detecting complex 

issues, requires manual 

configuration. 

5. Veracode                                                     
Security-focused code analysis, detects 

vulnerabilities.                      

Supports multi-language, provides 

detailed reports, integrates with CI/CD.   

Expensive, can be slow in 

analysis. 

6. CodeClimate                   
Code quality analysis, measures 

complexity, and manages technical debt. 

User-friendly interface, integrates with 

GitHub, supports multi-language. 

costly for large projects, limited 

security analysis. 

7. 
Coverity                                             
 

Static code analysis, detects bugs and 
security vulnerabilities.             

Accurate in detecting issues, supports 

multi-language, integrates with 

development tools. 

Expensive, requires complex 
setup.   

8.  Bandit                           Security-focused code analysis for Python.     
Open-source, lightweight and fast, 

focuses on Python security.             

Limited to Python, does not 

support other languages.   

9. Codacy 
 Code quality analysis, detects errors, and 

manages technical debt. 

User-friendly interface, integrates with 

GitHub/GitLab, supports multi-language 

 costly for large projects, limited 

security analysis.                    

10. 
CodeLens 
(my tool) 

Static code analysis based on 10 key 
metrics. 

Free and open-source, user friendly 

interface, Supports Java and Python, 

Provides comprehensive code quality 
analysis, detecting common issues like 

dead code and high complexity, Easy to 

integrate with development tools. 

limited security analysis. 
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