
Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

46

Research Article

An Automated Tool for Streamlining Software

Engineering: Information Extraction and Decision
1Rasha Gh. Alsarraj

Software

Computer Science and Mathematics

University of Mosul, Mosul, Iraq

rasha.alsarraj@uomosul.edu.iq

A R T I C L E I N F O

Article History

Received: 05/02/2025

Accepted: 03/05/2025

Published: 25/08/2025

This is an open-access

article under the CC BY

4.0 license:

http://creativecommons.

org/licenses/by/4.0/

1. INTRODUCTION

In the fast-expanding field of software engineering, developers sometimes have to make difficult decisions under tight

deadlines. Those decisions affect how performance, maintainability, and quality regarding software systems remain

[1]. Still, it is quite difficult to derive voluminous and complex codebases into actionable insights. Meaningful patterns

and metrics extracted from software code provide a means of data-driven, informed decision-making. Developers have

quantifiable data from metrics, like test coverage, code complexity, security vulnerabilities, and performance

bottlenecks which could direct their decision-making [2]. By helping to identify areas needing

refactoring, optimization, or extra testing, such data-driven method guarantees a more consistent and high-

performance result. Studies have found, for example, that code complexity closely corresponds with maintenance

difficulties and that high complexity is usually sign of bugs or performance problems. Objective

measure regarding code fitness could be obtained by means of tools and approaches assessing such criteria: LOC, code

complexity, function/method analysis, and code duplication [3]. Furthermore, including such criteria into the software

development lifecycle—particularly in the phases of testing, development, and maintenance—helps to improve

decision-making. Teams may guarantee that quality is kept throughout the development process instead of at the end

through constantly monitoring such measures using automated technologies linked with Continuous Deployment

(CD) and Continuous Integration (CI) pipelines [4]. Instead of waiting for later-stage discovery of possible problems,

the real-time feedback such technologies provide helps developers to constantly modify their strategies. Even with the

ABSTRACT
In the always-evolving and dynamic field of software development, good decision-making is

absolutely critical. Developers have to regularly decide how best to apply features, optimize

performance and debug issues. This process could be much improved by extracting actionable

insights from software code. The presented work explores the tools and metrics available to enable

developers to make data-driven decisions, therefore enhancing the development efficiency as well

as code quality. Also, it introduces a new automated tool called CodeLens which analyzes software

code, extract lines of code (LOC), documentation quality, complexity, and other key criteria. Through

a consolidated view of such metrics, the tool helps developers evaluate code fit, spot possible

bottlenecks, and prioritize optimization or refactoring efforts. Furthermore, the tool's support of Java

and Python languages guarantees general applicability, hence fitting for many software projects.

Keywords: Developer Decision Support; Code Analysis; Software Assessment; Software Quality; and

 Software Metrics.

https://doi.org/10.25195/ijci.v51i2.550
mailto:rasha.alsarraj@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9683-2412
https://creativecommons.org/licenses/by/4.0/

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

47

possible advantages, though, obtaining and analyzing metrics from large codebases comes with difficulties. Manual

examination is time-consuming and error-prone in codes since they sometimes show complex relations, modular

structures, and several layers of abstraction [5]. Streamlining such procedure depends much on automation using

software tools, which provides code quality analysis and detects problems in many aspects. Together with appropriate

metric selection, such tools provide a clearer view regarding the condition of the software, which helps developers

make better decisions directly affecting the general product quality [6]. This article presents a new tool meant to help

developers make informed decisions all across the software development lifecycle by parsing software code. Through

offering analysis of important indicators such documentation quality, code complexity, and resource efficiency, the

suggested solution helps developers to maximize their processes and provide better-quality software. The tool's

capacity to handle Java and Python codebases guarantees its relevance over many different projects, Since these two

languages are widely used currently. This study mostly offers the following contributions:

1- Development of a Code Parsing Tool: The suggested tool extracts from software code important data including
complexity, lines of code, duplication ratio, and memory use, such easily available metrics help developers to
evaluate code complexity and condition.

2- Enhanced Decision-Making Support: Consolidating important insights into a single platform helps developers
to find bottlenecks, prioritize refactoring projects, and guarantee improved resource allocation.

3- Applicability across Languages: Supporting Java and Python, the tool fits a broad range of software
development environments, therefore enhancing its adaptability and possible adoption.

4- Facilitation of Best Practices: Automating the presentation and extraction of software metrics helps the tool
support adherence to best practices in testing, coding, and documentation.

The related work in section 2, the metrics obtained by the tool explained in section 3, the approaches utilized for

building tool as well as the ways where such insights could drive in section 4, the case study present in section 5, after

that discussion and results explained in section 6, then a comparison with other tools present in section 7, lastly the

conclusion present in section 8.

2. RELATED WORKS
Recent studies in software engineering focusing on code analysis, quality assurance, and maintenance offer critical
insights into the challenges and advancements within this domain, which depending on information extracted from
code.

In 2019, Mamun et al. conducted a comprehensive study to investigate the effects of measurement techniques on the

correlations of software code metrics. They highlighted the importance of methodological rigor in empirical software

engineering, emphasizing how different measurement choices can significantly influence the observed relationships

between metrics. The authors found inconsistencies in previously published metric correlations through

systematically analyzing several datasets as well as measurement techniques, therefore highlighting the possibility of

misleading conclusions in the case when methodological factors are neglected. They gave practitioners

and researchers instructions to guarantee the validity of metric-based studies, therefore helping to improve empirical

approaches in software engineering [7].

In 2020, Zagane et al. used software code metrics as features and investigated the application of deep learning

(DL) approaches for software vulnerability detection. Their study emphasizes how well deep neural networks

(DNNs) combine with automatically generated code metrics to efficiently predict vulnerabilities. The work shows

how DL could find patterns in code that conventional methods could overlook through combining advanced learning

models with static code properties. Under the framework of vulnerability prediction, the authors underlined the

importance of feature extraction as well as representation and the use of software measurements as inputs for training

neural networks (NNs) [8].

In 2021, Jiang et al. published Cure, a code-aware neural machine translation (NMT) model meant for

automatic program repair (APR). They underlined the limits of conventional NMT-based APR methods, which may

ignore syntactic and structural constraints particular to programming languages. Through introducing code-aware

elements including Abstract Syntax Tree (AST) representations and tokenized code inputs to improve the model's

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

48

understanding regarding program structure, Cure addresses such challenges. Leveraging both contextual knowledge

and semantic correctness, they made notable increases in repair accuracy [9].

In 2022, Duque-Torres et al. addressed a fundamental difficulty in metamorphic testing (MT) by investigating with

the use of source code metrics for the prediction of the metamorphic relations (MRs) at the method level. They looked

at how predictors for MRs—which are crucial for evaluating programs without an oracle—static code properties

including coupling, complexity, and cohesion might be found. The work shows the viability of using code metrics to

automate and improve MR identification by use of an extensive dataset of code and application of machine learning

(ML) methods [10].

In 2023, Park et al. suggested a technique to visualize software quality by use of normalizing static code

building information. They sought to organize data for better comparability so that complex quality metrics could be

interpreted more simply. The framework improved knowledge of software properties like complexity and

maintainability. Their efforts expanded on earlier studies in software visualization and static analysis, offering tools to

help with quality assessment decision-making. The authors provide a useful approach for enabling developers to make

software quality measurements more actionable through combining table normalization with visualization methods.

Their approach sought to raise awareness of and application for quality indicators in software development projects

[11].

In 2024, Mashhadi et al. projected bug frequency by means of static analysis as well as source code metrics. Their

research included measures like code complexity and churn to enhance earlier work on defect prediction. They showed

how this analysis might help to estimate severity more precisely, therefore offering a better basis for bug effect

prediction. They developed on earlier research using statistical approaches and ML to predict defects. The authors

demonstrated how valuable it is to combine analysis methods with static code features. Their results underlined the

need of better models in the prediction of software quality. By more consistent severity assessments, they helped to

improve software defect management [12]. In the same year, Huang et al. enhanced comment generating models by

means of bytecode for extracting more semantic information from code. As a low-level, machine-readable

representation, bytecode allowed the model to record information that higher level code analysis would overlook. The

method improved program behavior by means of control flow graphs as well as transformer-based NNs. Emphasizing

the need of obtaining more detailed knowledge from code, their approach greatly raised the accuracy and relevance of

produced comments. Their use of bytecode for improved semantic extraction advanced automated software

documentation. They demonstrated how more accurate software documentation could result from lower-level code

representations enhancing comment [13].

In 2025, Jiang et al. enhanced code summarization prompt tuning by means of meta-data derived from codes. To direct

the model in producing more accurate summaries, their approach included more meta-information including variable

names as well as function signatures. Using such details will help the model for extracting more semantic insights,

thereby increasing the relevance regarding the produced summaries. Emphasizing the need of information extraction

from code, the study focused on how meta-data clarifies context and program behavior for the model. Building on

earlier code summarizing studies, this study shows that meta-data greatly enhances the quality of summary. The

method underlined the need of more accurate code interpretation depending on richer, context-aware information.

Their results offer a new path for improving automated code summarization tools [14].

By means of a comprehensive, automated solution which extracts important software information and metrics like

documentation quality, code complexity, dead code detection, and memory consumption, the suggested CodeLens

tool presents a major breakthrough over current software analysis tools. CodeLens distinguishes itself from other tools

that concentrate on particular elements or support limited programming languages through providing broad

application, supporting both Java and Python, which qualifies for a wide range of software projects. Moreover, its

real-time feedback features and simple interface let programmers quickly evaluate code quality and guide decisions

all through the software development life. Different from other solutions, such special combination of features puts

CodeLens as a potent instrument in the continuous endeavor to enhance decision-making in software development.

3. SOFTWARE INFORMATION EXTRACTION

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

49

Modern software engineering methods depend much on the extracted information from software codes. Scholars and

organizations could better understand the behavior, structure, and evolution of a system through

systematically examining and deriving significant insights from code [15]. This technique helps to find code smells,

uncover hidden dependencies, and spot patterns influencing maintainability and software quality. Such extracted

information is important since it can guide decision-making made at several phases of the software development life

[16]. For performance improvement, debugging, and coding standard compliance, for example, both dynamic and

static code analysis approaches offer essential data. Comparably, mining code repositories track historical trends to

support predictive maintenance and better resource allocation [17][18]. Furthermore, the extracted insights helps to

solve new issues in the software field including controlling technical debt, enabling automated refactoring, and

guaranteeing code consistency in large-scale systems[19]. Machine learning (ML) as well as data-driven techniques

have greatly opened the possibility to use acquired code information, thereby supporting intelligent recommendation

systems as well as predictive analytics. Basically, the information extraction and use from software code enable

developers, maintainers, and researchers to improve software reliability, adaptability, and

scalability, thus guaranteeing long-term sustainability in an always changing technological landscape [20][21].

Figure 1 shows a three-main phase cycle of constant improvement for software split into planning, decision-making,

and information extraction. The process starts in the planning phase, in which case aims, problem-solving, and criteria-

establishing define the extent. Procedures defined in this phase define standards, techniques for data collecting,

analysis, and feedback systems. The information extraction phase follows, in which data is acquired by methods of

recording and storage together with procedures of review and improvement. The collected data then is examined to

create reports and show results. The last phase, decision-making, emphasizes on improving the process by assessing

results and development, thereby facilitating well-informed choices that advance it even more. This cycle stresses an

iterative approach meant to enhance procedures constantly and reachable, meaningful improvements.

Fig. 1. Software improvement cycle

 Extracted information from software code is critical for computing various software metrics, which are quantitative

measures that provide insight into the quality, and performance of a codebase [22]. Extracting these metrics allows

developers to identify improvement areas and make data-driven decisions. Software measurement is a progressing

cycle where information on the cycle of product improvement and its items are recognized, gathered and examined

for the purpose of comprehending and screening the cycle and its items and to give valuable data for the purpose of

improving the cycle and its products [23]. Without estimation, developer can’t make quality programming, for

accomplishing fundamental administration goals of the assessment, improvement, and cycle changes, estimation is

necessary[24]. The properties of good measurements include:

● Reliability: The yield of estimation cycle should be accurate. In addition to that, comparative aftereffects of
the estimation cycle extra time and across the circumstances [25][26].

● Sensitivity: in a case where there is an event or trigger, the estimating component uncovers the changeability
in the reactions [27][28].

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

50

● Validity: The measurement process tests what it professes to calculate [29][30].

4. METHODOLOGY

The methodology outlines the systematic approach employed to design, develop, and validate the proposed automated

tool (CodeLens) for software information extraction. This process began with identifying key metrics critical for

assessing software quality and its importance as illustrate in table 1 including:

1- Lines of Code (LOC): Total number of lines in the code, including comments and blank lines.

2- Comment Lines: Number of lines containing comments in the code.

3- Function Count: Total number of functions or methods in the code.

4- Code Complexity: Number of independent execution paths in the code.

5- Documentation Ratio: Ratio of comment lines to total lines of code.

6- Memory Usage: Memory consumed by the code during execution.

7- Nesting Depth: Maximum depth of nested structures like loops and conditionals.

8- Duplication Ratio: Percentage of duplicate code in the project.

9- Class Count: Number of classes defined in the codebase.

10- Dead Code Detection: Identifies code that is not referenced or executed during program execution.

Fig. 2. CodeLens methodology

The tool steps to analysis and parse code illustrate in the Figure 2. After building the code of tool, the interface

integrated with the code to make the tool more simple and visual to the user which contain the Browse and

Extract Information button, in addition to eleven edit box one that show path of chosen file and the other ten

for show result of extracted information as shown in figure (3)and (4). When clicked buttons including:

● Browse: Opens a file dialog to select a file and displays the file path in the first edit box.

● Extract Information: Simulates analysis of the chosen file and displays the result in the others edit boxes.

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

51

Table I. Code metrics covered by CodeLens tool.

No. Metric Type Importance Implementation Phase Benefit From It

1. Lines of Code
(LOC)

Code Size Measures the size of the
code and reflects its

complexity.

Development,
Maintenance

Estimate the effort required for maintenance
and development.

Estimate project cost.

2. Lines of
Comments

Documentation Measures the extent of
code documentation.

Development,
Maintenance

Improve documentation quality and reduce the
time required to understand the code.

A high percentage of comments reflects quality

documentation.

3. Number of
Functions

Code Modularity Measures the number of
functions or methods in the

code.

Development,
Maintenance

Determine the reusability and maintainability of
the code.

A large number of functions may indicate

excessive modularization.

4. Code

Complexity

Complexity Measures the number of

execution paths in the

code.

Development,

Maintenance

Identify the complex parts of the code that need

refactoring.

High complexity means difficulty in testing and
maintenance.

5. Documentation

Ratio

Documentation Measures the ratio of

comments to total lines of
code.

Development,

Maintenance

Improve documentation quality and reduce the

time required to understand the code.
A low ratio reflects poor documentation.

6. Memory Usage Performance Measures the amount of

memory used during code

execution.

Testing, Maintenance Improve code performance and reduce resource

usage.

High memory usage may indicate performance
issues.

7. Nested Depth Complexity Measures the level of

nesting in the code.

Development,

Maintenance

Identify the complexity of the code and

difficulty in understanding it.
High nesting depth means difficulty in

maintenance.

8. Duplicate Code

Ratio

Reusability Measures the percentage of

duplicated code in the
project.

Development,

Maintenance

Improve code reusability and reduce its size.

Duplicated code increases maintenance
difficulty.

9. Number of

Classes

Code Structure Measures the number of

classes in the code.

Development,

Maintenance

Understand the structure of the code and its

complexity.

A large number of classes may indicate

excessive complexity.

10. Dead Code

Detection

Optimization

Detect the dead code Testing,

Maintenance

 makes the codebase cleaner and easier to

understand.
Optimizes memory usage by removing unused

entities.

5. Case study

The case study showcases the practical use of the Codelens tool in real-world scenarios, demonstrating its versatility

across various software projects. In this study, the Codelens tool is applied to two popular open-source software

repositories obtained from GitHub: Flask (a Python web framework) and JUnit (a widely used testing framework in

Java). These repositories were chosen due to their widespread usage and complexity, providing a robust testing ground

for the CodeLens tool. The tool has two basic steps including:

● Browsing the Code in CodeLens: Following software file downloads, they have been imported into the
CodeLens tool for analysis. The tool was set to search the code, compile important statistics on the codebase
like Lines of Comment (LC), Lines of Code (LOC),Code Complexity (CC), and more.

● Extracting Information: The tool's central ability was applied for extracting from the code comprehensive
metrics. Clicking the "Extract Information" button allowed the tool to process the code and show the findings
in an easily interpretable format, therefore enabling the discovery of important elements including unused
functions, documentation coverage, and code duplication.

 Figure (3) and (4) shows the result of flask and juint software respectively.

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

52

 Fig. 3. Extracted Information of flask software Fig. 4. Extracted Information of junit software

6. Results and Discussion

For assessing the overall quality regarding software projects, the Codelens tool turned out to be a useful tool. Easy

identification of possible problems, like unused code, code duplication, and too complex code was made possible by

the capacity for extracting important metrics and present them in a complete form. Applying this tool to real-

words projects like JUnit and Flask shows clearly that it could be used in a broad range of software development

environments to guarantee code quality and maintainability. Using color gradients, Figure (5) shows the degree of

connection between certain code metrics whereby the colors depict different degrees of interaction between these

metrics. With brighter colors denoting a more important association, the heatmap shows the degree of the

relations between the measures. Lighter colors suggest less connection. Those relations could provide insightful

analysis of how various metrics interact and how changes to one metric might affect other measures. The

relations among the collected data including:

• Lines of Code (LOC) and Lines of Comments (LC):

There is typically a positive correlation between the number of lines of code (LOC) and the number of

lines of comments (LC). In well-written code, it is essential to maintain an appropriate balance of

comments alongside the code to properly document the functionality and logic.

• Lines of Code (LOC) and Number of Classes (NC):

A positive relationship is usually observed between the number of lines of code and the number of classes
(NC). As the codebase grows in size, it generally results in an increased number of classes, which reflects
the structural complexity of the code.

• Number of Functions (NF) and Duplicate Code Ratio(DCR):

The number of functions (NF) can be associated with the duplicate code ratio (DCR). In some cases, an
increased number of functions may lead to higher code duplication, especially if several functions perform
similar tasks, leading to redundant code.

• Dead Code Detection and Number of Classes (NC):

Dead code detection is often related to metrics such as the number of functions and the number of classes.
Unused or redundant functions and classes contribute to dead code, which can increase the overall size of
the codebase without adding any functional value.

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

53

• Documentation Ratio (DR) and Code Complexity (CC):

The documentation ratio (DR) may indirectly help reduce code complexity (CC). Well-documented code
enhances its readability and maintainability, thereby making complex code easier to understand and
modify.

By understanding these interdependencies, developers can better balance the metrics to optimize code quality,

maintainability, and efficiency. Through the case study, it becomes clear that the CodeLens tool is an invaluable

resource for developers looking to improve efficiency and cleanliness of their codebases. By identifying areas for

refactoring and optimization, developers can make more informed decisions about how to streamline their code, reduce

technical debt, and maintain a high standard of quality throughout the software development lifecycle. The figure (6)

illustrates visually the estimated impact of each extracted information from code on decision-making in software

development life cycle.

 Fig. 5. The correlation between Extracted Information from code Fig. 6. Impact of Extracted Information on Decision-Making

7. Competitive Comparison of the Proposed Tool

There are many tools that help developers evaluate and analyze software quality. Table 2 provides a detailed

comparison between the proposed tool and the top tools currently available in the market for this purpose.

The proposed tool (CodeLens) distinguishes itself by employing development metrics which help programmers

comprehend their code and make improved choices. Different metrics used in various software development phases

significantly influence code size documentation modularity complexity performance reuse structure and optimization.

This tool excels by integrating various software metrics which help developers achieve thorough understanding of

their code. Software developers benefit from this tool because it consolidates various insights which streamline their

decision-making tasks while also supporting software evaluation and enhancement.

8. Conclusion

Modern software engineering methods revolve around extracting information from software code. Using automated

tools, advanced analysis tools, and visualizations helps developers make better decisions which produces

maintainable, robust and high-quality software. Using such techniques not just simplifies the development process,

yet helps teams to anticipate and handle challenges early on. Moreover, including such tools into the software life

promotes a culture of ongoing development in which data-driven insights and real-time feedback drive innovation.

Setting the basis for long-term success in a competitive market, teams could successfully minimize risks early,

prioritize efforts, and guarantee that the final product satisfies business and technical objectives through concentrating

on metrics that matter. With the intention of obtaining a better idea what's happening, evaluating any features

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

54

regarding a software product, estimating the quality of software and lastly track the project for ensuring that

everything is under control, the suggested tool CodeLens collecting data on some features of software products. Future

studies can investigate enhancing the tool's capacity to support other programming languages and frameworks, hence

facilitating more general adoption over several development environments. Furthermore improving its value would be

including ML methods for predicting possible code vulnerabilities and optimization opportunities.

Table II. Comparison between the proposed tool and the top tools available in the market

No. Tool Features Strengths Weaknesses

1. SonarQube
Static code, analysis, bug detection,

security vulnerabilities, and code smells.

Supports multi-language, easy to use,

integrates with CI/CD tools.

Requires initial setup, slow for

large projects.

2. ESLint

Analyzes JavaScript/ TypeScript code,

identifies errors, and auto-fixes formatting
issues.

Lightweight and fast, highly

customizable, supports auto-fixing.

Limited to JavaScript and its

variants, requires initial
configuration.

3. Checkmarx
Security-focused code analysis, detects

vulnerabilities.

Strong focus on security, supports multi-

language, integrates with development
tools.

Expensive, user interface can

complex.

4.
PMD

Static code analysis for Java, JavaScript,
XML, and more.

Open-source, supports multi-language,
easy to integrate.

Limited in detecting complex

issues, requires manual

configuration.

5. Veracode
Security-focused code analysis, detects

vulnerabilities.

Supports multi-language, provides

detailed reports, integrates with CI/CD.

Expensive, can be slow in

analysis.

6. CodeClimate
Code quality analysis, measures

complexity, and manages technical debt.

User-friendly interface, integrates with

GitHub, supports multi-language.

costly for large projects, limited

security analysis.

7.
Coverity

Static code analysis, detects bugs and
security vulnerabilities.

Accurate in detecting issues, supports

multi-language, integrates with

development tools.

Expensive, requires complex
setup.

8. Bandit Security-focused code analysis for Python.
Open-source, lightweight and fast,

focuses on Python security.

Limited to Python, does not

support other languages.

9. Codacy
 Code quality analysis, detects errors, and

manages technical debt.

User-friendly interface, integrates with

GitHub/GitLab, supports multi-language

 costly for large projects, limited

security analysis.

10.
CodeLens
(my tool)

Static code analysis based on 10 key
metrics.

Free and open-source, user friendly

interface, Supports Java and Python,

Provides comprehensive code quality
analysis, detecting common issues like

dead code and high complexity, Easy to

integrate with development tools.

limited security analysis.

Acknowledgment

The author is very grateful to University of Mosul/ College of Computer Sciences and Mathematics for their provided

facilities, which had been helpful in improving the quality of this work.

References

[1] M. Kuutila, M. Mäntylä, U. Farooq, and M. Claes, "Time pressure in software engineering: A systematic

review," Inf. Softw. Technol., vol. 121, p. 106257, 2020.

[2] F. Provost and T. Fawcett, "Data science and its relationship to big data and data-driven decision making," Big

Data, vol. 1, no. 1, pp. 51-59, 2013.

[3] S. Chowdhury, R. Holmes, A. Zaidman, and R. Kazman, "Revisiting the debate: Are code metrics useful for

measuring maintenance effort?," Empir. Softw. Eng., vol. 27, no. 6, p. 158, 2022.

[4] T. Maaitah, "The role of business intelligence tools in the decision making process and performance," J. Intell.

Stud. Bus., vol. 13, no. 1, pp. 43-52, 2023.

[5] F. Moriconi, "Improving software development life cycle using data-driven approaches," PhD diss., Sorbonne

Univ., 2024.

[6] D. T. G. Neto, T. V. Brugni, F. C. Galdi, and J. C. R. Prates, "EVA and EBITDA: How such metrics can help

in the investment decision-making process," Adv. Sci. Appl. Account., pp. 009-021, 2024.

https://doi.org/10.25195/ijci.v51i2.550

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 51, No. 2, 2025, pp. 46-55

DOI: https://doi.org/10.25195/ijci.v51i2.550

Print ISSN: 2313-190X, Online ISSN: 2520-4912

55

[7] M. A. A. Mamun, C. Berger, and J. Hansson, "Effects of measurements on correlations of software code

metrics," Empirical Software Engineering, vol. 24, pp. 2764–2818, 2019. doi: 10.1007/s10664-019-09714-9.

[8] M. Zagane, M. K. Abdi, and M. Alenezi, "Deep Learning for Software Vulnerabilities Detection Using Code

Metrics," IEEE Access, vol. 8, pp. 74562-74570, 2020. doi: 10.1109/ACCESS.2020.2988557.

[9] N. Jiang, T. Lutellier, and L. Tan, "Cure: Code-aware neural machine translation for automatic program repair,"

in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1161-1173, May 2021.

doi: 10.1109/ICSE.2021.

[10] A. Duque-Torres, D. Pfahl, C. Klammer, and S. Fischer, "Using source code metrics for predicting metamorphic

relations at method level," in 2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pp. 1147-1154, Mar. 2022.

[11] C. Park, S. Y. Moon, and R. Y. C. Kim, "Quality Visualization of Quality Metric Indicators based on Table

Normalization of Static Code Building Information," KIPS Transactions on Software and Data Engineering,

vol. 12, no. 5, pp. 199–206, May 2023.

[12] E. Mashhadi, S. Chowdhury, S. Modaberi, H. Hemmati, and G. Uddin, "An empirical study on bug severity

estimation using source code metrics and static analysis," Journal of Systems and Software, vol. 217, p. 112179,

2024. doi: 10.1016/j.jss.2024.112179.

[13] Y. Huang, J. Huang, X. Chen, and Z. Zheng, "Towards improving the performance of comment generation

models by using bytecode information," IEEE Transactions on Software Engineering, 2024. doi:

10.1109/TSE.2024.3523713.

[14] Z. Jiang, D. Wang, and D. Rao, "Leveraging meta-data of code for adapting prompt tuning for code

summarization," Applied Intelligence, vol. 55, p. 211, 2025. doi: 10.1007/s10489-024-06197-0.

[15] M. A. Akbar, K. Smolander, S. Mahmood, and A. Alsanad, "Toward successful DevSecOps in software

development organizations: A decision-making framework," Inf. Softw. Technol., vol. 147, p. 106894, 2022.

[16] K. Li, A. Zhu, P. Zhao, J. Song, and J. Liu, "Utilizing deep learning to optimize software development

processes," arXiv preprint arXiv:2404.13630, 2024.

[17] S. M. D. A. C. Jayatilake and G. U. Ganegoda, "Involvement of machine learning tools in healthcare decision

making," J. Healthc. Eng., vol. 2021, no. 1, p. 6679512, 2021.

[18] B. S. Mostafa and F. A. Alsalman, "Application project task scheduling using dolphin swarm technology,"

Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, pp. 549-557, 2021.

[19] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana, "A systematic literature review on technical

debt prioritization: Strategies, processes, factors, and tools," J. Syst. Softw., vol. 171, p. 110827, 2021.

[20] J. Lin et al., "How can recommender systems benefit from large language models: A survey," ACM Trans. Inf.

Syst., 2023.

[21] A. A. Abdulmajeed, M. A. Al-Jawaherry, and T. M. Tawfeeq, "Predict the required cost to develop software

engineering projects by using machine learning," J. Phys.: Conf. Ser., vol. 1897, no. 1, p. 012029, May 2021.

[22] T. Karanikiotis and A. L. Symeonidis, "Towards understanding the impact of code modifications on software

quality metrics," arXiv preprint arXiv:2404.03953, 2024.

[23] F. Moriconi, "Improving software development life cycle using data-driven approaches," Ph.D. dissertation,

Sorbonne Univ., 2024.

[24] F. Lejarza, S. Venkatesan, and M. Baldea, "Rolling horizon product quality estimation and online optimisation

for supply chain management of perishable inventory," Int. J. Prod. Res., pp. 1-24, 2024.

[25] K. Sahu, F. A. Alzahrani, R. K. Srivastava, and R. Kumar, "Evaluating the impact of prediction techniques:

Software reliability perspective," Comput. Mater. Continua, vol. 67, no. 2, 2021.

[26] A. Asmaa’H and I. A. Saleh, "Develop approach to predicate software reliability growth model parameters

based on machine learning," Iraq J. Comput. Inform., vol. 50, no. 2, pp. 110-121, 2024.

[27] V. Cortellessa and D. Di Pompeo, "Analyzing the sensitivity of multi-objective software architecture

refactoring to configuration characteristics," Inf. Softw. Technol., vol. 135, p. 106568, 2021.

[28] Z. K. Al-Isawi and N. A. Al-Saati, "Selecting the best control strategies for risk management using swarm

intelligence," in Proc. Al-Sadiq Int. Conf. Commun. Inf. Technol. (AICCIT), 2023, pp. 310-313.

[29] A. H. Ali and N. N. Saleem, "Design and implementation of a testing tool (DFT-Tool) based on data flow

specification," Comput. Integr. Manuf. Syst., vol. 29, no. 7, pp. 1-14, 2023.

[30] K. S. Sieber and J. G. García-Donas, "Population affinity estimation on a Spanish sample: Testing the validity

and accuracy of cranium and mandible online software methods," Legal Med., vol. 60, p. 102180, 2023.

https://doi.org/10.25195/ijci.v51i2.550
https://doi.org/10.1007/s10664-019-09714-9
https://doi.org/10.1109/ACCESS.2020.2988557
https://doi.org/10.1109/ICSE.2021
https://doi.org/10.1016/j.jss.2024.112179
https://doi.org/10.1109/TSE.2024.3523713
https://doi.org/10.1007/s10489-024-06197-0

