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Abstract:
In this paper, introduced new iterative four step scheme in Banach spaces by used
four mappings to convergence common fixed point, relied on two classes of
mapping nonexpansive mapping and quasi nonexpansive mapping, we assumed
T,, T; is nonexpansive mappings and 15, T, is quasi nonexpansive mappings,
proved some convergence theorems to the common fixed point based on so
fundamentals for Banach spaces.

Keywords: Common fixed point, quasi nonexpansive mappings, iterative
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1-Introduction

Suppose Y is nonempty subset of a Banach spaces X, the mappings T3, T,
T;,T,:Y — Y and a point s €Y is fixed point of T where Ts = s in general
Banach spaces. Fixed point theory has many application in various fields
therefore it has been a flourishing area of research[1]. Nowadays, a vigorous
research activity is developed in the area of numerical reckoning fixed point for
suitable classes of nonlinear operators, see [2][3][4][5], ones the existence of
fixed point problems analytic is not easy and thus the need to consider and
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approximate solution is pertinent [6], Luaibi and Abed in (2021) studied the
existence theorem for Voltera type equation fixed point theorem in G-metric
spaces with some application [7], Mannan et al introduced applications of fixed
point theorem Banach spaces for mapping defined on metric spaces with graph or
partial order [8], Ullah and Arshad propose a new three step iteration scheme to
convergence fixed points for Suzuki generalized non expansive mapping for
uniformly convex Banach spaces [9], many researchers have discussed topic of
the common fixed point, some of them worked on the common fixed point by
using multivalued mapping in modular function spaces[10][14], and other worked
in Banach spaces [11].

In our previous research[11], we studied the iterative scheme

let T:E — E, and E nonempty convex subset of Banach spaces, here, we
introduced the sequence {x,,} by the algorithm following.

x, EE
h"]‘l = (1 - Jgﬂjx‘]‘l + JET?.TX‘]‘I
Yn =Thy,

Jo = (1= a)y, + a, Ty,
fa+1 =T, meN
where {a, }and {£,.} in (0,1)

Now, Present the iterative algorithm that will deal with in this paper
letTy, T5, T3, T,: Y — Y, and Y nonempty convex subset of Banach spaces, here,
we introduced the sequence {x,,} by the algorithm following.

x, €Y
h"n = (1 - ﬁﬂ]xﬂ + ﬁﬂTlxﬂ
.}Jn = TE h"]‘l

Jo =1 —a)y, +a, Ty,
x‘]‘l+1 = Téjn’ HEN

where {a, }and {5,,} in (0,1)

1)
2-Preliminearies
In this section review some important definitions and lemmas that we can use in
the results

Definition 2-1 [6]:Let T: E — E' a mapping and E is nonempty subset of Banach
space said to be nonexpansive mapping if
ITx —Tyll = llx —yll

Definition 2-2 [12]:LetT:E — E a mapping and E is nonempty subset of
Banach space said to be gausi nonexpansive mapping if there exist s fixed point
and

ITx — sl = llx — sl|
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Note that: Every nonexpansive mapping with fixed point is gausi nonexpansive
mapping but the convers is not true for example.

Example 2-3: Let T:E — E and E is nonempty subset of Banach space the

function
(0 ifx#2
Tx = {1 ifx =2

T is quasi nonexpansive mapping but not nonexpansive since if x =1.9,y =2
then [Tx —Tyl|=[[0—1]|=1<||1.9—-2]|=0.1.

Definition 2-4 [6]: LetT: E — E is mapping, a sequence {x,} in E is said to be
Fajer monotone if ||x,..1 — sll < |lx,, — sl| for all s fixed point.

Lemma 2-5 [13]: Let X satisfy uniformly convex Banach spaces and let {t,} in
(0,1) be bounded away from 0 and 1, if there exists m = 0 such that

lim sup,,_...p(x,) < mlimsup,_..p(y,) =m

And lim,,_, . p(t,x, + (1 —t,)v,) =m, then lim, . p(x, —v,) =0

Lemma 2-6 [14]

Let {p.} n=1, {0} neq1and {{,,} =1 nonnegative sequence such that

P+ = (1 —86,)p, + 7,

Where {8,,} sequence in (0,1) and {{,,} sequence in real number such that
.0, <ooand X3, {, < o, then lim,_.. p, is exists.

Definition 2-7 [15] : A Banach space X is said to be uniformly convex if
Y, () = inf{1 — ||t—v :x,Y €EB,,|[x—yl|l =€} =0 forall 0 <& <=2 say that

uniformly convex Banach spaces has power P and P = 1 there exists constant ¢
such that ¥, (€) = cePforall 0 < e < 2.

Definition 2-8 : Let X satisfy uniformly convex Banach spaces, let Y be
nonempty convex subset of X, letT;:Y — ¥ said to be satisfy condition (1) if
there exsist a nondecreasing function ¢: [0,20) — [0,22) such that ¢(0) = 0 and
¢(t) = 0 for all tin [0,o0) and ||x — T;x|| = ¢ (dist(x,N F,(T;)) for all x € E,
where dist(x,n E,(T;)) denotes the distance from x to F,(T;).

3- Main Rustles

In our previous research[11], we introduced the sequence {x,} by the
algorithm following.
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let T:E — E, and E nonempty convex subset of Banach spaces, here, we
introduced the sequence {x,,} by the algorithm following.

x, EE
h"]‘l = (1 - Jgﬂjx‘]‘l + JET?.TX‘]‘I
Yn = Thy

Jo = A =)y, + @, Ty,
fa+1 = T]n, neN
where {a,}and {£,.} in (0,1)

In this section will study some convergence results with the iterative scheme in
equation (1) as follows

let Ty, T, I5,T,:Y — ¥, and Y nonempty convex subset of Banach spaces, here,
we introduced the sequence {x,,} by the algorithm following.

x, €Y
h"n = (1 _ﬁn]xn + ﬁﬂTlxﬂ.
.}n = TE h"]‘l

Jo = (1 —ay)yn + a,Tsy,

x‘]‘l+1 = Téjn’ HEN

where {a, }and {5,.} in (0,1), where Ty, T; is nonexpansive mappings and T, T
IS quasi nonexpansive mappings.

Theorem 3-1: Let X satisfy uniformly convex Banach spaces, let Y be nonempty
convex subset of X, let Ty, T, T5,T4:Y — Y where Ty, T3 is nonexpansive
mappings and T5, T, is quasi nonexpansive mappings. and x,, in ¥ define by (1)
then lim,,_ . |[x,, — s|| exists for all s fixed point of T in'Y.

Proof: Ty, T3 is nonexpansive mappings and T, T, is quasi nonexpansive
mappings

By definitions (2-1),(2-2), equation (1), and convexity

s = sll = ITo ) — sl

< I —sli
s = sll < llJn — sl
2)

Also, I, —sll = I(1 — e, )y, + 2, Toy, — sl

= (A -a)lly, = sll + &, lITy, — sl
Hence [Ty, — sl = Iy, — sl
Substituting in equation we get

Wn = sl < lly, — sl 3)
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By the same way,
"yn - S" = "Tzhn - S"
< [[h, — sl

ly — sll < lIh, = sl
(4)

Similarity,
lh, = sll = I(X = B)x,, + B, Tyx,, — sl
= (1 - BIllx, — sll + BTy x, — sl
Hence ||Tyx, —s|| = ||lx, —sl|
Substituting in equation we get

lh, = sll < llx, — sli

(5)
By (2),(3),(4) and (5) lIx+1 — sl = |, — sl
And by Lemma 2-6 then lim,,_._.|[x,, — s||exists

Theorem 3-2: Let X satisfy uniformly convex Banach spaces, let Y be nonempty
convex subset of X, let Ty, T, T5,T,:Y — Y where Ty, T3 is nonexpansive
mappings and T, T, is quasi nonexpansive mappings. and x,, in ¥ define by (1) is
Fajer monotone.

Proof: By Theorem 3-1
T,, T5 is nonexpansive mappings and T, T, is quasi nonexpansive mappings
By definitions (2-1),(2-2), equation (1), and convexity
lI¢n 41 — sll = ITe ) — sl

< I/ — sl
I 41 — sll = I, — sl
Also, I, = sll = (1 — ey, + a, Ty, — sl

= A —-a)lly, —sll + @, lITy, —sli

Hence [Ty, — sl < lly, — sl
Substituting in equation we get
I/ — sll < lly,, — sl
By the same way,
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Iy, — sll = Tz Ry, — sl

= |k, —sll
Iy — sll = llh,, — sl
Similarity,
lh, = sll = [I(1 = B)x, + BrTix, — sl

= (- B)lx, — sl + BTy x, — sl

Hence [ITyx, —sll = llx, —sl|
Substituting in equation we get
lr, — sl = llx,, — sl
41 — sl = llx,, — sl
And by Definition 2-4, x,, in E define by (1) is Fajer monotone.

Theorem 3-3: Let X satisfy uniformly convex Banach spaces, let Y be nonempty
convex subset of X, let Ty, T, T5,T,:Y — Y where T;, T3 is nonexpansive
mappings and T5, T, is quasi nonexpansive mappings. and x,, in ¥ define by (1)
then lim, .. [|x,, — Tx,ll = 0.

Proof: By Theorem 3-1 lim,, ... [|x,, — s|| exists

Let lim,_..|lx, —s|| = k such that k = 0 (6)
By (5) and (6)

Iy, —sll < llx, —sll =k (7)
llp 41 — sll = k = lim,,_o.llx, — sl

By (2)

lps2 — sll = ITs], — sl < Il — sl

By (3)

I/ = sll < lly, — sl

By (4)

Iy, — sl < llh,, — sl

Then (X1 — sl < [[h, = sll = k < ||, — s]| (8)
By (7) and (8) lim,,_...||h,, — sl = k )

T,, T5 is nonexpansive mappings and T, , T, is quasi nonexpansive mappings
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Ty, — sll < llx,, — sl| (10)

lim,_...||T; x,, — sl <lim,,_._.||x,, — sll

So, lim,,_._||Tyx,, —s|| =k (11)
Since lim,,_...||h,, — s|| = k then

lim, . |[(1 —ea,)x, +a,T;x, —s||=k

lim, . ||(1 —a,)x, +a,T;x, —s||=k

limy oo [1(1 — @) (3 — ) + iy (Ty % — )| = k (12)
By (6),(11) , (12) and by using Lemma 2-5 then lim,, . [|x,, — Tx,|| = 0..

Theorem 3-4: Let X satisfy uniformly convex Banach spaces, let Y be nonempty
convex subset of X, let Ty, T, T5,T,:Y — Y where T;, T3 is nonexpansive
mappings and T, T is quasi nonexpansive mappings. and x,, in ¥ define by (1),
Xy IS unigue common fixed point in T; then x,, p-strongly convergence to fixed
pointof T; inY.

Proof: T;, T; is nonexpansive mappings and T,, T, is quasi nonexpansive
mappings

By definitions (2-1),(2-2) and, convexity

"xn+l - xo" = "Tq- n xo”
= |U‘]‘1 - xﬂ"
e — x5l = ) — 26l (13)

Also, [l = xoll = (1 — @)y, + @ Ty — %ol
= (A —a)lly, —xll+ @, 1Ty, — %l
Hence I3y, — Xoll < [l — %l
Substituting in equation we get
I/ — %o ll = Ny — %ol (14)
By the same way,

ly — xoll = T3 Ay, — %o

= [lhn — %ol
1y — %ol < llhy, — %ol (15)
Similarity,
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lhy = xoll = 11 = Br)yn + BnTixy — Xoll
= (1 - Bllx, — xll + B, lITyx, — xo
Hence [ITyx, — x5l < [lx, — %l
Substituting in equation we get
IRy, — xoll = |2, — %ol (16)
By (13),(14),(15) and (16)
2n+1 — X Il < 2y, — ol
Furthermore it
2, — %ol = llx6—1 — %l
Since [lx; — %ol = llxg — %o l, 50 1%, — %ol = [l — %ol
llx, — x,ll = [|0]] = 0, then x,, — x,
In our previous paper[11], we proved strong convergence as follows

Let X satisfy uniformly convex Banach spaces, let E be nonempty convex subset
of X, let T:E — E be generalized (a,[3)-mean nonexpansive mapping and
satisfy (I) condition, x,, in E define by (1), then x,, strongly convergence to fixed
pointof T in E.

Proof: lim,_ . llx, —s|l exists for all s is fixed point, if
lim,,_...|lx, — s|| = 0, nothing to prove,

if lim,,_.llx, —sll=k k=0

since l[x,+1 — sll < ||x, — slI, then dist(x,,,F,(T) < dist,(x,,F,(T))
So lim,,_..dist,(x,,F,(T)) exists, by applying condition (1)

lim,_. . 0(dist (xn F, (_T)) < lim,_., dist]||x, — Tx,|| = 0

Since B(0) = 0, hence lim,,_, . dist(x,, E,(T)) =0

lim,,_.. |1, — sl| exists, then lim,,_...||x,, — E,(T)|| exists and s € E,(T)
Suppose that x,, subsequence of x,,, and u; sequence in F,(T)

||%0, — || = i since lim inf, ., dist(x,, F,(T)) = 0

||:Jr:,_,1+1 —uk” < |lx, —u. |l = i

"uﬁ:+1 — Uy " = ”uﬁ:+1 - x‘]‘l+1" + "xn+1 — Uy "
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1 1
i: 2R+1 + ;
- 1
- Ek—l

[ty —upll — Oas k — o0
u,, is p-Cauchy, E,(T), So, uy is p-converge to F,(T), then [y —s|| — 0
Now,

% = || = ||, — ui|| + llux. — sll, hence, x, converge to fixed point s in
F,(T).

For the purpose of comparing the types of mapping we present the following
theorem.

Theorem 3-5: Let X satisfy uniformly convex Banach spaces, let Y be nonempty
convex subset of X, let Ty, T, T5,T,:Y — Y where T;, T; is nonexpansive
mappings and T, T, is quasi nonexpansive mappings.
Fo=Fo(T))NFo(L)NFo(T3) NFp(T,) =0, and let T3, T3, T; and T, satisfied
condition (Il), and x,, in Y define by (1), then x,, strongly convergence to
common fixed pointof T; in Y.

Proof: : By Theorem 3-1 lim,_..||x, — s|| exists for all s is fixed point, if
lim,_...llx, — s|l = 0, nothing to prove,

if lim,,_.llx, —sll=k k=0

since l[x,+1 — sll < l|x, — slI, then dist(x,,1,N F,(T;) < dist(x,n E,(T,)

So Eimn_mdistp(xw E, (Tl-]) exists, by applying condition (11) and Theorem 3-1
lim,_...0(dist(x,n F,(T;)) = lim,_,, dist|[x, — Tx,|[ =0

Since B(0) = 0, hence lim,,_, ,dist(x,,N F,(T;)) =0

By Theorem 3-1 lim,, .. ||x,, — sl exists, then lim,,_...||x, — E,(T)|| exists and
s € E,(T;)

Suppose that x,,, subsequence of x,,, and u; sequence in F,(T;)

e, —well < 5 since liming, .., dist(x,n F,(T3)) = 0

s, =l < M —ll <

"uk+1 — Uy " = ”uk+1 - xn+1" + "xn+1 — Uy "
1 1

— zFH':L zﬁ.’
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— Ek—l ( )

[ugrs —ugll — O0ask — o0
u,, is Cauchy, E,(T;), So, uy is p-converge to E, (T;), then |[u; — s|| — 0
Now,

| — || = |7, — || + llux — sll, hence, x, converge to fixed point s in
F,(T;).

4-Conclusion

As shown in the above theorems, the iterative scheme in equation (1)
convergence to the common fixed point in Banach spaces, it also approaches the
common fixed point if it is unique as shown in the theorem 3-4, researcher may
prove some numerical example with the iterative scheme given in equation (1),
while it can be used with other classes of mappings or even with usual fixed point
in Banach spaces.
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