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ABSTRACT

In this study, five electrode arrays in 2D imaging surveys were tested through synthetic
model to determine the most successful array in imaging the subsurface shallow targets.
These arrays are Pole-pole, Pole-dipole, dipole-dipole, Wenner and Wenner-Schlumberger.
The numerical modeling was made through two shallow walls buried in clayey deposits. The
results showed that the dipole-dipole is the most suitable electrode array when both vertical
and horizontal changes are present in the subsurface. This study indicates that the Wenner-
Schlumberger array might be a good compromise between the Wenner and the Schlumberger
and not with the dipole-dipole arrays in areas where both types of geological structures are
expected, due to the increase of depth function of Schlumberger array with depth, while it
decreases rapidly with depth with the dipole-dipole array. Therefore, it is recommended to use
the dipole-dipole array for shallow investigations and to use Wenner-Schlumberger array in
greater depths.
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INTRODUCTION

The use of geophysical survey techniques can supply an excavation with a “road map” to
subsurface features without disturbing the site. Among all the geophysical methods currently
utilized for shallow investigations such as archeological purposes, resistivity method is the
first to gain popularity. It has been in use for decades in hydrogeoloical, mining, geotechnical,
environmental and engineering investigations. It has also been used for archaeological
investigations since the 1940s and 1950s, (Bevan, 1998).

As a result, advances in field equipment, design capability and computer algorithms led
to the appearance of 2D and 3D resistivity techniques in the 1990s. The 2D resistivity
technique has become one of the most significant procedure for investigating underground
structures including archeological remains (Kemna et al., 2002; Zhou et al., 2004; Ford and
Williams, 2007; Loke et al., 2013; Al-Zubedi and Thabit, 2014, and Negri and Leucci, 2006).
There are 92 electrode arrays used in the electrical resistivity method (Szalai and Szarka,
2008), but the types of these arrays, that are most commonly used in 2D imaging surveys, do
not exceed ten arrays. These arrays are Wenner-Schlumberger, Wenner, dipole-dipole, Pole-
dipole, Pole-Pole, and Multiple gradient arrays (Loke, 2012).

The choice of best array for a 2D imaging surveys depends on different factors, such as
the investigation depth, sensitivity function that is connected with type of structure to be
mapped, vertical and horizontal data coverage and the resolution of the array, in addition to,
the sensitivity of the resistivity meter and background noise level (Loke, 2012). Depending on
these factors, there are many studies carried out to determine which of these arrays respond
best in imaging shallow targets in different situations such as the studies of Zhou et al., 2002;
Seaton and Burbey, 2002, and Dahlin and Zhou, 2004, compared 2D resistivity imaging with
10 electrode arrays depending on different situations of synthetic models. The results of this
comparison indicated a higher resolution and high sensitivity to geologic detail for shallow
investigation offered by the dipole-dipole, Pole-pole and Pole-dipole than Wenner array.

In the present study, we will evaluate these arrays in addition to the Wenner-
Schlumberger arrays made over a synthetic model, then compare the obtained results with
field results derived from several authors to determine the most successful array in defining
shallow targets by 2D imaging surveys.

SYNTHETIC MODEL DESCRIPTION

In order to investigate the capabilities of different electrode arrays in 2D imaging
surveys, one synthetic model representing two walls of buried small room was designed.
Forward modeling was done using the 2D forward modeling software RES2DMOD, made by
Loke (2002).

The forward model is designed with survey line (12 m) long and with the unit electrode
spacing of (0.5 m). The numerical modeling was made through two walls of buried small
room located under electrodes 4 and 8 respectively at a depth of (1.4 m), and extending to a
depth of (3.5 m) with (1 m) width for each one.

The resistivity of the walls is made (5 Qm) buried by clay deposits of resistivity (1 Qm).
The distance between these walls is made (3 m), Fig. (1). However, the top soil that covers
the target is a thin layer (0.3 m) thick with resistivity of (15 Qm).
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Fig.1: A synthetic model of two shallow targets

RUSTLES AND DISCUSSION

Five forward models of the dipole-dipole, Pole-pole, Pole-dipole, Wenner and Wenner-
Schlumberger arrays are created from the synthetic model. The Wenner and Pole-pole surveys
were performed using (8a) and (23a) respectively, while the dipole-dipole, Pole-dipole and
Wenner-Schlumberger surveys were performed with increasing values from (1) to (5n), and
from (1) to (4a) (Fig.2), to provide a higher resolution and maximize the depth of
investigation. Random noise of (2%) was added to the apparent resistivity values of the
dipole-dipole, Pole-pole and Pole-dipole arrays as they have weaker signal strength than that
of Wenner and Wenner-Schlumberger arrays (Dahlin and Zhou, 2004; Loke, 2004 and Chitea
and Georgescu, 2009).

The inverse models were carried out using the RES2DINV ver. 3.59 Software, by
smoothness-constraint inversion and robust inversion options. The smoothness-constraint is
well adapted for areas where the resistivity varies in a gradual manner. This method normally
gives reasonable results if the data contains random or “Gaussian” noise, (deGroot-Hedlin and
Constable, 1990). The robust inversion option (blocky optimization) is used when sharp
boundaries are present. It attempts to find a model that minimizes the absolute values of the
data misfit. In other words, it attempts to minimize the square of the difference between the
observed and the calculated apparent resistivity values of a model, (Claerbout and Muir,
1973; Olayinka and Yaramanci, 2000 and Loke et al., 2013).

The robust inversion gave the best boundary resolution results than the others as the
buried walls have sharp geologic boundaries. So it is used to interpret all resistivity data
except the data obtained by Wenner array, where its inverse model carried out by robust
inversion option doesn’t show any trace of the buried walls, Fig. (3).
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Fig.2: Shows pattern of levels of (n) value from 1n to 5n, and a-spacing from 1a to 4a for
dipole-dipole, Pole-dipole and Wenner-Schlumberger arrays.
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Fig.3: Inverse models of Wenner array data, a) smoothness-constraint,
b) Robust inversion

The inverse model of the dipole-dipole array after five iterations with RMS errors
(0.61%) was very successful in imaging the buried walls, but it is less accurate in imaging the
location of right-hand buried wall that is located between electrodes location (7 — 9) (Fig.4a).
This model reveals and confirms that the dipole-dipole array is more sensitive when the
lateral resistivity variation is encountered, and it is therefore the best choice when mapping
vertical structures, but relatively poor in mapping horizontal structures (Dahlin and Zhou,
2004; Chitea and Georgescu, 2009 and Loke, 2012). However, this array gave low depth of

investigation of (2.69 m).
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Tamssar (2013) evaluated the suitability of different electrode arrays (Wenner,
Schlumberger, Pole-Pole and dipole-dipole) during ERT surveys in Karoo rocks, South
Africa, to image dykes, sills, fault and fractures at different depths (40 — 95 m). The results
indicated that the dipole-dipole array is not recommended for such structures due to its lower
sensitivity to vertical changes in resistivity. On the other hand, a practical comparison that has
been carried out by Abrahem (2013) using the three arrays, of Wenner-Schlumberger,
Wenner, and dipole-dipole, has shown that the dipole-dipole is the best for shallow
investigations. This means that the resolution of this array will decrease rapidly with depth.
Therefore it is the best for shallow investigation.

After eight iterations with RMS errors (5.4%) (Fig.4b) the inverse model of the Pole-pole
array seems insufficient in imaging the buried walls because it gives a distorted image of
locations, extension and width of these structures. But it is very successful in imaging the
depth of these walls. These results confirm that this array has a high sensitivity function near
earth surface, and it is more sensitive to vertical structures and less sensitive to horizontal
structures (buried walls), because it shows the two walls linked together. However, this array
gave the greatest depth of investigation (up to 10.1 m) than other arrays.

An RMS error equal to (0.82%) is obtained after eight iterations. The inverse model of
the Pole-dipole array was insufficient in imaging the buried walls as it gives distorted image
of locations, width, extension and depth of these walls (Fig.4c). This means that the Pole-
dipole array is poor in mapping vertical and horizontal structures such as two buried walls.
However, this array has a good depth of investigation that reaches 4.30 m.

After five iterations with RMS errors of 1.88% (Fig.4d), the inverse model of the Wenner
array is so insufficient to image the buried walls that it gaves distorted image about locations,
width, extension and depth of these walls. This array may have difficulties in simultaneously
imaging both horizontal and vertical structures. These results confirm the theoretical results of
Dahlin and Zhou, 2004 and Loke, 2012. Those authors indicated that the Wenner array is
relatively sensitive to vertical changes in the subsurface resistivity. Furthermore, these results
don't agree with the practical results of Mihai (2013).

With an RMS error of (0.35%) obtained after seven iterations (Fig.4f), the inverse model of
the Wenner-Schlumberger array is successful in imaging the buried walls, especially with
increasing depth. This means that the sensitivity function of this array increases with depth
and decreases near earth surface, as it starts by Wenner and ends with Schlumberger array.
Therefore, the apparent resistivity measurements will be more representative to depth function
when the (MN) spacing is decreased, (Al-Ane, 1998). These results do not agree with Loke’s
results (Loke, 2012). This array might be a good compromise between the Wenner and the
dipole-dipole arrays in areas where both types of geological structures are expected. However,
the Wenner-Schlumberger and Wenner arrays gave the same depth of investigation of
(1.98 m).
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Fig.4: Inverse synthetic model for a) dipole-dipole, b) Pole-pole, c) Pole-dipole,
d) Wenner, and f) Wenner-Schlumberger arrays

44



Iragi Bulletin of Geology and Mining Vol.12, No.2, 2016 p 39 —46

CONCLUSIONS
This comparison showed some important results, which are given as follows:

e The robust inversion did not give the best boundary resolution in all cases of the geological
sharp boundaries.

e The dipole-dipole array shows better vertical and horizontal results and therefore it is
better than other arrays in imaging the buried walls.

e The Wenner-Schlumberger array is successful in imaging the buried walls, especially with
increasing depth, than the dipole, Pole-pole, Pole-dipole and Wenner arrays.

e The Wenner-Schlumberger array might be a good compromise between the Wenner and
the Schlumberger and not with the dipole-dipole arrays in areas where same types of
geological structures are expected, due to the fact that depth function of Schlumberger
array increases with depth, while it decreases rapidly with depth in dipole-dipole array.

e The actual depth of buried walls is given by the Pole-pole array, without giving the actual
extension of these walls with depth.

e The Pole-pole array gives the greatest depth of investigation than other arrays that reaches
(10.1 m).

e The Wenner-Schlumberger and Wenner arrays gave the lowest depth of investigation of
(1.98 m).

e This study recommends the use of the dipole-dipole array for shallow targets such as
archeological objects and the use of Wenner-Schlumberger array for more depths because
they give the best images of targets.
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