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ABSTRACT 
 

During the last decades, expansion of settlements into areas prone to landslides in Iraq 

has increased the importance of accurate landslide inventory and susceptibility studies. The 

Landslide inventory map is the spatial distribution of the gravity-induced mass movements. 

Susceptibility mapping provides information about hazardous locations and thus helps to 

potentially prevent infrastructure damages due to mass wasting. This study aims to assess the 

localization and size distribution of potential landslides, in addition to implement selected 

parameters to predict landslide susceptibility using remote sensing techniques in mountainous 

environments. The study covers the Qala Diza area, Kurdistan Region (NE Iraq), within the 

Zagros Fold – Thrust Belt, which includes the High Folded Zone (HFZ), the Imbricate Zone 

(IZ), the Zagros Suture Zone (ZSZ) and the Shalair (Sanandaj – Sirjan) Terrain. 
 

The available reference inventory includes 353 landslides (representing a cumulated 

surface of 35.38 Km
2
) mapped from twelve Quick Bird scenes using manual delineation. The 

landslide types involve rock falls, translational slides, slumps and toppling which have 

occurred in different lithological units. At the beginning, cumulative landslide number-size 

distributions are analyzed using the inventory map. Then, twelve factors, mainly derived from 

a Digital Elevation Model (DEM) of Shuttle Radar Topography Mission (SRTM), as well as 

geological and environmental predicting factors were appraised. Logistic regression 

approaches are used to determine the landslide susceptibility (LS). The areas under the curve 

(AUC) of the prediction rate curve (PRC) for the landslide susceptibility shows that the 

accuracy of the map is about 85%. The results indicate that the Hypsometric Integral (HI), 

lithology and structure are the more significant factors in the detection of potential occurrence 

of landslides in the studied area. 
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               احتوالية الانسلاقات الأرضية باستخذام تقنيات التحسس النائي ونظن الوعلىهات الجغرافية تقذير

 لقلعة دزه والوناطق الوحيطة بها، اقلين كردستاى، شوال شرق العراق
 

 و أحوذ فائق الوعوارالونوي أرسلاى أحوذ عثواى، آزاد عثواى الجاف، دياري علي 

 

 الوستخلص

اصدادث اًٍْت اعذاد فً انعشاق  الآٍَبلاثانخً حخعشض  انًُبطك فً انعًشاًَ انعمٕد الاخٍشة، ٔبغبب انخٕععخلال 

 تانًحخًه سضٍتالأ َضلالبثلانانخٕصٌع انًكبًَ  شائطخحبٍٍ ْزِ ان .تالاسضٍ الاَضلالبثحذٔد  احخًبنٍتخشائط ندشد 

حدُب انخغبئش فً انبٍُت انخحخٍت بغبب الآٍَبساث. حٓذف ْزِ  عهى يبكٍ انخطشة، ٔببنخبنً حغبعذحضٔدَب بًعهٕيبث عٍ الأٔ

عبعٍت نخخًٍٍ احخًبنٍت الاَضلالبث ببعخخذاو حمٍُبث ضبفت انى انعٕايم الأببلإ ،انخٕصٌع انًكبًَ نلآٍَبساث نخحذٌذ انذساعت

ى كشدعخبٌ، شًبل ششق انعشاق ضًٍ لهٍإخشٌج ْزِ انذساعت فً يُطمت لهعت دصة، فً أانخحغظ انُبئً فً انًُبطك اندبهٍت. 

 َطبق انذسص نضاكشٔط. انطٍبث انعبنٍت، َٔطبق انخشاكب ٔانًخصذع ٔانزي ٌخًٍض بُطبق  – َطبق صاكشٔط انًطٕي
 

كى 35.33 يغبحت حغطً) سضًأ اَضلاق 353 عهى انًُطمت ححخٕي
2

 يشئٍت عشش ثُبإ ببعخخذاو ٌذٌٔب ححذٌذْب حى( 

 ٔانخً( rock falls, translational slides, slumps and topplingَٕاع انخبنٍت: )الأ د. حشًم الاَضلالبثبٍش كٌكٕ

سضٍت ٔيٍ ثى حت نلاَضلالبث الأعًم انعلالت انخشاكًٍت بٍٍ انعذد ٔانًغبٔلا أحى . انصخبسٌت انٕحذاث يخخهف فًحذثج 

بفت انى انًعبيلاث اندٍٕنٕخٍت ٔانبٍئٍت. حى ضغهبٓب اعخُبطج يٍ ًَٕرج الاسحفبع انشلًً، ببلإأثُب عشش عبيلا ، إخمٍٍى ح

َغبت انذلت انًخًثهت ببنًغبحت ححج  ٌإ. لاَضلالبثا حخًبنٍتا خشٌطت نخحذٌذ  logistic regressionاعخخذاو طشٌمت انـ

 ٍُج انُخبئح اٌ انًعبيم انٓبغٕيخشي ٔانخُٕع انصخبسي ٔانبٍُٕي ًْب%. 35 كبَج حٕانً نلاَضلالبث الاحخًبنٍت يُحُى

 .فً يُطمت انذساعّ انًحخًم حذٔثٓب كثش انعٕايم انًؤثشة انخً حغبعذ فً ححذٌذ الاَضلالبثأيٍ 

 

INTRODUCTION 

Several Types of mass movements are included in the common term "landslide", the 

more restrictive use of the landslide refers only to mass movements (USGS, 2004). 

Landslides represent a major risk to human life; as well as to private and public properties 

(Petley, 2012). Landslides include a wide range of ground movements, such as rock falls, 

deep slope failures and shallow debris, flows. The mass movements can happen in offshore, 

coastal and onshore environments. Although the action of gravity is the primary driving force 

for a landslide to occur, there are other contributing factors affecting the original slope 

stability (Werner and Friedman, 2010). Maps of landslides are classified into three classes: 

inventory maps, density maps, and susceptibility maps (Guzzetti et al., 2000). Landslide 

investigations can be categorized into three main groups: 1) landslide recognition, 

classification, and post-event analysis, 2) landslide monitoring, and 3) landslide susceptibility 

and hazard assessment (Metternicht et al., 2005).  
 

Guzzetti et al. (1999) considered that any mass movement is part of a landslide inventory 

map. Landslide inventory maps involve landslide detection, recognition and classification. 

The size is one of the most important aspects in the recognition of landslides (Mantovani                

et al., 1996). The estimation of the size and probability of landslide occurrence is thus part of 

any landslide hazard assessment (Fukuoka et al., 2005). Until recently, visual interpretation 

over aerial photographs and orbital high spatial resolution images remained the major source 

for landslide inventory map preparation. So far, visual interpretation of landslides with field 

checking is more accurate than automatic extraction; in many cases. Nonetheless, the 

accuracy of automatic procedures has increased steadily and thus they are more and more 

adequate to be used to generate landslide inventory maps.  
 

The landslide susceptibility is defined as a probability of the spatial terrain to trigger a 

landslide over a set of geoenvironmental conditions (Ozdemir and Altural, 2013). The 

prediction techniques are based on the popular assumption that “the past and the present 

landslide locations are the keys to the future'' (Capitani et al., 2013, Carrara et al., 1995 and 
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Van Den Eeckhaut et al., 2006). In other words, slope failures are determined by a given set 

of controlling factors, and future slope failures are expected to occur under the same 

conditions (Lee and Talib, 2005). So far, lithology, slope gradient, slope aspect, and distance 

to streams and lineaments (including fractures) are widely accepted as significant predicting 

factors for the occurrence of landslides (Capitani et al., 2013, Ozdemir and Altural, 2013 and 

Wang et al., 2013). 
 

The study area is located between 36° 00' – 36° 30' N latitudes; 45° 00' – 45° 30' E 

longitudes, in the Zagros Mountains, where mass movements threaten many towns and 

villages. It covers an area around 1365.1861 Km² and encompasses the Sulaimaniyah 

Governorate (the Kurdistan Region) in the northeast of Iraq (Fig.1). The main cities and 

towns in the study area are Qala Diza, Bastah and Bankard. Lesser Zab River, Chami 

Zharzwa, Rubari Garfen, Chami Sharwet and Chami Bastasten are the main streams, which 

are flow from the northeast and southeast of the study area. A small part of the Dokan Lake is 

within the study area too. The study area is characterized by different mountainous ranges. 

The main ranges and mountains are Bardqalsht, Gazohrahzi, Mara Pasta, Kirkuk, and Garda 

Mand and Qandeel. The main aims of this study are: 1) mapping the landslide inventory                  

2) assess the localization and size distribution of landslides, and 3) prediction of landslide 

susceptibility in the Qala Diza area. 
 

 
 

Fig.1: Tectonic map showing the location of the study area, which comprises                                      

the High Folded Zone (HFZ), the Imbricate Zone (IZ) and the                                                             

Zagros Suture Zone (ZSZ) (Fouad, 2012) 

 

CLIMATE 
The Qala Diza area is characterized by large seasonal variations in precipitation, 

temperature, and evaporation, represented by dry summers and wet winters (Fig.2). The 
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Köppen – Geiger climate classification system (Kottek et al., 2006) characterizes the climate 

as warm temperate with dry and hot summer. Most of the annual precipitation (858.7 mm) 

occurs from October to May. January shows the highest precipitation with an average value of 

198.2 mm. The average monthly temperatures vary between − 0.6 °C (January) and 37.3 °C 

(August). Snowfalls occur within 10 – 11 days per year on average; between November and 

April (Fig.2). Above 1.500 m (a.s.l.), heavy snowfall occurs in the winter. Heavy rainfall, 

heavy snowfall and rapid snow melting subsequent to a sudden change in temperature, lead to 

the incidence of landslides in the spring. 
 

 
 

Fig.2: Monthly precipitation, evaporation and maximum and minimum temperatures,                            

in the study area; based on the data from 2000 to 2006 acquired                                                        

from Qala Diza Meteorological Station 

 

METHODOLOGY 

 Data and Software 
The availability of new satellite sensors with better spatial and spectral resolutions made 

the use of satellite data more attractive than aerial-photographs to detect and investigate 

landslides. For this study, 12 cloud-free Quick Bird scenes are used. They were acquired from        

18
th

 August 2002 to 29
th

 August 2006. The final product is a 3-bands, 8-bit, 0.6 m resolution 

mosaic; covering more than 6,554 Km
2
. The product has three visible spectral bands in the 

blue (450 to 520 nm), green (520 to 600 nm) and red (630 to 690 nm), and one panchromatic 

band (450 to 900 nm). The mosaic does not include the near infrared band (760 to 900 nm). 

The three visible spectral bands data were pan-sharpened using the University of New 

Brunswick (UNB) algorithm (Brink et al., 2009). In addition, we have used one scene of 1 

Arc-Second Global Shuttle Radar Topography Mission (SRTM) digital elevation mode 

(DEM) with 30 m resolution. Each scene of SRTM – DEM covers 1 by 1 degree on land. The 

DEM is used to extract the morphological features. All GIS operations (base map preparation, 

raster vector conversion, slope, aspect, curvature, distance map, and area calculation) were 
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performed using ArcGIS10 (ESRI 2011) and all statistical analyses were conducted using R-

based scripts. 
 

 Methods 
Geomorphic indices analysis is a powerful tool to investigate major landslides. The use of 

geomorphic indices derived from DEM allows the characterization and comparison of 

landscapes. After subset SRTM DEM, the geomorphic indices such as the HI values and the 

topographic position index (TPI) were extracted from the SRTM DEM data and analyzed 

using ArcGIS 10.1. 
 

Inventory Landslides Map is prepared from two sources. First, existing geological maps 

(Bolton, 1954; Paver and Scholtzh; 1955, Buday and Suk, 1978; Abdulaziz et al., 1983) with 

mapped landslides, which were scanned and georeferenced. The data is completed, with the 

visual interpretation and digitization of Quick Bird scenes (partly verified by field survey in 

different parts of the study area). The landslide boundaries were identified from the satellite 

data based on many aspects; such as tone, texture, headwall scarps and associations, such as 

pathway of the material movement and fragments of transferred materials. Varnes (1978) 

classification is used to classify the landslides. The observations are partly verified by field 

check in different parts of the study area. 
 

The predictive parameters used in landslide susceptibility analysis for different areas can 

be arranged according to topographical, geological and environmental factors (Nefeslioglu                 

et al., 2008a). Twelve predictive factors were selected and stored as thematic maps. Some of 

them, such as TPI and HI, have been seldom used as predictive factors. Thematic maps are 

resampled in order to have the same spatial resolution as the pixel size of SRTM DEM, (i.e. 

30 m spatial resolution). The input factors can be discrete or continuous. Factors such as 

lithology, land cover and slope aspect are discrete while the other factors, such as elevation 

and slope gradient, are continuous. The logistic regression model can use both discrete and 

continuous inputs (Choi et al., 2012). 

 

GEOLOGICAL SETTING 
The Zagros Thrust – Fold Belt is part of the Alpine – Himalayan mountain ranges and 

trends in the NW – SE direction. This belt is around 2000 Km long, extending from SE 

Turkey through Iraq to southern Iran (Alavi, 1994, Alavi, 2004, Othman and Gloaguen, 

2013a, Othman and Gloaguen, 2013b and Othman and Gloaguen, 2015). The study area lies 

within the High Folded Zone (HFZ), the Imbricate Zone (IZ), the Zagros Suture Zone (ZSZ) 

and the Shalair (Sanandaj – Sirjan) Terrain (ShT) (Fouad, 2012). The study area is 

characterized by long and narrow anticlines; some of them exhibit different types of faulting. 

Twenty five main anticlines with many other minor anticlines of NW – SE direction are 

identified in the study area (Sissakian, 1998). The geology of Qala Diza area, presented 

hereinafter, is based on the 1: 100 000 scale map compilations accomplished by Iraq 

Geological Survey (GEOSURV, 1985). 
 

The Baluti Formation (Late Triassic) is exposed in the HFZ and IZ, whereas, the Sarki 

and Sehkaniyan formations (Early Jurassic) are exposed in the southern part of the study area, 

within the HFZ. These three formations cover small area ~16 Km
2
; therefore, they are 

presented together in the geological map. These formations consist of massive dolostones and 

limestones, very hard, bedded and massive. Naokelekan, Barsarin (Late Jurassic) and Chia 

Gara formations (Jurassic – Cretaceous) are exposed only in the southern part of the study 

area. These three formations cover small area ~13.7 Km
2
, therefore, they are presented 
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together in the geological map. They consist of laminated shaley limestone and dolomitic 

limestone, limestone, thinly bedded bituminous limestone and calcareous shale “coal 

horizon”. Balambo and Sarmord formations (Early Cretaceous) are exposed in the 

southeastern part of the study area. They trend in the NW – SE direction and cover small area 

of ~28.3 Km
2
; therefore they are presented together in the geological map.  

 

The Balambo Formation consists of thinly bedded limestones with intercalations of green 

marl and blue shales. The Sarmord Formation consists of limestones and marl with 

alternations of blue marls and marly limestone. The Qamchuqa Formation (Early Cretaceous) 

is widely exposed in the study area and consists of dark grey limestone and dolomite. The 

thickness of the formation is highly variable, ranging from (200 – 1000) m. The Kometan 

Formation (Late Cretaceous) is exposed in the southeastern part of the study area. It consists 

of thinly well bedded marly limestone and marl. The Shiranish Formation (Late Cretaceous) 

is widely exposed in the study area and consists of thinly well bedded white, yellowish white 

and greyish white marly and chalky limestone, followed (upwards) by thin bedded or papery 

blue and grey marl,  with some marly limestone beds. The thickness of the formation is highly 

variable ranging from (100 – 500) m. The Tanjero Formation (Late Cretaceous) consists of 

alternation of dark green and yellowish green shale, claystone, sandstone and siltstone. Some 

conglomerates occur in the upper part and some marly limestone in the lower part. The 

thickness of the formation is variable ranging from (200 – 2000) m.  
 

The Gercus Formation (Early – Middle Eocene) consists of red claystone alternated with 

red siltstone. Sandstones and conglomerate beds may rarely occur in the lower and/ or upper 

most parts of the formation. The thickness of the formation is variable, in Shaqlawa Koisanjaq 

area it is 220 m, but decreases in the southeast and northwest directions. The Pila Spi 

Formation (Middle – Late Eocene) consists of limestone and dolomite, well bedded, hard to 

very hard, light grey and white in color, with very rare marl and marly limestone. The 

thickness of the formation is highly variable, ranging from (52 – 120 m). The Fatha 

Formation (Middle Miocene) consists of reddish brown claystone and marl with alternation of 

limestone. Reddish brown siltstone and sandstone are also common, especially in the upper 

cycles. Gypsum is present as minor component in some cycles of the lower part only. The 

thickness of the formation is variable, ranging from (130 – 310 m). The Injana Formation 

(Late Miocene) consists of reddish brown sandstone, siltstone and claystone in cyclic nature. 

The thickness of the formation is variable, ranging from (120 – 2000 m). The Mukdadiya 

Formation (Late Miocene – Pliocene) consists of grey, coarse grained, friable sandstones with 

some cyclic beds of pebbly, yellowish grey, claystone and siltstone. The thickness of the 

formation is highly variable, ranging from 65 – 1000 m (Sissakian, 1998). 
 

The ZSZ is formed by the collision of the Arabian and the Eurasian margins, and the 

closure of the Neo-Tethys (McQuarrie et al., 2003; Moghadam et al., 2013). The shortening 

of the Zagros Thrust – Fold Belt resulted from the ongoing subduction of the Arabian Plate 

beneath the Eurasian Plate during the Late Cretaceous and Miocene – Pliocene (Sissakian, 

1998; Jassim and Buday; in: Jassim and Goff, 2006). The ZSZ includes (1) Qandil 

Metamorphosed Series (Cretaceous), exposed north of Qala Diza town along the frontier with 

Iran, forming the bulk of Qandeel Range. It consists of sheared limestone, phyllite and 

massive metamorphosed limestone, with some serpentine intrusions. The thickness of this 

unit is about 3000 m. 2) Walash Group (Paleocene – Eocene), consists of very thick basic 

volcanic sequence including agglomerate, lava flows, pillow lavas and ashes with associated 

dykes. The thickness of the group in the type locality is 1000 m, but in nearby areas is about 

3500 m. 3) Naopurdan Group (Paleocene – Oligocene), consists of grey shale, coralline 
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limestone, tuffaceous slates, felsitic volcanics, basic conglomerate, greywacke and sandy 

shale. The thickness of the group, in the type locality is about 2000 m, but this thickness is 

reduced in the study area to about 1000 – 1500 m, mainly due to thrusting. 4) Red Bed Series 

(Paleocene – Miocene), consists of conglomerates, red shale, red sandstones, and red 

mudstones together with grey shale with sandstones and lenticular limestone (Surgala Red 

and Grey Beds). Grey shale, occasionally marly with intercalations of thin beds of greywacke 

and impure very lenticular limestone (Razga Grey Beds). The thickness of the Red Bed Series 

is about 500 m, but near Qalat Dizeh town it is about 1200 m. 5) Merga Red Beds (Late 

Miocene – Pliocene), consist of massive, boulder conglomerate, in the upper part, and red, 

calcareous, silty shale and sandstones in the lower part. The pebbles of the conglomerate are 

of igneous and metamorphic origin. The thickness of the beds is 500 m in the study area. 
 

Different types of Quaternary sediments are developed in the study area of Pleistocene to 

Holocene age, among them are: 1) The River Terraces (Pleistocene) developed mainly on 

both sides of the Lesser Zab River. Usually, two levels of terraces are presented in the study 

area, although many other levels could be present. They are composed of silica and limestone 

pebbles with some metamorphic and igneous rocks. The size of the pebbles ranges from less 

than 1 cm up to 20 cm. 2) The Alluvial Fan Sediments (Pleistocene – Holocene) are formed of 

rock fragments, mainly of limestone and dolostone, cemented by calcareous and rarely of 

sandy and silty cement. The thickness is variable; ranging from few meters up to 25 m. 3) The 

Slope Sediments (Pleistocene – Holocene), consist mainly of limestone and dolostone 

fragments with some silicate, igneous and metamorphic pebbles, derived from the exposed 

formations. These sediments are poorly to moderately cemented by calcareous, sandy and 

silty materials. Locally, they are well cemented and very hard. The thickness of the slope 

sediments is widely variable; it ranges from less than one meter up to 20 m. 4) The Flood 

Plain Sediments (Holocene), developed mainly along the Lesser Zab River and the large 

valleys. These sediments consist mainly of sand, silt and clay with rare lenses of gravel. The 

thickness varies from less than one meter up to 3 m (Fig.3). 

 

LANDSLIDES 

Landslides are frequent in the study area and they are triggered by both natural (e.g., 

slope processes) and anthropogenic (e.g., road cuts or vibrations due to heavy daily traffic) 

processes (Michoud et al., 2012). In the study area, the main natural factors which may 

induce landslides are:  normal precipitation, focused precipitation, water released after rapid 

snowmelt in spring, and the relatively heterogeneous geology and geomorphology. Human-

induced causes of slope failures include the construction of civil engineering activities, like 

overloading of the slopes or undercutting of the toe of slopes and unsuitable agricultural 

practices (Othman and Gloaguen, 2013b).   
 

The most widely used classification scheme developed by Varnes (1978) divides 

landslides into different types according to the material and the type of movement (Dikau                  

et al., 1996 and Varnes, 1978). This classification distinguishes five types of mass movement 

(falls, topples, slides, spreads, and flows) in addition to combinations of these principal types 

along with types of material (bedrock, coarse soils and predominant fine soils). 
 

 Landslide Inventory Map 
The available reference inventory includes 353 landslides representing a cumulated 

surface of 35.38 Km
2
. Several types of landslides are common in the study area including 

rock falls and toppling, which occurred independent or collective in different lithological 
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units along steep slopes and gorges and covere 4.3% of the total landslides in the study area 

(Table 1). Landslides have caused road blockings and consequently many nearby towns 

occasionally suffer from such incidents. A large mass of rock fall was witnessed recently in 

the study area that blocked many main roads. Big blocks of heavily fractured limestone may 

fall from a steep-slope cliff due to gravity. Rockslide is common in hard rock and occurs 

along a shear surface, which is planar (Blasio, 2011). This type of slide, in addition to earth 

slide, covers ~51% of the total landslides of the study area (Table 1). It causes more damage 

than rock fall and is thus more dangerous. Slumps or spoon-like landslides cover 35.3% of the 

total landslides of the study area (Table 1), occurring in different lithological units along 

gentle and steep slopes, gorges, and shear surfaces (Fig.4b). Slump landslides are common in 

weak layers (rock slump and earth slump), especially when they are softened by percolation 

of rainwater (Blasio, 2011). 

 

 
 

Fig.3: Geological map overlaying the hillshade obtained from SRTM DEM of the  

Qala Diza area (Sissakian, 1998; Sissakian and Fouad, 2014) 
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Table 1: Statistical characteristics of the identified landslides  

in the studied area 
 

Landslides  

Type 

No. of  

Landslides 

Min. Area  

(m
2
) 

Max. Area  

(m
2
) 

Total 

Landslides 

Area (m
2
) 

Landslides 

Rate of Total 

Area % 

Earth slump 125 8.99 695,342.84 3,995, 252.46 11.29 

Earth flow 73 108.55 927,555.5 3,216,655.05 9.09 

Earth slide 8 5,486.62 108,680.25 198,098.5 0.56 

Rock fall and toppling 43 59.97 608,621.2 1,530,820.86 4.33 

Rock flow 6 3,394.91 59,611.26 119,614.7 0.34 

Rock slide 52 138.23 2,654,951.78 17,819,562.54 50.36 

Rock slump 46 208.78 1,418,740.96 8,501,239.62 24.03 

All types 353 8.99 2,654,951.78 35,381,243.73 100 

 

  

  
 

 

Fig.4: Typical examples of the landslides within the study area                                                               

a) rock flow, b) earth slump 
 

Figure (5) shows that slump sliding threatens the roads in different sites in the study area. 

The old and active slump landslides, particularly the large ones, might develop in the future 

into smaller landslides creating a hazardous effect on engineering structures. Some of the 

landslides are as old as Early Pleistocene Period (Buday and Suk, 1978). Among the 

numerous landslides observed in the region, the best examples are those that occurred around 

the towns of Hero and Halsho (Fig.5c). This area is affected by extensive blocks and slump 

sliding, which mainly occur on the slopes of deeply eroded valleys and in areas where clay 

layers underlie hard rocks. In addition, clastic debris and rock flow is common in the weak 

layers and soil. They cover ~9.4% of the total area of the landslides in the study area                 

(Table 1), especially in the north-northwest parts of the study area where the debris are 

usually fine-grained.  
 

a b 
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Fig.5: Standard deviation stretch of Quick Bird imagery R3:G2:B1, showing examples of 

detected landslides in the study area. The four images represent the                                         

landslides that were checked in the fieldwork 
 

 Statistical Characteristics of the Landslides 
 

A cumulative log landslide number distribution is a graphic plot that shows the relation 

between log size and log number of landslides (Fujii, 1969). The x-axis represents log size 

and the y-axis represents log of cumulative number of the landslides. The cumulative 

distribution allows quantification of the results of the inventory map by determining the 

statistics of the landslide sizes. The cumulative distribution of the landslides is given by 

Equation (1): 
 

N cl = β × S 
–a

   ……………………………..   1 (Fujii, 1969) 
 

where: N cl = cumulative number of landslides, α (alpha) = the cumulative exponent, and                  

β (beta) = constant, S = size of landslides. The probability density distribution of 353 

landslides within the study area are plotted in Fig. (6b). The bandwidth estimation of kernel 

density is 0.2566, and reflects large to medium variance in landslide sizes. Figure (6a) shows 

that there are a limited number of very small and very large landslides in the study area. The 

maximum distribution of the landslides within the study area ranged from 0.001 to 0.1 Km
2
. 

d c 

b a 
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In addition, the largest 12 landslides (>1 Km
2
) cover a total area of 18.8 Km

2
, located in the 

northeast-east of the study area. 
 

The fit of a power law to the cumulative distribution of event sizes is commonly used to 

analyze landslide (Brink et al., 2009, Corominas and Moya, 2010, Dai et al., 2011, Guthrie 

and Evans, 2004, Guzzetti et al., 2002, Pelletier et al., 1997, Sugai et al., 1995 and Van-Den-

Eeckhaut et al., 2007). Here, we have calculated the cumulative number-area of the landslides 

within the Qala Diza area. The cumulative distributions of 353 landslides show statistical 

correlations > 0.894 (Fig.7). The power exponent is α = − 0.425. 
 

 
 

Fig.6: Statistic plots, a) Histograms showing the number and size of the landslides in 

logarithmic coordinates; b) Probability density distribution showing                                               

353 landslides within the study area 
 

 
 

Fig.7: Distribution plot of 353 landslides within the study area 
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 Landslide Susceptibility Map 
The landslide inventory map is fundamental for producing the landslide susceptibility 

map (Zhao et al., 2012). The landslide susceptibility is defined as a probability of the spatial 

terrain to trigger a landslide over a set of geoenvironmental conditions (Ozdemir and Altural, 

2013). Such maps are essential for the estimation of potential regions of landsliding (Guzzetti 

et al., 2005). In addition, the landslide susceptibility is a fundamental and very useful tool 

supporting the decision making and planning for land use management (Akgun, 2012). Over 

the last decades, many different mapping techniques, such as frequency ratio (FR) (Lee and 

Talib, 2005, Ozdemir and Altural, 2013 and Shahabi et al., 2014), weight of evidence (WoE) 

(Lee, 2013, Lee et al., 2002 and Ozdemir and Altural, 2013), analytical hierarchy process 

(Ayalew et al., 2005 and Shahabi et al., 2014), bivariate statistical analyses (Althuwaynee              

et al., 2014 and Ayalew et al., 2005), artificial neural networks (Conforti et al., 2014, 

Ercanoglu, 2005, García-Rodríguez and Malpica, 2010, Lee et al., 2001 and Qiao et al., 

2013), support vector machine (Peng et al., 2014 and Yao et al., 2008) and logistic regression 

(Atkinson and Massari, 1998, Lee and Min, 2001, Ozdemir and Altural, 2013 and Shahabi                  

et al., 2014) have been implemented for the landslide susceptibility estimation. All these 

prediction techniques are based on the popular assumption that “the past and the present 

landslide locations are the key to the future” (Capitani et al., 2013, Carrara et al., 1995, Van 

Den Eeckhaut et al., 2006 and Zêzere, 1999). According to this assumption, one can also 

conclude that the authors assumed that slope failures are determined by landslides controlling 

factors, and the future slope failures will occur under the same conditions as past slope 

failures (Lee and Talib, 2005). 
 

In addition, the definition of a set of factors that can be used to predict the future 

occurrences of landslides and to estimate the statistical relationships between the predicting 

factors for sliding the masses and the occurrences of landslides is the conceptual knowledge 

of all landslide susceptibility techniques (Capitani et al., 2013, Carrara et al., 1995 and Van 

Den Eeckhaut et al., 2006). The lithology, the slope gradient, the slope aspect, the distance to 

streams, and to tectonic lineaments are widely accepted as significant factors that are related 

to the occurrence of landslides (Capitani et al., 2013, Kayastha et al., 2013, Ozdemir and 

Altural, 2013 and Wang et al., 2013). 
 

 Input and Preparing Parameters 
Landslide susceptibility maps are produced for the Qala Diza area; where no studies of 

the landslide susceptibility have been carried out in this area. There is no agreement on which 

predictive factors have to be used in the landslide susceptibility analyses, but most of the 

existing works evaluated topographical, geological and environmental factors as essential 

predictive factors (Nefeslioglu et al., 2008a).  
 

Twelve predictive factors of landslides are prepared, and stored as thematic maps. These 

factors play a dominant role in the slope stability. These factors are classified into three 

categories: morphometric, geological, and environmental factors. We reclassified these 

thematic factor maps to have a similar pixel size of ASTER DEM, i.e. a 15 m spatial 

resolution. These factors are (1) lithology, 2) land cover, 3) slope gradient, 4) slope aspect,                

5) slope curvature, 6) Hypsometric Integral (HI), 7) elevation, 8) distance to drainage,                      

9) distance to faults, 10) distance to roads, 11) precipitation, and 12) Topographic Position 

Index (TPI). GIS techniques are used to produce the landslide susceptibility map using 

logistic regression model. The input factors can be discrete or continuous. Factors such as 

lithology, land cover and slope aspect are discrete while the other factors such as elevation 
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and slope gradient are continuous. The logistic regression model can use both discrete and 

continuous inputs. 
 

 Morphometric Factors 
In this study, eight morphometric variables are used which are: 1) elevation (DEM), 

which affects the occurrence of landslides and indirectly affects the climatic conditions and 

hence soil erosion (Ozdemir and Altural, 2013, Wang et al., 2013 and Xu et al., 2012). The 

DEM was obtained from SRTM data. The other morphometric parameters were extracted 

from the DEM (i.e. slope gradient, slope aspect, slope curvature, the HI, elevation, distance to 

drainage, and TPI). Elevation in the study area ranges from 475 to 3148 m a.s.l. (Fig.8A) with 

the highest values in the north and northeast of the study area. 2) Slope gradient, which is the 

major factor of slope stability analysis. The maximum slope gradient is 77° (Fig.8B). 3) Slope 

aspect, which is associated to solar radiation, wind, and rainfall (Lee and Min, 2001 and 

Yalcin et al., 2011). Slope aspect is assumed to have an impact on vegetation cover                      

and; therefore, may affect the occurrence of landslides (García-Rodríguez et al., 2008).   

Figure (9A) shows the slope aspect distribution in the Qala Diza area. 4) Slope curvature 

(Nefeslioglu et al., 2008b), ranges from positive to negative. A positive value reflects a 

convex-upwards surface slope in that cell. A negative value refers to a concave-upward 

surface slope. A value of 0 refers to a flat surface (Mancini et al., 2010, Xu et al., 2012). 

These parameters were derived using a 3 x 3 moving window in ArcGIS (Esri, 2012). The 

slope curvature ranges between 26.41 to –24.86 (Fig.9B). 5) HI is an appropriate index to 

identify the evolutionary stage of landscape development (Othman and Gloaguen, 2013b, 

Pérez-Peña et al., 2009 and Strahler, 1952). HI closely relates to the degree of dissection by 

the drainage network. Thus, this index provides a way for discriminating between different 

types of landscapes. HI values above 0.6 indicate elevated landscapes with an entrenched 

drainage network. HI values between 0.35 and 0.6 correspond to significantly eroded areas 

with a developed system of V-shaped valleys, and values below 0.35 indicate relatively flat 

landscapes with a low degree of incision (Pérez-Peña et al., 2009). The HI map was computed 

using 100 pixels (~1.5 Km) moving window. The HI ranges between 0.06 and 0.79 (Fig.10A). 

According to (Pike and Wilson, 1971) the HI of a given area can be estimated using the 

following equation: 
 

  Elevation mean – Elevation minimum           

HI =    …………………………… 2 

  Elevation mmaximum – Elevation minimum 

 

(6) Furthermore, TPI are used (equations 3 and 4) as a predictive factor. It represents the 

variation between the elevation of a pixel (EC) and the average elevation (EA) around this 

pixel. The numbers of pixels defining the area around (nM) are set by the kernel-matrix (M). 

The TPI is calculated using equations 3 and 4; (De Reu et al., 2013 and Weiss, 2001): 

 

TPI = EC – EA   ………………………………….   3 

 

   ………………………..……..  4 
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Fig.8: Maps of the landslide geological prediction factors:  

A) Elevation; B) Slope gradient 

 

   
 

Fig.9: Maps of the landslide geological prediction factors:                                                                   

A) Slope aspect; B) Slope curvature 
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Fig.10: Maps of the landslide geological prediction factors: A) HI; B) TPI 

 

TPI is the Topographic Position Index, negative TPI values indicate that the central pixel 

is situated lower than its average surroundings; while positive TPI values indicate that the 

central pixel is located higher. We have implemented a script in the TecDEM toolbox in order 

to compute the TPI for the studied area. We used a moving window of 100 pixels (~1.5 Km). 

Though HI and TPI have been widely used by geomorphologists to classify landscapes, few 

landslide susceptibility studies explored these indices as predictive factors (Lin et al., 2011).  

The TPI ranges from 390 to – 321.5 m (Fig.10B). 
 

The factors which describe the drainage pattern are included in the model of landslide 

susceptibility. We calculate (7) the distance to drainage for each point in the study area by 

making a buffer distance surrounding the drainage network. The farthest point in the map area 

from the drainage is 2130.6 m (Fig.11A). Finally, calculation of the buffers surrounding roads 

are used to calculate the (8) distance of each point in the study area to roads. The farthest 

point in the map area from the road is 16778.1 m in the north east of the study area (Fig.11B). 
 

 Geological Factors 
Lithological and structural variations affect the strength and stability of materials 

(Ayalew and Yamagishi, 2005). Thus, two geological factors are used as input parameters:              

1) lithology (Fig.3), and 2) distance to faults. The lithological and the faults factors at the 

Qala Diza area are explained previously. Calculations of the buffers surrounding the faults are 

used to calculate the distance to faults. The farthest point in the study area from a fault is 

12843.5 m in the west of the study area (Fig.12A). 
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Fig.11: Maps of the landslide geological prediction factors:                                                               

A) Distance to drainage, B) Distance to road 

 

   
 

Fig.12: Maps of the landslide geological prediction factors:                                                                   

A) Distance to fault B) Precipitation 
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 Environmental Factors 
Two environmental predictive factors are used: land cover, and precipitations. First) The 

land cover map (Al-Saady et al., 2011) was provided by GEOSURV– Iraq and contains 

thirteen classes. It was created using Landsat satellite data (acquired in 2010) with overall 

accuracy of ~93.14 (Al-Saady et al., 2011). Thirteen classes of land use and land cover are 

derived in the study area. These are (1) Urban and built-up lands, (2) Vegetated land,                     

(3) Cultivated land, (4) Irrigation land, (5) Burn land, (6) Harvested land, (7) Igneous and/or 

Metamorphic rocks, (8) Conglomerate, (9) Carbonate rocks, (10) Mixed barren land rocks, 

(11) lake, (12) river and channel and (13) wetlands (Fig.13). Second) Precipitation data from 

seven climatological stations located within and surrounding of the study area (Qala Diza, 

Binkard, Choman, Gridjan, Rania, Dukan, and Mawat) is used. The available data covers a 

period of 7 years (2000 – 2006). However, the limited amount of stations in the study area 

does not allow to capture local scale variations in precipitations, but it is noticed that the 

precipitation increases from south towards north of (Fig.12B). The average annual 

precipitation, using the daily time series data, is calculated. In order to obtain a continuous 

coverage, interpolated point-wise precipitation data using an inverse distance weighting 

(IDW) method is used. Although the study area is characterized by high annual precipitation 

(~777 – 894 mm), but there are small variations in the annual rainfall (<117 mm). The effect 

of the precipitation in the model is not significant compared to the other factors because of the 

small amount of  precipitation in the study area.  
 

 
 

Fig.13: Maps of the Land Use-Land Cover map prediction factor 
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 Landslide Susceptibility Models 
The resulting accuracy of the landslide susceptibility depends on the model used (Chen  

et al., 2012). In this study, the spatial relationship between landslide locations and each 

predicting factor for land sliding was derived using the logistic regression model. It is a 

multivariate statistical regression analysis. The model has been widely applied for landslide 

susceptibility mapping (Guzzetti et al., 1999). The results range between one and zero, where 

one corresponds to the presence and zero to the absence of landslides, respectively 

(Althuwaynee et al., 2014). The logistic regression model is expressed as equations (5 and 6) 

(Kleinbaum and Klein, 2011): 

1 

P =     ……………………………….  5 

1 + e 
–z

 
 

z = a + β1 X1 + β2 X2 + … + βnXn   ……………………  6 
 

where a is the intercept of the model, n is the number of variables, β are the β values 

associated with each of the independent variables, P is the probability, which varies between  

0 and 1 on an S-shaped curve and z varies from – ∞ to + ∞ on an S-shaped curve. 
 

 Preparation of Training Dataset 
The inventory map is used, by classifying the boundaries of each landslide polygon into 

two zones: 1) the landslide depletion zone and 2) the landslide accumulation zone. The 

geometrical attributes are stored in a GIS database as a shape file and then we have rasterized 

the polygons by 30 m resolution. Only the depletion zones of the landslides are included in 

the susceptibility analysis (Van Den Eeckhaut et al., 2006). 
 

The total number of the landslide pixels is 38996. The logistic regression model need a 

training dataset containing both pixels with landslides and pixels without landslides (Ayalew 

et al., 2005 and Ozdemir and Altural, 2013). Therefore, we randomly selected 38961 pixels 

from the stable slopes (without landslides) and used them, in addition to the landslide pixels 

to derive the coefficient of the logistic regression model. Following literature suggestions (Xu 

et al., 2012), we sub-divided the input pixels (77957 pixels) randomly into training and 

validation data subsets. The training dataset included 80% of the input pixels and the 

validation set included the remaining 20% of the input pixels. 
 

The predicted factors represent the independent variables, while the class values 

(landslide-present and landslide-absent), i.e. 0 and 1 are the dependent variables. The pixels 

with information from the predictive factors were exported and saved as a text file. This file 

was analyzed using R software to obtain the estimation constants (α and β), which are 

important for calculating the probability (z). 
 

 Predicting factors in Qala Diza area 
About 2.59 % of the study area suffer from landslides. The landslide susceptibility maps 

have been prepared using logistic regression model. The training pixels were used to derive 

the coefficients of logistic regression. The model-building process for logistic regression 

started with 12 prediction factors. The landslide prediction factors considered in this study are 

shown in Table (2). In the last processing step, nine factors were interpreted as non-significant 

(p-value > 0.05) and therefore were excluded from the analysis. We used the significant nine 

remaining factors (p-value < 0.05), namely: lithology, slope gradient, HI, elevation, distance 

to drainage, distance to faults, distance to roads, precipitation, and TPI (Table 2).  
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Table 2: Results obtained for the logistic regression model 
 

No. Coefficient Odd ratio of logistic 

1 HI 1532.39 

2 Lithology 36 

3 Slope gradient 1.04 

4 Topographic position index (TPI) 1 

5 Distance to roads 1 

6 Distance to faults 1 

7 Distance to drainage 1 

8 Elevation 1 

9 Precipitation 0.95 

 

The obtained odd ratios are shown in Table (2). The factors with an odd ratio of more 

than 1 (HI, lithology, slope gradient) are positively related to the landslide susceptibility, 

while the precipitation factor with less than 1 is negatively related. Factors with an odd ratio 

of 1, like elevation and distance to drainage, are neutral in detecting the landslide 

susceptibility, in the study area. The susceptibility map was zoned into five zones (Fig.14). 
 

The HI is the morphometric feature, which significantly increases the prediction accuracy 

of the landslide susceptibility and using it, as a predictive factor, increases the areas under the 

curve of the landslide susceptibility maps. The HI is a good indicator for erosional processes 

related to the mass wasting and illustrates the stage of vertical and lateral erosion. The index 

value decreases when the amount of landmass volume, removed by erosion, increases 

(Strahler, 1952). Thus, HI allows to summarize how landscapes respond to erosion. 
 

Different lithological units have different susceptibility to landslides (Ozdemir and 

Altural, 2013). As a result, the wide variation of the exposed lithological types in the Qala 

Diza area makes the lithology a major prediction factor (Table 2). The more stable units are 

the Naokelekan, Barsarin and Chia Gara formations. The slope in these formations is mostly 

low. They are composed of tough limestone and dolomitic limestone, which reduce the 

landslides occurrences. The rocks of the Walash Group have more unstable slopes due to 

weakness zones between rocks that can be easily weathered. The fieldwork observations 

showed that the weathered rocks of the Walash Group showed a behavior similar to soil 

materials. The presence of soils rich in clay makes the slopes unstable. The limestone beds 

include many slides. These rocks are affected by numerous joints and fractures, which may 

facilitate water infiltration as well as weathering. Although the Qala Diza area is characterized 

by a rough topography, but the slope gradient has a lower range of estimation weight than the 

HI and the lithology. 
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Fig.14: Landslide Susceptibility Map of Qala Diza area  

with the present landslide 
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 Landslide Susceptibility in Qala Diza Area 
In order to recognize the best susceptibility model, we applied quantitative measurement 

called the areas under the curve of the prediction rate curve as a prediction skill method to the 

landslide validation datasets (20% of the total landslide pixels). The areas under the curve is 

widely used to estimate the accuracy of landslide susceptibility models (Yesilnacar and Topal, 

2005). A prediction rate curve is a two-dimensional plot. The x-axis is (100 – landslide 

susceptibility rank %) and the y-axis is the cumulative percentage of validation landslide 

occurrence (%).  An acceptable model should have an area under the curve of more than 50% 

(Chung et al., 2014).  
 

The landslide susceptibility values given by the logistic regression model was then 

classified using natural breaks technique into five susceptibility classes: Very High, High, 

Moderate, Low and Safe (Mǎrgǎrint et al., 2013, Ozdemir and Altural, 2013 and Shahabi                 

et al., 2014). We have used natural breaks method because it allows to gather similar values 

and to maximize the differences between classes. Natural breaks are useful when the landslide 

susceptibility histogram shows distinct breaks (Mǎrgǎrint et al., 2013). The logistic regression 

model (Fig.15) shows that the area under the curve is 85.15%. About 82% of the landslides 

are located in the High and Very High landslide susceptibility prediction zone, whereas, only 

~3% of the landslides fall in the other zones (Moderate, Low and Safe), which means that our 

model is authentic and can be trusted in the landslide prediction processes. 
 

The study area includes 368 villages, among them, 180 villages, such as Bingrd, Qadir 

Agh, Sardarwan and Zawita are located in the Very High landslide susceptibility zone. These 

villages are under the threat of landslides risk. The Very High and High susceptibility areas 

are located in the east and center of the study area. Bardqalsht and Gazohrahzi Mountains are 

among the High susceptibility areas. 

 

 
 

Fig.15: Prediction rate curve plot evaluation of the logistic                                                       

regression method 



Landslide Susceptibility Mapping Using Remote Sensing and Gis Application: A Case 

Study in Qala Diza and Surrounding Area,                                       Arsalan A. Othman et al. 
 

 

 

86 

CONCLUSIONS 

The  reference inventory derived in this study is based on 353 landslides (representing a 

cumulated surface of ~35 Km
2
), which were mapped from twelve Quick Bird scenes using 

manual delineation. Rock falls, transitional slides and slumps landslides have occurred in 

different lithological units. We have first analyzed cumulative landslide number-size 

distributions using the inventory map. The maximum distribution of landslides within                         

the study area ranges from 0.001 to 0.1 Km
2
. The largest 12 landslides (>1 Km

2
) cover a total 

area of 18.8 Km
2
, located in the northeast– east of the study area. The cumulative 

distributions of the landslides show statistical correlations of >0.894. The power exponent 

was α = −0.425. 
 

Twelve prediction factors are utilized in this study, most of which were derived from 

Digital Elevation Model (DEM) of Shuttle Radar Topography Mission (SRTM), in addition to 

geological and environmental factors. Two of the prediction factors (HI and lithology) have 

more influence than other factors in landslide occurrences. Morphometric factors proved to be 

useful in our study area. The use of morphometric indices as prediction factor significantly 

increases the estimation accuracy of the landslide susceptibility. The significant increase in 

accuracy estimation is related to the susceptibility of these indices to erosional processes. The 

HI allows to discriminate between different types of ridges and valleys and slightly improve 

the models accuracies. It shows that the HI yields better results than slope curvatures, and 

increases the area under the curve.  
 

The results obtained in this study indicate that the logistic regression model is a reliable 

estimator for the landslide susceptibility. The areas under the curve of the prediction rate 

curve for the landslide susceptibility shows that the accuracy of the map is 85.15%. One 

hundred eighty villages in the Qala Diza map are located in the Very High landslide 

susceptible areas and are under  serious threat of landslide hazards. 
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