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Abstract: Two algorithms were hybridized by combining two standard

parameters with a convex structure. We combined the HZ algorithm with
DIXON, and the resulting algorithm possessed sufficient gradient and global
convergence using certain assumptions. We tested their efficiency numerically on
a set of nonlinear, unconstrained test functions and demonstrated their
effectiveness when compared to the performance of the two basic algorithms.

Keyword: Algorithms, conjugate gradient, conjugate condition

Introduction
A basic premise in our world is the pursuit of the optimal condition, namely the
selection of the most advantageous test among available options and decisions in
a real-world context. Optimisation is a method for attaining optimal outcomes
under defined circumstances. Consequently, optimisation approaches have been
employed across several industrial sectors, including railways, automotive,
aerospace, and electrical industries, among others. Optimisation is ubiquitous in
reality, manifesting in natural events that permeate our daily existence. It
manifests in several bodily scenarios. The reflection of light on a mirror
represents the shortest path that intersects the mirror. Consequently, optimisation
may serve as a representation of physical reality.

It includes finding the best possible solutions to the given problem.
Mathematically, this means finding the minimum or maximum value of a function
consisting of n variables f(xy,x3,x3, ... ....., X,), where n can be any integer
greater than zero [1].

Mincgn f(X)
(1)
The point x™ € R™is said to be the point of stability or (critical point) of a
differentiable function f if Vf(x*) = 0.

Conjugate gradient (CG) methods are recognised techniques for addressing large-
scale optimisation challenges. These methodologies have extensive applications
across many domains, including control science, several engineering disciplines,
management science, economics, operations research, and intelligent technologies

[1].

xﬁ:+ 1= xﬁ: + (IFE dFu: ' k = 011121"' (2)

The step length @; = 0 is determined by line search and direction formulation as
follows [2]:
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d { —0x ifk=1 3)
k+1 — .
' —Gr+1 T Prds ifk>1

Where g, =Vf(xi)and [is a constant, the step length is consistently
determined in accordance with Wolff's criterion. In this context, we use the robust
Wolff condition, and the step length complies with [3]:

f G+ ady) < f () + Sty gldy, ,0 < 6 <= @)
|af g(xy + ady)| = —0dlg, ,6 <0 <1 (5)

Several properties differentiate traditional algorithms, primarily based on the
selection of the conjugation parameterf3;. , including [4]:

T
FR Hr+19k+1
_ Fknfkt1 6
k 9k 9x 1] (6)
PR _ GkiiVk
_ Fk+1Vk 5 7
k L9k [5] (7)
T
HS _ Gk+1Vi
B Ty [6] (8)
LS _ —Gk+1Vk 7 9
B glgx u ©)
T
DY _ Si4189k+1
k - .}?erk [8] (10)
T
D __ Sk+18k+1
E T diﬂk [9] (11)
T T
ZH _ Gk+1Vk Iy 1% g4 1 e
= -2 10 12
k df v (dfvr)? [10] (12)
;II:DX — E;%ij:? [11] (13)

Where v}, = gr+1 — g5 and ||-|| denotes the Euclidean norm.

Research objective
A unique hybrid approach integrating the Dixon and Zang-Hager algorithms
(D.ZH. A) with the Dai-Liao (D-L) condition is devised to compute the conjugate
gradient coefficient.

I. Minimizing the iterations necessary for the gradient-related approach and
enhancing the speed of solution attainment.
Ii. Analyzing the theoretical characteristics of the novel technique, including
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convergence speed and stability of the search direction (SD).

Ii. Assessing the numerical efficacy of the novel method in relation to traditional
gradient-based techniques utilizing standard functions.

Review of the Literature
A considerable quantity of hybrid conjugate gradient (CG) algorithms has been
introduced in recent years [12]. The fundamental concept of these approaches is
to amalgamate several conjugate gradient algorithms using convex weighted
combinations to improve convergence behavior and prevent stalling problems.
Numerous hybrid conjugate gradient (CG) techniques have been proposed,
whereby the conjugate gradient parameter [5;. is seen as a convex combination of
various distinct CG formulae [13]. While assuring the preservation of conjugacy
conditions under the stringent Wolfe line search criteria. The hybrid parameters
are often delineated by the subsequent equations:

P — (1— 8,)BFRF + 6, BER (14)
TP — (1 6,)B + 6, BEP (15)
TP — (1 —6,)BF + 6, BFR (16)

Moreover, innovative hybrid CG methods have been introduced to address
extensive unconstrained optimization challenges [22]. These methods ensure the
necessary decreasing condition and incorporate Newton-like directions, which
ensures global convergence under standard Wolfe conditions [23]. Some of the
hybrid £, parameters are defined as follows:

P — (1 6,)B" +6,BF (17)
SR =(1— 8,)BF +6,.B° (18)
F8=01- 08 B + 8, pIMaR (19)

Numerical experiments have demonstrated these hybrid approaches outperform
classical CG methods in terms of convergence speed and robustness [18].

Building on the modified BFGS method proposed by introduced a new parameter
(t) in the Dai-Liao CG framework [21]. Their method exhibited improved
convergence properties, and numerical results confirmed its computational
efficiency. In another extension, [20] a proposed has been made to modify the FR
method to solve nonlinear equations that are both constrained and ordered, it
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shows that the method maintains the  property of sufficient decreasing and
exhibits strong performance in signal and image processing applications.

For large-scale unconstrained optimization [24]. proposed a Dai-Yuan-based CG
method with a spectral CG parameter that guarantees independence form line
search conditions. Strong Wolfe conditions were used to establish their method's
global convergence, and it we successfully used to solve problems related to the
removal of impulse noise. Condition of Dai-Liao conjugacy in hybrid CG
methods several recent hybrid CG approaches have utilized the Dai-Liao (D.L)
conjugacy condition as a fundamental principle for improving search directions.
In nonlinear CG metho ds, the classical conjugacy' condition is represented by;

dE+ 13’& = 0
(20)

Extended this by incorporating a secant condition from quasi-Newton methods,
defining the Hessian approximation B}, ; follows [25]:

Bri1Sk = Vi . Bri1diss = —Grsa (21)
generalized this into the extended conjugacy condition [29]:
df:+ 1 Ve = _tdf:+ 1Sx. Where =0, (22)

The Dai-Liao CG approach has garnered considerable interest owing to its
straightforward structure and minimal memory demands. A three-term Dai-Liao
CG algorithm was developed that satisfies both the conjugacy and sufficient
descent conditions by integrating the Dai-Liao condition with a symmetric
modified Perry's matrix. Their approach attained global convergence utilizing
Wolfe line search (W.L.S) and exhibited exceptional performance in numerical
experiments.

The optimal selection of parameter t remains an active research topic. Several
choices have been proposed in prior studies, including those by [25] A new hybrid
CG method based on the Dai-Liao (D.L) conjugacy framework and the' Dixon
and Zhan- Hager algorithms are presented in this study as a result of these
findings. The proposed approach seeks to take advantage of the features of these
algorithms, while emphasizing overall convergence and numerical efficiency.

Research Organization
Section 1: Introduction to classical conjugate gradient (C. C.G) methods.

YYVR



TeTO Rl WAy el A a8 al) Al

No. 18 — Ang 2025  Iragi Journal of Humanitarian, Social and Scientific Research (Li\ '
Print ISSN 2710-0952 Electronic ISSN2790-1254

Section 2: Literature review.

Section 3: Presentation of the proposed method with a mathematical
formulation and theoretical explanation.

Section 4: Analysis of the theoretical properties of the proposed
method, including convergence and stability of the search
direction.

Section 5: Numerical experiments and comparisons with traditional
approaches on iteration count and processing efficiency.

Section 6: Discussion of the results, conclusions, and future

recommendations.

Research structure
This section presents a novel hybrid conjugate gradient approach that integrates
the update parameters suggested by Zhang-Hager [15,16] and Dixon[11],
according to the Dai-Liao (D. L)[19] conjugacy criterion.The subsequent
approaches are integrated in a convex manner to formulate the novel hybrid CG
parameter:

Rt = (1—-6,)BP* + 6, BF" (23)

From the previous relations we obtain:

New2 _ —Gies19k11 Gier 1Yk v I2g5 .1 dy
=(A-0 )| —F— |+ — — 2 :
G Ay Vi (dg Vi)

Where & . is the crossbreeding scalar parameter satisfying & ;, € [0.1].

If 8, =0, then B.Y*¥* = BP¥.
If 0= 1, then pye"2 = BEF.
If 0 < 8, <1, then B¥e*2 it is a proper convex combination of B2 and B£”.

Therefore; by substituting £,7*"# into equation (3), we get:

Qrss = —Grer + BTy (24)
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Using relation (24) and by taking the internal strike with the equipment ¥, we

obtain:
d;:+1}’;: =
B _ NggealP(dE v ) lgrsall® | gksa¥x
gk+1}’k T '9 ( T +
gidg Edi df vk

T
Iy | zgk+1dkjd T.}Jk
@hy)z 7K

By applying the Dai-Liao coupling condition to this relation and following other
operations to obtain the following new hybridization parameter:

T R
dk+1}’ﬁ:_ tgk+13k-
llgges1 12 (i vx ) ||g;r+1|| Ti+1 Vi
—t0k+15k = —Tke1Vie — 0, p e —
el k1 gkdk i df i
llyll® gk sdlic YdTy
T T a2 k
dEvi)? &
z
llgs || (dgyg)
1 P, +.§§;+1}’k - t§£+13k
‘gk k
% = Townal? Thur? ||Hr|| gk a5
g, T4 L Vi
g;r k ;R*Fr Fr}
||§Fr+:|_”z':dk}'k} T T
HTdk k41 Yk — 10 k+15k
Hﬁ: = K
logsal® | 9FL,¥ ”J’Fr” gk 2 dic 1
gTa, * aly Jy Yk
et ;[J’Fr FrJ'
lgpsal *(dEry +oT 1, iloRdR—tah 4, Si(aRdR)
0 9ic
g ||gk+1||2mm}+g£+1nrmm} _IvilPsl,  ditalye
g3 dy v (diyg)?
lggsal*(dFve o ks v riohd) —tay , splahdy)
6, = 75
T lggeal” @y (aTy )2yl o7, a
Tr+all BV +5k+13"k kTR Ty Fr]
grdy (4L yg)
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lgrsall*(alyy 4ok, yilatdp-tal, sp(oTd

6, = Ik
T ggaall® (alyi2 40T, yiialypialap—zlyl®oT, , dytaTdy
(gTd ) dT vy)
P (gF dic) (@ vie) (I gics1 12 (dEvi )+ gk 4y e(gh i) ~tahs,sx(gkdi))

T (gTdr) (lgresll? @Eve 12 +9T 4 ve(dE v W oL d) -2yl 29T, di (g dx))

(lgg+alPdlgiss —NgrsslPah gx +lgus:l2(gf die)—g T, g (ghdi)—ta ks si(aT i)

g8, =
; e 12AT T
2”},&'” g dyl(gpdy)
(Vaksa2Egkss ~NorralzaE on Hlgkes (o d) -5 (5T - e
Ak
T T
g, — Fi+1 Ak (llgieall®-lgill>—tgf sx)
© oL ("g I2-llg 12 zllrkllz-:g”’f}]
k| gr+a "My —Tﬁ—
k+1 ﬁi}k
T _ (4T
Ulgrss 1P-Nlggl®—tgtsp)(dr v )
g L k k (25)

% lgrea 12(dT i) -l gl 2(alvie) — 2llyeli2 (gL dr)

For large-scale optimization problems, methods that avoid direct computation of
the Hessian matrix are preferred. Therefore, to maintain efficiency in large -scale
problems; this research selects the modulate parameter t based on optimal choices
from[16] :

t* — SE YK (26)

This formulation ensures that the proposed method benefits from the strengths of
both Zhang-Hager and Dixon approaches while maintaining global convergence
properties under Wolfe line search conditions.

5.1 Dai-Liao (D.L) Hybrid Dixon and Zhang-Hager (New?2) Algorithm
Step 1: Initialization; Select an initial point x, € R™, a tolerance € > 0,
and parameters 0 << § < g <1. Compute f(x,) and g,.
Step 2: Test for Continuation of Iteration, if ||g, || = €, then' step.
Step 3: Line Search, Compute a;, = 0 satisfied Wolfe conditions (4), (5).
Step 4: Computation of 8, If |ge.1 12(@Zvi) — llgi 1> (dlvy) —
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2|l |1 (gi di.) = 0, then set 8;, = 0; otherwise, compute 8,
using the defined formula (25) and (26).
Step 5: Computation of' S2PM%; if 0 < 8, <1, then compute B2
using the convex combination by (23).
Step 6: Computation of Search Direction (S.D), compute the new search

direction by (24) if the Powell restart criterion:

197 19k| > cllgrssll? 27)
Is satisfied; then set d,.. ; = —g;.1; Otherwise; set d., ; = d.

Compute ay; set k= k + 1land go' to step 2.

convergence algorithm Analysis
The convergence outcomes of the proposed hybrid conjugate gradient (C.G)
technique are examined under strong Wolff conditions (S.W.C). For convergence,
the algorithm must fulfill both the adequate decrease criterion and the global
convergence characteristics.

Satisfying Sufficient Descent Condition
Definition; A search in the direction d, is said to satisfy the decreasing condition
only when [17]:

dT g, < 0 (28)
Moreover, the condition of sufficient decrement is satisfied if and only if:
digr = —cllgell?>, Vk =0 (29)

Where ¢ is a non-negative constant.

6.1. Theorem.

Let the two chains be {g;} and {d,.} they were created by ;¥ the style.
Then, the search path d,, satisfies the sufficient descent condition as (27).
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Proof:

We show that the search direction d, satisfies the required decreasing
condition. For the case whenk = 0 , the proof is straightforward, as we can
considerd, = —go , which leads to gld, = —|lg,||*. From this, we conclude that
equation (27) holds for k = 0 . Next, we proceed to the prove that this condition
remains valid fork > 0.

DIStInCﬂy dk+1 = _gk+1 + ﬁ.lfngdk

Air1 = —Gisr + (1= 0)B% + 0, B77)d,
We can modify the search path in the following way:
Qs 1 = —(0rGrr 1 + (1= 0 )Gsss + (1 — 8 )BF* + 0, B7)d,,

It follows that

As1 = O (= Giesr + BT dy) + (1= 0,) (—Giesn + B dy)
Where from

dper = Opdily + (1 —6,)de%, (28)
Multiply equation (28) from the left side by g;. , , we get:

Gier1ies 1 = Ok Greadicts + (1 — 0 1) Gre1diss (29)
Firstly; let 8, = 0; then d,,, ; = dP¥, . Recollect that
dizy = —Gk+ 1+ Bi di

.g.l.:+1dk+1 QE+1(_gk+1+ﬁI?Xdk]

~gk+19k
Ti+19511 = Gies1 (“Grsr + ( Hi +1Jd)
~lg ||zgr d
A R Lo ( ’“gd e
Fkdk
Fraq @
Gre1Anny = N Grserll? (1 + ;Jr; R)
T
9k dk+Gk+1k
AR P G ) (30)
Sk
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For (30) satisfy sufficient descent condition we have

T T
Gy dp+0L4,1 9k

gl dy = ullgpsq|l?, where0 <p <1

So that
Tis19h01 = —NGies 1 1P + 1 1 Gre o1 117
Gier1ims = (1= p) lgpess 112

We denote ¢, = (1 — i) ,then we can write
Trs10511 = —C1 1Gieaa |l 2

We are done with 8,=0,

Now; let 8, =1, then ds., = df¥, . Recollect that
difly = =i+ + B dy,

gk+1dﬁ:+1 .g{+1[_.gﬁ:+1 +ﬁfﬁdk:’

Gre+1Vk lygll2gl, . ad
gk+1dk+1 .g.:.:+1[ ﬂﬁ:+1+( FH;E —2 {d};};; k)d )
H llygl?gi, d
Tir10its = N Gresall* + (EE;;% —2 y:ﬁi; . )d;{gkﬂ
g g4 12(dg vie)® —2 1l g s 2Ny 12 i 12
G102y = —llgis P + (TP, )
(g vie)® —2lly 12 lldg I
gk+1dk+1 ||£;-'I-J:|:+:|."2 (1 - £ {d};m]z . )
(k32— @i ye)® ~2lly 1P N gl
gk+1dﬁ:+1 ".gﬁ:+1”2( = Edj;;}'ka )
— 2y 12l g 112
gk+1dk+1 ".gk+1"2( (d{y;r]: ) (31)
For equation (31) to satisfy the sufficient' descent condition, the following must
hold:
Igr"z';ik"z <k k>0
Yi
So that

.gk+1dk+1 - -IC"Q;,:+1"E
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We denote ¢, = k > 0, then we can write

QL 1dff1 < —¢, | gpsn II?

Now, we suppose that 0 < 8, < 1,suchthat,0<a, <8, <a, <1 From
(29) we conclude that

Gier1ies1 = 1954145ty + (L —az) g1 A

= Gir10k+1 = A1 (Gl Gk 1P + (1 — @z ) (e |G k1 117)
re18irr = —(a10;+ (1 = az) )| Giss IIP

Denote ¢ = a, ¢, + (1 — a, )¢, ,then we eventually get:

QFL 1dk+1 = _C"ﬂ[h:+1"2

Convergence Analysis.
Every conjugate gradient (C.G) method employing a deep Wolfe line search
retains its consistency. However, for the method to function at a basic level, only
the weak form of the Zoutendijk condition (Z.C) is needed [14]. For the
subsequent analysis, we adopt the following assumption.

7.1- Assumption;

The level' set's Q = {xeR™: f(x) < f(x,)} at x ,, Defined because x, is the
first point, which means there is a value M = 0, such that ||x|| = M,V xeQ.

7.2- Assumption:

In a neighborhood' N of @ ,, the function f is constantly separable, and it’s the
gradient is Lipschitz constant, implying that a constant exists. L = 0, such that:

IVFC) =Vill=Lllx—yll,Vx,y,eN

It can be determined based on hypotheses (5.1) and (5.2) where there is a positive
constant value ¥, s.t:

".gﬁ:+ 1" = y,VxeqQ
7. 3. Lemma

Let assumptions (5.1) and (5.2) hold. Consider the process (2) and (3), where d;
is a descent direction, and a;, is determined using SWP [26].
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1
=173 = 0
Zk‘lﬂdﬂz
(32)
Thereafter
limy, _, ., infllgelI= 0
(33)
7 4. Theorem:

If proposition (5. 1), and (5. 2) hold, and the algorithm is applied using £,y*?
where 0 = 8, = 1, witha;, determined according to the strong Wolfe line search,
and d;, being the descent direction by (33).

Proof:

Since the decreasing condition is satisfied, we obtain d;,, # 0 . thus, using
lemma (5.3), it is sufficient to prove that |ld;. || is bounded from above. This is
based on equation (23).

Air 1 = —Gir 1+ Br V2 dy,
ldps o Il < llgrs o 1| + [BE2lld |l
ldesrll = llgreall + [|1 - 9k|-|ﬁf‘¥| + |3k||ﬁfH|]- Il |l

Gice1Vk _ 21135 1 g A
Ay Vi (diyi)?

By taking |l g1 |l common, and we replace 8, from (17), and suppose that

_QE+ 19k+1
Grdy,

+ |6, |

< llgeall + [Il—ﬁ'kl- ]-"dk |

H g
a_ll_gkl k-l-i E+1 " I;I:”
and
T
— e 2lly 1% 5k+1dk
b =16, | |7 — = 55 | e
Then we get

"dk+1" = (1 +a+ b]"gﬁ:+1”

We denote ¢ = (1 +a + b)

"dﬁ:+1" =cC ".gk+1”
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Hence, $poy—— = —— Sy 1 = o
P

Where ||gx+1 1l = ¥, from Assumption (5.2)

S limoinfl|lgee,ll =0
Fe— oo

Numerical Resulted

This section presents the numerical performance of our newly suggested ,.Y*=
conjugate gradient method, implemented in FORTRAN, on a collection of 68
unconstrained large-scale optimization problems sourced from references [27]
and [28]. These issues are examined in their expanded or generalized versions.
Each test issue was addressed with differing quantities of variables, ranging from
n = 100 to 1000. The performance of the 57" algorithm is compared with two
well-known methods (£%%)and (B°*). All algorithms were implemented under
the same conditions, using the standard Wolfe line search, with parameters

p=10"* and o = 0.9 the initial step size was defined as a; = m , for all

subsequent iterations k > 1, the step size was updated using a; = a;_- (—"ﬁ_ﬁ")-
k

All implementations were written in double precision FORTRAN (2000) and
compiled using F77 with default compiler settings. The original code, written by
Andrei, was modified by us to suit our proposed method. The stopping criterion
used in all cases was the ||g. ||, = 107 and the maximum number of iterations is
1000. The comparison focused on three main performance indicators:

iter-Number of iterations.

fg-Number of function and gradient evaluations.

COP time-Execution time in seconds.

Figures 1,2, and 3 illustrate the performance of the compared methods across all
68 test problems. The results are presented using performance profiles following
the methodology of Dolan and More [29], which plot the proportion pp of
problems for which a method is within a factor t\tau of the best result for each
metric (iterations, evaluations, and time).
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FIGURE 1. Performance profiles derived from iterations (NOI).

The left side of the figure illustrates the percentage of test problems for which
each method exhibited the fastest performance, whereas the right side displays the
percentage of problems successfully solved that achieved the highest number of
solutions within a factor t of optimal performance, considering iterations,
function and gradient evaluations, and computational time.

Porformance Prafle depancing on NOF

FIGURE 2- Performance profiles based on number of function

evaluations (NOF).
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FIGURE 3- Performance profiles based on processing time
(CPU time spent - TIME).

conclusion

This study assessed the efficacy of the Dixon and Zhang-Hager algorithms in
addressing unconstrained optimization issues using conjugate gradient
techniques. The numerical findings indicated that both methods are efficient, with
the Zhang-Hager algorithm excelling in some functions regarding iteration count
and computing time. This work underscores the significance of selecting the
suitable algorithm according to the function's characteristics and paves the way
for future advancements aimed at reducing computing costs and enhancing
stability.
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