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H I G H L I G H T S  
 

A B S T R A C T  

 A PID-based sliding surface ensures 

exponential convergence of the system's 

trajectory to zero.   

 Combines PID precision with SMC 

robustness for enhanced stability against 

disturbances.   

 Achieves finite-time stability, improving 

efficiency and responsiveness to 

disruptions.   

 Integrates SMC with FTS for faster 

convergence, reduced errors, and 

smoother performance.   

 Resists disturbances effectively, enabling 

rapid stabilization in unstable conditions. 

 In this paper, the application of Sliding Mode Control (SMC) and its integration 

with Finite-Time Stability (FTS) for controlling 1-degree of-freedom (DOF) 

system has been explored. By combining FTS with SMC, the convergence speed 

is significantly improved, enhancing the system's resistance to external 

disturbances. This paper demonstrates a detailed comparative study on the 

application of SMC based on FTS with a SMC, and with conventional-PID (C-

PID). The SMC developed in this paper is based on a PID controller to ensure that 

the system's trajectory converges exponentially to zero. The results show that using 

SMC with FTS provides faster and more reliable system stability compared to the 

other two methods. The comparison also includes the utilization of different 

functions in the developed SMC, such as sign, tan, and saturation functions. The 

effects of disturbance and uncertainty have been considered as well. The results 

show that using SMC with FTS significantly outperforms SMC without FTS and 

the C-PID in all cases; the achieved Settling Time of SMC with FTS is 

approximately 1.5 seconds, compared to 4 seconds for the Conventional PID (C-

PID) controller. This represents a 62.5% improvement in response speed. The 

reduction in Overshoot for the C-PID controller is around 15%, while using SMC 

with an FTS controller reduces the overshoot value to just 3%, indicating an 80% 

improvement in overshoot and demonstrating enhanced stability and performance. 

Keywords:  
Sliding mode controller (SMC); Conventional 

PID (C-PID); Finite time stability (FTS); 1-

Degree of freedom (1-DOF). 

1. Introduction 

The sliding mode control (SMC) methodology is widely regarded as a robust control approach for complex, high-order 

nonlinear systems, especially in scenarios characterized by parametric uncertainties and external disturbances [1]. In the SMC 

structure, there are two stages (phases) of operation: the reaching stage and the sliding stage. During the reaching stage, the 

system states' trajectories are driven to the sliding surface, and then the states move toward the origin asymptotically [2]. Despite 

its early inception, variable structure systems did not initially gain significant traction in control engineering due to the 

implementation challenges, particularly issues related to chattering phenomena in sensors, actuators, and switching mechanisms. 

Nonetheless, SMC offers distinct advantages, notably its capacity to alter the dynamic behavior of a system by appropriately 

selecting a switching function, thereby rendering the closed-loop response insensitive to matched uncertainties. This inherent 

robustness has piqued the interest of researchers, driving advancements in SMC methodologies [3]. Recent progress in SMC 

design has centered on critical challenges such as the mitigation of chattering, compensation for unstructured dynamics, 

adaptability in the face of system uncertainties, and the enhancement of closed-loop dynamic performance [4]. A key advantage 

of SMC over traditional linear control strategies, such as Proportional-Integral-Derivative (PID) control, lies in its ability to 

ensure stability and robust performance in environments where PID control may fail, particularly under conditions of uncertainty 

[5]. The sliding mode controller (SMC) ensures system stability within a defined range by confining the state to an invariant set, 

preventing it from exceeding this boundary. This range is determined by initial conditions and design parameters, enabling 

precise control of system behavior and reducing steady-state errors [6]. Currently, sliding mode controllers have successfully 

been applied to a wide range of practical systems such as robot manipulators, aircraft, underwater vehicles, spacecraft, flexible 

space structures, power electronics, control of electric drives, doubly fed induction generators, robotics, and automotive engines 
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http://doi.org/10.30684/etj.2025.155004.1842
http://creativecommons.org/licenses/by/4.0
mailto:samarahassan60@gmail.com
https://orcid.org/0009-0003-6040-9238
https://orcid.org/0000-0003-1600-8587
https://crossmark.crossref.org/dialog/?doi=10.30684/etj.2025.155004.1842&domain=pdf&date_stamp=2025-03-10


Samara H. Al-dahlaky & Safanah M. Raafat Engineering and Technology Journal 43 (08) (2025) 607-630 

 

608 

 

 

[7], [8-10]. The rationale for employing SMC in these areas is grounded in its superior performance in managing nonlinear 

systems, its suitability for multiple-input multiple-output (MIMO) systems, and its applicability to discrete-time systems when 

appropriately designed [11]. SMC consistently delivers outstanding performance in the presence of bounded uncertainties, 

external disturbances, and unmodeled dynamics, outperforming established techniques such as robust adaptive control [12], H-

infinity control [13], and backstepping control [14].  

In the field of dynamic systems control, Finite-Time Stability (FTS) was developed in response to the need to enhance 

convergence speed and ensure system stability within a predefined time frame. While Sliding Mode Control (SMC) offers 

significant robustness and strong stability when dealing with complex nonlinear systems, one of its fundamental limitations is 

the potentially slow convergence toward the desired steady state. This issue is particularly pronounced in cases of asymptotic 

stability, where the convergence time may extend to infinity [15,16]. To overcome this limitation, the concept of FTS was 

introduced, ensuring that the system states reach the desired equilibrium within a specified time. This improvement not only 

accelerates the convergence process but also enhances the system's robustness against external disturbances and uncertainties. 

Compared to traditional asymptotic stability, FTS provides faster convergence and superior disturbance rejection, making it a 

highly desirable attribute in control systems [17,18]. By integrating FTS with SMC, researchers have been able to design hybrid 

control strategies that combine the robustness of SMC with the accelerated convergence offered by FTS [15]. This integration 

allows for the development of control systems that not only ensure strong stability but also guarantee that the system reaches the 

desired state within a predetermined time, even in the presence of external disturbances and system uncertainties. These 

enhancements have made SMC more effective in applications where time-critical performance is essential, such as aerospace, 

robotics, and power electronics [19-22]. The introduction of FTS into SMC has significantly improved convergence speed, 

resulting in faster and more reliable system responses. In scenarios involving actuator saturation or time delays, which are 

common in practical systems, the integration of FTS into SMC helps mitigate the potential negative impacts of these non-

idealities, ensuring rapid and dependable system responses [15-22].  

Disturbances and uncertainties destabilize conventional PID (C-PID) systems, causing significant oscillations. In contrast, 

SMC and SMC with FTS greatly enhance stability by effectively mitigating these effects. The primary challenges faced by a 

system lie in its ability to handle disturbances and uncertainties associated with nonlinear systems. Sliding Mode Control (SMC) 

is an effective strategy for this class of systems; however, it encounters significant obstacles, such as chattering phenomena 

caused by the rapid switching of controllers, which can negatively impact system performance. This challenge becomes more 

pronounced in applications that require fast and precise responses, such as robotics, power electronics, and aviation systems. To 

overcome these obstacles, a combined approach integrating Finite-Time Stability (FTS) with SMC has been developed, leading 

to significant improvements in the system's convergence speed and its ability to resist disturbances and uncertainties. This 

integration improves system stability and enhances its efficiency in managing challenging operational conditions [23,24]. 

This paper aims to design a controller based on SMC-integrated FTS for a 1-DOF system. This approach combines the 

robustness of SMC with the fast convergence properties of FTS, ensuring that the system reaches the desired state within a finite 

time despite the presence of uncertainties or external disturbances. The goal of this design is to enhance system stability and 

performance, especially in the presence of disturbances and uncertainties. It focuses on comparisons conducted between the 

performance of C-PID, SMC, and SMC with FTS under the influence of disturbances and uncertainties.  

2. Modelling a 1-DOF manipulator 

A 1-DOF manipulator, also known as a single-joint robotic arm, is a fundamental example in robotics, as shown in Figure 

1. This section will provide a detailed explanation of the modeling process, including the derivation of the equations of motion 

and visual illustrations. The following parameters are considered in the modeling of a 1-DOF manipulator [25]: 
𝑚:Mass of the link (kg), 𝑙:  Length of the link (m), 𝐼: Moment of inertia of the link about the pivot point (kg.m²), 𝑔: Acceleration 

due to gravity (m/s²), 𝜃: Angular position of the link (rad), τ: Applied torque at the joint (Nm). 

 

Figure 1: 1-DOF manipulator [25] 
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For a 1-DOF manipulator, the kinematic Equations (1-3) describe the relationship between the angular position 𝜃 angular 

velocity 𝜃̇ and angular acceleration  𝜃̈ of the link [25]: 

 𝜃 =  𝜃(𝑡) (1) 

 𝜃̇ =
 𝑑𝜃

𝑑𝑡
  (2) 

  𝜃̈ =
𝑑2𝜃

𝑑2𝑡
  (3) 

The dynamics of the manipulator shown in Equations below from (4) to (12) can be derived using the Lagrangian method, 

which involves calculating the system's kinetic and potential energies and then applying the Euler-Lagrange equation. 
The center of mass of the link moves in a circular path, so its velocity ( 𝑣 ) is given by [25]: 

 𝑣 =  
𝑙

2
𝜃̇    (4) 

Thus, the translational kinetic energy ( 𝑇𝑡) is:  

 𝑇𝑡 =  
𝑙

2
𝑚 (

𝑙

2
𝜃̇  )2 =

1

8
𝑚 𝑙2𝜃̇2 (5) 

The rotational kinetic energy ( 𝑇𝑟) is: 

 𝑇𝑟 =  
𝑙

2
𝐼𝜃̇ (6) 

The total kinetic energy ( 𝑇 ) is: 

 𝑇 =  𝑇𝑡 +  𝑇𝑟 =
1

8
𝑚 𝑙2𝜃̇2 +   

𝑙

2
𝐼𝜃̇ (7) 

The potential energy ( 𝑉 ) due to gravity is: 

 𝑉 =  𝑚𝑔 
1

2
𝑐𝑜𝑠(𝜃) (8) 

The Lagrangian ( 𝐿 ) is defined as the difference between the kinetic and potential energies: 

 𝐿 =  𝑇 −  𝑉 = ( 
1

8
𝑚 𝑙2 +   

𝑙

2
𝐼) 𝜃̇2 −  𝑚𝑔 

1

2
𝑐𝑜𝑠(𝜃) (9) 

The equation of motion is obtained using the Euler-Lagrange equation: 

 
𝑑

𝑑𝑡
(

∂L

∂𝜃̇
) − 

∂L

∂𝜃
=  𝜏  (10) 

Accordingly compute the partial derivatives: 

 
∂L

∂𝜃̇
 = (

1

4
𝑚 𝑙2 +   𝐼)𝜃̇ (11.a) 

 
𝑑

𝑑𝑡
(

∂L

∂𝜃̇
) = (

1

4
𝑚 𝑙2 +   𝐼)𝜃̈ (11.b) 

 
∂L

∂𝜃
=  𝑚𝑔

1

2
𝑠𝑖𝑛(𝜃) (11.c) 

Then, by substituting in Equation (12), the final equation of motion for the 1-DOF manipulator is: 

 (
1

4
𝑚 𝑙2 +   𝐼) 𝜃̈ + 𝑚𝑔

1

2
𝑠𝑖𝑛(𝜃) = τ  (12) 

This equation describes the relationship between the applied torque τ, the angular position 𝜃, and its derivatives for the 1-

DOF manipulator. It will be used for further analysis and control design. 
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3. Applied controller design 

In this paper, the development of the sliding surface is based on PID control principle. This approach will ensure that the 

system's trajectory converges exponentially to zero by incorporating proportional, integral, and derivative components. This 

method enhances system robustness by improving response to disturbances and uncertainties. 

3.1 Conventional PID (C-PID) 

The general equation for a Conventional PID controller is given by: 

 u(t) =  Kpe(t) +  Ki∫ e(t)dt +  Kd
𝑑𝑒(𝑡)

𝑑𝑡
 (13) 

where: u(t) is the control input, 𝑒(𝑡) is the error between the desired and actual system output, 𝐾𝑝 , 𝐾𝑖 , 𝑎𝑛𝑑  𝐾𝑑   are the 

proportional, integral, and derivative gains, respectively.  

3.2 SMC and SMC with FTS-based on PID controller    

The integration of Sliding Mode Control (SMC) with PID combines the robustness of SMC against disturbances and 

uncertainties with the smooth response of PID, reducing chattering and improving system stability. This hybrid approach ensures 

faster convergence and better performance in dynamic systems [26]. Three types of nonlinear functions are used in the control 

law for illustrative comparison. The applied three functions will be Sign function, Sat function, and Tan function. 

3.2.1 The applied Sliding Mode Control (SMC): 

The fundamental elements of the developed SMC are outlined below, and the block diagram is shown in Figure 2. 

 

Figure 2: Block diagram of SMC Controller for 1-DOF manipulator 

The Sliding Surface Design is mathematically expressed as [26]: 

 𝑠 = 𝐾𝑝 ⋅ 𝑒 + 𝐾𝑖 ⋅ ∫ 𝑒 𝑑𝑡 + 𝐾𝑑 ⋅ 𝑒̇  (14) 

where (𝑒 = 𝜃𝑑 − 𝜃) is the error between the desired and actual system position, (𝑒̇ = 𝜃𝑑̇ − 𝜃̇) is the error in velocity 

and 𝐾𝑝, 𝐾𝑖  𝑎𝑛𝑑 𝐾𝑑 are the control parameters representing proportional, integral, and derivative components, respectively. This 

formulation ensures that when the system trajectory lies on this surface, the error converges exponentially to zero. This sliding 

surface combines the advantages of PID control with the robustness of Sliding Mode Control (SMC). By incorporating the 

proportional, integral, and derivative terms, the sliding surface (s) not only helps minimize the error but also improves the 

system’s response to disturbances and uncertainties. The proportional term 𝐾𝑝 ⋅ e provides immediate response to errors, the 

integral term 𝐾𝑖 ⋅ ∫ e dt eliminates steady-state errors, and the derivative term  𝐾𝑑 ⋅ e  reduces overshoot and oscillations, leading 

to a smoother and more stable system performance. 

The control input u in SMC is typically designed to drive the system towards the sliding surface s=0. A general form of the 

SMC control law is: 

 𝑢 = ℎ ⋅ 𝜙(𝑠) (15) 

where ℎ the gain that controls the strength of the sliding mode control action. Three types of nonlinear functions are used in the 

control law for illustrative comparison. The Sign, Sat, and Tan functions are used in PID-based SMC to enforce the sliding 

condition, ensuring the system reaches the sliding surface quickly and maintains stability. The PID-based sliding ensures smooth 

convergence, while the nonlinear functions enhance robustness and reduce chattering. This combination improves system 

performance in the presence of disturbances and uncertainties. The applied three functions will be 𝜙(𝑠) The sliding mode 

function, which can be Sign function(𝜙(𝑠) = 𝑠𝑖𝑔𝑛(𝑠)), Saturation function( 𝜙(𝑠) = 𝑠𝑎𝑡(𝑠, 𝛿)), and Tangent function (𝜙(𝑠) =
𝑡𝑎𝑛(𝑇, 𝑠)). 

δ is the saturation level limits the control, which signals to prevent over-actuation. It enhances system stability by reducing 

oscillations. The saturation function limits the control input s to a level δ. 𝑇 the scaling factor used to modify the value of (s) 

before applying the tangent function. It provides flexibility in control by offering a nonlinear response that can be adjusted to 

improve system performance. SMC Term ℎ ⋅ 𝜙(𝑠) Drives the system towards the sliding surface by applying a control force that 
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adjusts based on the sliding surface (s). The choice of ℎ ⋅ 𝜙(𝑠) affects the behavior of the control action, where the sign function 

provides a robust but potentially chattering-prone response, the saturation function limits control efforts to reduce chattering, 

and the tangent function offers a smooth, nonlinear control response. The control input τ\𝑡𝑎𝑢𝜏 is applied to the dynamic model 

in Equation (11). 

3.2.2 Finite-time stability (FTS) 

Finite-Time Stability (FTS) ensures that the system reaches the desired state s=0 within a finite time rather than 

asymptotically approaching it as in typical control systems. The control input u is modified to include a term that guarantees 

finite-time convergence: 

 𝑢 = 𝜇𝑠  (16) 

where: 

 𝜇𝑠 =∣ 𝑠 ∣𝑝⋅ 𝑠𝑖𝑔𝑛(𝑠) (17) 

𝜇𝑠 term introduces a nonlinear control effort that increases as the sliding surface s moves away from zero, ensuring that the 

system converges to s=0 within a finite time. p: fractional exponent (0 < p < 10) that controls the rate of convergence. Smaller 

values of p lead to faster convergence but may also induce more aggressive control actions. 

FTS Term 𝜇𝑠 drives the system to the sliding surface in a finite amount of time, providing robustness against disturbances 

and ensuring that the control system reacts promptly to errors. The finite-time convergence property is particularly useful in 

applications requiring quick stabilization. 

3.2.3 Designing a controller based on sliding mode control with finite-time Stability (SMC with FTS) for a 1-DOF System 

To design a controller with both SMC and FTS, as shown in Figure 3, the control law is designed to include both the SMC 

term and the FTS term: 

 𝑢 = ℎ ⋅ 𝜙(𝑠) + 𝜇𝑠  (18) 

This control law provides a robust and responsive control strategy that ensures finite-time convergence to the desired state, 

making it suitable for applications where both precision and speed are critical. 

 

Figure 3: block diagram of SMC with FTS controller for 1-DOF manipulator 

The system's stability under FTS can be analyzed using a Lyapunov function: 

 𝑉(𝑠) =
1

2
𝑠2  (19) 

where s is given in Equation (14) and 𝑠̇ is:  

 𝑠̇ = 𝐾𝑝 ⋅ 𝑒̇ + 𝐾𝑖 ∙ 𝑒  + 𝐾𝑑 ⋅ 𝑒̈  (20) 

Substituting this into the derivative of the Lyapunov function: 

   𝑉̇(𝑠) = 𝑠 ∙ (Kp ⋅ 𝑒̇ + Ki ∙ e  + Kd ⋅ 𝑒̈ )  (21) 

For stability, we need  𝑉̇(𝑠) to be negative definite. This can be achieved if the control law is designed in such a way that 

𝑠 ⋅ 𝑠˙ < 0, ensuring that the system energy decreases and the sliding surface reaches zero in finite time. 

The negative definiteness of the Lyapunov function's derivative guarantees finite-time stability, ensuring that the system 

converges to the equilibrium point (i.e., s=0) within a finite amount of time. Therefore, the second derivative of the system must 

always be negative, leading to decreasing energy. 
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4. Simulation 

The simulation is designed using MATLAB, and the reference trajectory is a low-frequency, low-amplitude sinusoidal 

signal. To investigate the performance of the three developed controllers, we started by applying the signal in Equation (22) 

using the parameters in Table 1 to the 1 DOF manipulator:   

 𝑞𝑡 = 0.001 sin(0.05𝜋𝑡)  (22) 

Table 1: The applied gains in the simulation 

Gain Value 

h 0.5 

𝐾𝑝 400 

𝐾𝑖 0.0001 

𝐾𝑑 10 

𝛿 0.02 

𝑇 0.5 

 

It can be noticed In Figure 4(a) that the performance of the controlled system using a C-PID controller is unsatisfactory. The 

system exhibits noticeable oscillations, a longer settling time, and potential overshoot. These characteristics indicate a slower 

response to deviations and less robust stability. In Figure 4(b), the implementation of Sliding Mode Control (SMC) demonstrates 

a significant improvement in system stability compared to the C-PID controller. SMC effectively reduces oscillations and 

accelerates the transition to a stable state, showcasing a more robust response to disturbances. The sliding mode mechanism 

ensures that the system adapts quickly and maintains stability even under varying conditions. Finally, in Figure 4(c), the 

combination of SMC with Finite-Time Stability (FTS) achieves the highest level of stability. The system reaches equilibrium 

rapidly without noticeable oscillations or overshoots. The integration of FTS into the SMC framework significantly enhances its 

performance, ensuring that the system achieves stability within a predefined time frame and efficiently mitigates the impact of 

disturbances. 

In Figure 5(a), the control signals generated by C-PID may be oscillatory and unstable. This indicates that the C-PID 

controller exerts considerable effort to maintain system stability. Oscillations can be reduced by better tuning the parameters, 

but the challenge remains significant in more complex systems. In Figure 5(b), The control signals generated by SMC are more 

stable and less oscillatory than those produced by C-PID. This indicates that SMC can maintain system stability with less effort. 

SMC provides stable and smooth control signals, reducing oscillations and enhancing overall system stability. In Figure 5(c), 

the control signals generated by SMC with FTS are the most stable and smooth. The system shows a high capacity to respond 

efficiently with high stability. FTS works to enhance the stability of control signals further, ensuring the system operates 

smoothly and reduces the effort required to  maintain stability. 

In Figure 6(a), the system suffers from noticeable oscillations in error, indicating that the system is not sufficiently stable 

under C-PID control. In Figure 6(b), SMC significantly reduces the error and shows higher stability. The system quickly reaches 

a stable error value without significant oscillations. SMC greatly improves system stability by reducing error oscillations and 

maintaining system stability. In Figure 6(c), SMC with FTS reduces the error to a minimum, reflecting high stability and precision 

in control. FTS enhances the performance of SMC by ensuring that the error is corrected quickly and that the system maintains 

precise stability. 

Figures 7 (a, b, and c) shows the sliding surface s versus its derivative s˙ over time for the sliding mode control (SMC) 

strategy using three functions for sign, tan, and sat respectively. The plot helps visualize the dynamics of the control system in 

the sliding mode. Using the sign-based SMC, the trajectory exhibits noticeable oscillations before settling down. The presence 

of oscillations is a result of the switching nature of the sign function, which causes chattering. Chattering is a common issue in 

sign-based SMC and can lead to wear and tear in practical applications. However, the plot shows that the system eventually 

stabilizes, suggesting that despite the initial oscillations, the control system achieves stability over time. Using the tan-based 

SMC provides a balance between control effort and stability, making it a suitable choice for applications where reduced 

chattering and smooth control are important. The saturation (sat) and tangent (tan) functions reduce chattering in Sliding Mode 

Control (SMC) by replacing the abrupt switching of the sign function with smooth transitions. The sat function limits control 

input within a threshold, while the tan function provides a gradual, nonlinear response, both minimizing high-frequency 

oscillations and improving system stability. This results in smoother, more reliable control in practical applications. Using the 

sat-based SMC can be considered the best choice based on the following reasons: 

 High Stability: The system exhibits high stability with very minimal oscillations. 

 Smooth Response: The control provides a smooth response without abrupt changes in the control input. 

 Reduced Vibrations: The saturation function reduces mechanical vibrations that could cause wear and tear in real systems. 

 Achieving Control Objectives: The system effectively achieves the control objective of driving the error to zero. 
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(a) 

 
(b) 

 
(c) 

Figure 4: Joint position from a) C-PID b) SMC c) SMC with FTS controllers 
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(a) 

 
(b) 

 
(c) 

Figure 5: Control input from a) C-PID b) SMC c) SMC with FTS controllers 
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(a) 

 
(b) 

 
(c) 

Figure 6: Joint error from a) C-PID b) SMC c) SMC with FTS controllers 
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(a) 

 
(b) 

 
(c) 

Figure 7: 3D plot for sliding surface  from SMC controller with functions (a) sign, (b) tan, (c) sat 
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Compared to other control strategies like the sign or tan functions, the sat-based control provides an excellent balance 

between speed and stability, making it an ideal choice for many practical applications. 

This 3D plots shown in Figures 8 (a, b, and c) for represent the sliding surface s versus its derivative s˙ over time for the 

sliding mode control (SMC) with FTS strategy using three functions for sign, tan, and sat, respectively. Using the sat provides 

controlled convergence but with limited flexibility due to the imposed control limits. Sign function ensures rapid convergence 

but at the cost of potential chattering. Tan function offers a smooth and effective control strategy that mitigates chattering while 

maintaining robust performance. Each control strategy has its trade-offs, but the integration of FTS generally ensures that the 

system achieves the desired state reliably and within a specified time frame, making the system more predictable and stable in 

complex applications. 

 
(a) 

 
(b) 

 
(c) 

Figure 8: 3D plot for sliding surface from SMC and FTS controller with functions (a) sign, (b) tan, (c) sat 

4.1 Investigation of the effects of disturbances 

By adding disturbances, we have tested the system’s ability to maintain stability in a realistic environment and achieved 

significant improvements in performance, especially with the integration of techniques like SMC with Finite-Time Stability 

(FTS). The External Disturbance is: 

 𝑡𝑎𝑢𝑒𝑥 =  0.1 ∗ sin(0.5 ∗  𝑝𝑖 ∗  𝑡) (23) 

4.1.1 C-PID 

Figure 9 (a joint position, b control input, c joint error) shows that the system is significantly affected by disturbance and 

shows large oscillations in position, control inputs, and error.   
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(a)  

 
 

(b) 

 
(c) 

Figure 9: )C-PID( controller with disturbance a) joint position b) control input c) joint error 

4.1.2 SMC 

In Figure 10(a joint position, b control input, c joint error), SMC shows a better ability to resist disturbance, reduce 

oscillations, and improve system stability. SMC significantly enhances system stability even in the presence of disturbances by 

responding strongly and quickly to changes.  

The 3D sliding surface plots in Figure 11 illustrate the impact of different functions within the SMC controller under 

disturbance. Figure 11a shows all functions, 11b–c depict the sign function, 11d–e are for the tan function, and 11f–g are for the 

sat function. These variations highlight differences in stability and performance. This 3D plot effectively demonstrates the 

robustness of the SMC controller in the presence of disturbances. The trajectory eventually stabilizes, showing the system's 

ability to resist disturbances and maintain control. The specific shape of the trajectory depends on the function used within the 

SMC strategy, with smoother functions (like sat or tan) generally leading to better performance in terms of reducing chattering 

and achieving quicker stabilization. Chattering and trajectory shape are influenced by the function type used in the SMC. The 

"sign" function would typically be caused by more pronounced oscillations or chattering, which can be seen as more erratic 

movements in the trajectory.  Smoother Convergence: The use of the "sat" or "tan" functions typically leads to smoother control 

actions, which are reflected in the more controlled and less oscillatory paths in the 3D plot. Disturbance Compensation: The 

initial oscillations are due to the system's response to the disturbance. As the controller works to negate the disturbance, the 

trajectory smoothens, indicating that the system is successfully compensating for the external perturbations. 
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(a) 

 
(b) 

 
(c) 

Figure 10: SMC controller with disturbance, a) joint position b) control input, c) joint error 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 11: 3D plot for sliding surface  from SMC controller with disturbance for (a, all functions) ,(b,c) sign (d,e) tan and (f,g) sat 
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4.1.3 SMC with FTS and disturbance 

In Figure 12(a joint position b,c control input, and d joint error) SMC with FTS shows exceptional performance in handling 

disturbances, ensuring rapid and accurate system stability. FTS strengthens SMC's ability to deal with disturbances effectively, 

making the system stabilize quickly without significant overshoot or oscillations. 

Figure 13 shows the controller's response and disturbance effects. It compares different functions: (a) all functions, (b, c) 

sign, (d, e) tan, and (f, g) sat, highlighting their impact on sliding dynamics. The system shows a much more controlled and 

stable trajectory compared to Figure 11. The 3D plot reveals that the sliding surface (s) and its derivative (ds) converge more 

smoothly and rapidly toward stability despite the presence of disturbances. The oscillations observed in the trajectory are 

significantly reduced compared to those in Figure 11, indicating that the Finite-Time Stability (FTS) controller enhances the 

SMC’s ability to handle disturbances more effectively. The addition of FTS to the SMC results in a marked improvement in 

system stability. The system not only resists the disturbances but also rapidly converges to a stable state without significant 

overshoot or prolonged oscillations. The combination of SMC and FTS works to minimize chattering. The smoother trajectory 

observed in the 3D plot suggests that the control strategy effectively dampens high-frequency oscillations, which is a common 

issue in traditional SMC. The trajectory in Figure 13 is more stable and exhibits fewer oscillations than that in Figure 11. This is 

due to the FTS component, which ensures that the system reaches a stable state within a finite and predetermined time frame. As 

a result, the system responds more predictably and efficiently to disturbances. The smoother convergence towards the desired 

sliding surface indicates that the FTS controller provides a more robust control mechanism, effectively dealing with disturbances 

while maintaining system stability. 

  
(a) (b) 

  

(c ) (d) 

Figure 12: SMC with FTS controller with disturbance a) joint position b,c) control input d) joint error 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 13: 3D plot for sliding surface  from SMC with its controller and  disturbance for (a, all functions) and (b,c)  

                    sign (d,e) tan, (f,g) sat 
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4.2 Considering the effects of both disturbance and uncertainty 

The addition of uncertainty to the system helps in understanding how well the control method can handle unpredictable 

conditions: 

 𝑀 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀1𝐷𝑂𝐹(𝑞)
∗ (1 +  0.1 ∗  𝑟𝑎𝑛𝑑𝑛);  % 𝐴𝑑𝑑𝑖𝑛𝑔 10% 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  (24) 

 𝐶 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶1𝐷𝑂𝐹(𝑞,𝑑𝑞)
∗ (1 +  0.1 ∗  𝑟𝑎𝑛𝑑𝑛);  % 𝐴𝑑𝑑𝑖𝑛𝑔 10% 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (25) 

4.2.1 C-PID 

Figure 14 (a joint position, b control input, c joint error)  shows that the system suffers greatly under the influence of 

disturbance and uncertainty, leading to significant oscillations and loss of stability. 

  
(a) (b) 

 
(c) 

Figure 14: C-PID controller with (disturbance and uncertainty) a) joint position b) control input c) joint error 

4.2.2 SMC 

Figures 15(a joint position, b control input, and c joint error) show that SMC performs better than C-PID under these 

conditions, reducing the impact of disturbance and uncertainty on the system. Thanks to its effective response to changes and 

disturbances, SMC maintains stability even in uncertain conditions. 

The pronounced oscillations and less smooth convergence are evident in Figure 16(a) for all functions, (b, c) for sign, (d, e) 

for tan, and (f, g) for sat. These effects are due to the combined effects of disturbance and uncertainty. The SMC controller is 

trying to compensate for these effects, but the additional uncertainty makes it harder to achieve a smooth trajectory. The SMC's 

robustness helps eventually stabilize the system, but the trajectory's initial instability highlights the challenge of controlling a 

system with both disturbances and uncertainties. Figure 16 demonstrates the effectiveness of the SMC controller in dealing with 

a system affected by both disturbance and uncertainty. While the system does achieve stability, the process is more turbulent 
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compared to situations with fewer external factors. This figure emphasizes the challenges posed by combined disturbances and 

uncertainties, where achieving a smooth and stable trajectory becomes more difficult. 

 
(a) 

 
(b) 

 
(c) 

Figure 15: SMC controller with(disturbance and uncertainty) a) joint position b) control input c) joint error 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 16: 3D plot for sliding surface  from SMC controller (disturbance and uncertainty) for (a, all functions) and (b,c) sign 

                   (d,e) tan, (f,g) sat 
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4.2.3 SMC with FTS 

Figure 17(a joint position b,c control input, and d joint error) shows the highest level of stability under these conditions when 
using SMC with FTS. The system responds quickly and reaches a stable state without significant oscillations. FTS enhances 
SMC's ability to handle difficult conditions like disturbances and uncertainty, making the system more stable and efficient. 

Figure 18 shows 3D plot for sliding surface  from SMC with its  controller, where 18(a) is for all functions, (b) and (c) are 
for sign, (d) and (e) are for tan, and in (f) and (g) are for sat. the trajectory indicates that the system maintains a more controlled 
and stable path compared to Figure 16. The Finite-Time Stability (FTS) controller integrated with the SMC helps in achieving 
rapid convergence and reduces the effects of both disturbance and uncertainty on the system's performance. The trajectory in 
Figure 18 is smoother and demonstrates fewer oscillations, showing the robustness of the SMC with FTS in managing these 
challenges. The combination of SMC with FTS significantly enhances the system's stability, even under adverse conditions of 
disturbance and uncertainty. The system quickly converges to a stable state, with minimal chattering and reduced oscillations. 
The FTS component ensures that the system not only stabilizes within a finite time but also minimizes high-frequency 
oscillations. This results in a more predictable and stable trajectory, as seen in Figure 18. The smoother trajectory in Figure 18 
compared to Figure 16 can be attributed to the FTS component, which helps the system reach a stable state more quickly and 
efficiently, even in the presence of uncertainties and disturbances. The integration of FTS with SMC provides a robust control 
mechanism that enhances the system's ability to handle external perturbations and uncertainties, resulting in a more stable and 
controlled trajectory. Figure 18 demonstrates that SMC with FTS is more effective in stabilizing the system under the combined 
effects of disturbance and uncertainty compared to SMC alone, as shown in Figure 16. The FTS controller provides better control 
by ensuring rapid convergence, reducing oscillations, and achieving a smoother and more stable trajectory. 

  
(a) (b) 

  

(c ) (d) 

Figure 17: SMC controller with FTS and (disturbance and uncertainty) a) joint position b,c) control input and d) joint error 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 18: 3D plot for sliding surface  from SMC with its  controller (disturbance and uncertainty) for (a, all functions) and  

           (b,c) sign  (d,e) tan, (f,g) sat 
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Based on the Root Mean Square Error (RMSE) results, a metric was used to assess the differences between actual and 
predicted values, and the system's accuracy in tracking the desired trajectory was evaluated. A lower RMSE indicates better 
system performance, as it reflects reduced errors and improved stability. In this study, the Sliding Mode Control (SMC) with 
Finite-Time Stability (FTS) demonstrated the lowest RMSE, as shown in Table (2). This confirms its superior capability in 
managing disturbances and uncertainties compared to other methods. Subsequently, the performance of the different applied 
controllers can be summarized as follows:  

- C-PID Controller: Performance declines significantly when disturbances are present, and while there's a slight improvement 
with added uncertainty, it remains less effective overall. 

- SMC Controller: Shows better performance than C-PID, particularly under disturbances, with lower RMSE values. 
However, performance remains relatively stable when uncertainty is introduced. 

SMC with FTS Controller: This delivers the best performance by significantly reducing RMSE in all conditions. The 
integration of FTS enhances the system's stability and effectiveness, even under disturbances and uncertainties, outperforming 
both C-PID and standard SMC. 

Table 2: Summary of the Simulation Results, using Root Mean Square Error RMSE for the three controllers 

Controller  (RMSE) 

C-PID 1.6878e-05 

SMC sign: 1.5186e-05 

tan: 2.7280e-07 

sat: 1.6146e-07 

SMC with FTS sign: 1.5186e-05 

tan: 2.7280e-07 

sat: 1.6146e-07 

C-PID - disturbance 0.9273 

SMC - disturbance sign: 9.6212e-05 

tan: 0.0054 

sat: 0.0053 

SMC with FTS - disturbance sign: 1.0085e-05 

tan: 0.0011 

sat: 9.9490e-04 

C-PID- (disturbance & uncertainty) 0.3683 

SMC - (disturbance & uncertainty) sign: 9.7016e-05 

tan: 0.0054 

sat: 0.0054 

SMC with FTS- (disturbance & uncertainty) sign: 1.0085e-05 

tan: 0.0011 

sat: 9.9490e-04 

5. Conclusion 

In conclusion, this study shows the effectiveness of combining Sliding Mode Control (SMC) with Finite-Time Stability 

(FTS) for a one-degree-of-freedom system. The results demonstrate that SMC with FTS performs much better than traditional 

PID controllers and standard SMC, especially in environments with disturbances. The use of FTS helps the system reach stability 

faster and within a set time, reducing oscillations and improving performance. Simulations show that SMC with FTS provides 

smoother control, reduces errors, and stabilizes the system more effectively, making it an appealing choice for applications that 

need quick and stable responses.  

Simulations confirm that SMC with FTS provides smoother control signals, reduced tracking errors, and faster stabilization 

compared to conventional methods. These improvements make it an ideal choice for applications requiring high precision and 

quick response times, such as robotics, aerospace, and power electronics. 

In future work, this study will be extended to 2-DOF manipulators, where additional challenges, such as increased 

complexity and coupling effects, will be addressed. Furthermore, intelligent and adaptive control strategies will be explored 

further to enhance system performance in dynamic and uncertain environments. 
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