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ABSTRACT: Video summarization has become a vital solution for handling the explosive growth of video data 

across domains such as surveillance, education, entertainment, and healthcare. As visual media increasingly 
dominate digital communication, users and systems alike require fast, semantically rich access to content without 
viewing entire videos. Deep learning has fundamentally transformed this task, enabling models to detect, rank, and 

condense relevant segments into concise summaries that retain meaning, context, and narrative coherence. 
However, this change is still hindered by some problems that keep coming back: the large variety of video formats 

and domains, the non-uniform temporal structures of the content, and the restricted scalability of annotated datasets 
that are used for supervised learning. However, the diversity of video sources, inconsistency in temporal structure, 
and limited access to labeled training data pose persistent challenges. Traditional frame-based models often suffer 

from redundancy and fragmented outputs, while supervised methods are constrained by annotation cost and 
domain generalization. Many summarization systems still under-address multimodal fusion, temporal alignment, 
and long-range semantic reasoning, and benchmark evaluations rarely account for cross -modal contributions or 

human subjectivity in summary preferences. This review offers a comprehensive and technically grounded survey 
of 46 deep learning-based approaches, organized around five foundational techniques: multimodal representation 

and fusion, segment/shot-level summarization, graph-based modeling, transformer architectures, and learning 
paradigms including supervised, unsupervised, and self-supervised frameworks. By structuring the discussion 
through architectural innovations rather than individual models or datasets, we identify core methodological 

patterns, highlight the evolution of learning strategies, and analyze the impact of unit granularity and modality 
integration on summarization quality. We conclude with an original synthesis of trends, research gaps, and future 
opportunities in real-time, hybrid, and label-free summarization design. Key results from our comparative analysis 

show that segment- or shot-based methods comprise over 70% of modern models, reflecting a broad shift away 
from frame-based summarization. Additionally, transformer-based architectures, often combined with GNNs or 

hierarchical encoders, have overtaken RNNs as the dominant sequence modeling strategy. Examples from our 
analysis include the observation that over 70% of recent models now incorporate segment - or shot-level units 
rather than isolated frames, while transformer-based architectures—often fused with GNNs or hierarchical 

encoders—have replaced RNNs as the dominant modeling paradigm. Similarly, our comparative tables reveal that 
intermediate fusion techniques consistently outperform early and late strategies, especially when paired with 
attention-based alignment.These results show what kind of architectural and learning design decisions 

implementation are features, which mean better coverage of semantics, higher scalability and performance—thus 
giving practical insights to the researchers and developers who work on the next generation of summarization 

systems. 
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1.   INTRODUCTION 

The rapid proliferation of video content across surveillance, social media, education, entertainment, and healthcare 

has created an urgent need for automatic summarization methods that deliver concise, semantically faithful surrogates 
of long videos [1]. We now accumulate billions of hours of footage annually—from security cameras and social 
platforms to classrooms, film, and clinical environments—making manual review infeasible [2, 3]. Consequently, this 

review discusses why video summarization matters, how the field has evolved from rule-based pipelines to learning-
driven approaches, and what questions this survey seeks to answer [4, 5]. The volume of online video continues to 
surge; for example, YouTube receives over 500 hours of uploads every minute, while municipalities stream extensive 

camera feeds for safety and traffic analytics, and schools, sports broadcasters, and news outlets generate both live and 
archived content [6-10]. 

This data deluge produces cognitive and infrastructural bottlenecks: manual processing is slow, labor-intensive, 
and error-prone. There is a clear demand for automated summarization that compresses content while preserving 
essential meaning and narrative continuity [11, 12]. Established techniques include keyframe extraction [13], shot-level 

segmentation [14], and dynamic skimming [15]. Modern applications span security [16], healthcare [17], media 
indexing [18], and video-based retrieval [19], all of which require models that are efficient, context-aware, and 
semantically coherent [20-22]. 

Earlier systems relied on handcrafted cues—motion intensity, shot boundaries, and histogram comparisons—that 
were often brittle and domain-dependent [23]. Although clustering, ranking, and heuristic rules could capture 

superficial importance, they struggled to generalize across video genres and user preferences and to capture deeper 
semantics or multimodal cues [24, 25]. 

Deep learning has substantially advanced video summarization by enabling end-to-end learning from raw inputs to 

summary outputs. Convolutional neural networks extract high-level spatial semantics (objects, actions, scene context) 
from frames [26, 27]. Recurrent architectures such as LSTMs extend this to temporal dependencies, modeling event 
evolution and scene transitions [28]. These capabilities are further enhanced by attention mechanisms and transformer 

architectures, which provide non-local, content-driven focus and scalable computation for long sequences [29]. 
This review presents a comprehensive, technically grounded survey of 46 deep learning–based approaches to video 

summarization, organized by architectural principles rather than by individual models or datasets. The analysis is 
structured around five pillars: (i) multimodal representation and fusion, (ii) segment/shot-level summarization, (iii) 
graph-based modeling, (iv) transformer architectures (including hybrid GNN–transformer designs), and (v) learning 

paradigms spanning supervised, unsupervised, and self-/weakly supervised methods. The goals are to (a) distill 
methodological patterns that drive semantic coverage and scalability, (b) quantify shifts in unit granularity (from 
frames to segments/shots) and sequence modeling (from RNNs to transformers), (c) assess fusion strategies and 

attention-based alignment, and (d) surface open problems in domain generalization, long-video reasoning, and real-time 
operation. The review concludes with actionable design guidelines and research opportunities for hybrid, label-

efficient, and deployment-ready summarization systems. 

2.   Focus of This Review 

This review focuses on the foundational techniques and architectural paradigms that shape deep learning -based 

video summarization. Rather than surveying model by model or dataset by dataset, we organize the review around five 
major methodological categories that reflect core innovations across the literature: 

 Self-supervised learning: techniques that enable models to learn summary-relevant features from unlabeled data, 

using tasks such as temporal order prediction, masked modeling, or contrastive learning. 

 Multimodal representation and fusion: combining visual, audio, and textual information to generate 
semantically rich, user-aligned summaries. 

 Graph-based modeling and reasoning: leveraging graph structures and neural message passing to model inter-
frame or inter-shot relationships for more globally optimized summarization. 

 Segment-aware and shot-level summarization: using temporal units that preserve local coherence and event 

boundaries to improve summary readability and user satisfaction. 
Transformer setups and attention tricks: using attention models to grab distant links and estimate fine-grained 

importance across full video sequences. Each part of this review uses these groups to give a structured, in -depth look at 

how today's summarization models are made, tested, and set up. 

3.   Research Gap and Contribution 

Despite notable progress in video summarization, existing literature remains fragmented. Most reviews focus 

narrowly on a single deep learning model type (e.g., CNN or Transformer), specific datasets, or teaching paradigms, 
without offering a unified comparison of network architectures, multimodal strategies, and temporal granularity. This 
leaves practitioners unclear about which models best fit different video types, user needs, or deployment contexts. 

A major gap lies in architecture-focused analysis. While primary studies detail individual models, few reviews 
compare the development and efficiency of CNNs, RNNs, Transformers, Graph Neural Networks (GNNs), and  hybrids. 
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Our work addresses this by classifying 46 contemporary approaches not only by timeline or dataset but also by design 
structure, revealing how architecture influences summarization quality, scalability, and modality alignment. 

Temporal granularity is also underexplored: over 70% of recent models now adopt segment- or shot-level 
summarization, which improves semantic coherence, reduces overlap, and boosts F1 scores on datasets such as TVSum 
and SumMe. 

Multimodal integration remains challenging. Few surveys systematically assess early, late, and intermediate 
fusion; our review shows intermediate fusion (e.g., co-attention, cross-modal transformers) often outperforms others, 

especially for asynchronous modalities. 
Learning paradigms receive uneven attention, with limited comparisons of supervised, unsupervised, and self-

supervised methods. We provide comparative tables (e.g., Table 6) outlining trade-offs, scalability, and proxy tasks in 

self-supervised learning. 
Finally, we highlight emerging hybrid designs—Transformer-GNN models, hierarchical temporal encoders, and 

streaming-oriented summarization—as promising solutions for real-time and low-resource scenarios. Our review 

delivers a panoramic, architecture-aware perspective, clarifying methodological trade-offs and future research 
directions. 

 

4.   Review Methodology 

This review systematically analyzed 46 peer-reviewed studies on deep learning-based video summarization 

published between 2018 and early 2024, sourced from IEEE Xplore, SpringerLink, ScienceDirect, and Google Scholar 
using keywords such as “video summarization deep learning,” “multimodal video summarization,” and “transformer 
video summarization.” Inclusion criteria required each paper to introduce a novel model or significant architectural 

extension, employ publicly available datasets (e.g., TVSum, SumMe, ActivityNet, YouTube-ASR), and report 
quantitative results (e.g., F1-score, AUC). Studies were evaluated across five dimensions: architecture type (CNN, 
RNN, Transformer, GNN, hybrid), modalities (visual, audio, text, multimodal), learning paradigm (supervised, 

unsupervised, self-supervised), datasets, and performance metrics. The analysis aimed to identify architectural trends, 
the role of multimodal integration, and the impact of segment- or shot-level modeling on summary quality, providing a 

comprehensive, comparable foundation for assessing state-of-the-art methods (see Table 1).  
 

Table 1 Summary of Reviewed Studies Displayed here is an excerpt from the comprehensive comparative 

table 
Ref. Architecture Modality Learning Type  Dataset Used Best Reported Result 

[30] CNN + LSTM Visual Supervised TVSum 59.2% F1 

[31] Transformer Visual + Audio Supervised SumMe 61.4% F1 

[32] GAT (Graph Attn) Visual Self-Supervised TVSum +5.2% F1 over baseline 

[33] BiLSTM Visual Self-Supervised Egocentric +3.8% F1 

[34] Hierarchical GNN Visual + Audio Self-Supervised ActivityNet  +4.7% F1 

[35] Transformer + GCN Visual + Text  Supervised SumMe 62.4% F1 

[36] Transformer Visual Masked Modeling TVSum +6.3% F1 

[37] CNN + DPP Visual Unsupervised SumMe Diversity gain +8% 

This structured methodology and detailed tabulation allow us to not only observe performance trends but also offer 
a clear mapping of architectural evolution and methodological strengths across the literature. 

 

5.   Limitations of Methodological Approaches  

Deep learning-based video summarization methods, as examined, have shown the ability to deliver great results, 

yet their ability to generalize across various video domains is still a major challenge. For instance, models that have 
been trained on selected datasets, like those consisting of cinematic or sports footage, may not be able to move 
effectively to areas that have different visual and temporal characteristics, such as low-resolution surveillance streams 

or pedagogical lecture videos. Besides, the differences in motion dynamics, scene complexity, and semantic richness 
may become a performance bottleneck when the method is used outside the training domain. This problem is very 
similar to what has been observed with other deep learning applications, such as medical imaging (e.g., multi-view 

COVID-19 X-ray diagnosis), where data characteristics that are specific to the domain have great influence on the 
accuracy of the model. To solve this constraint, one may have to deploy domain adaptation strategies, use multi-domain 
training datasets, or even resort to hybrid approaches that merge deep features with traditional summarization cues. 

 

6.   Evolution of Deep Learning-Based Video Summarization Techniques 

Video summarization has evolved from heuristic, handcrafted approaches to advanced deep learning -based 

methods. Early techniques relied on low-level features such as color histograms, motion vectors, and edge detection, 
often combined with clustering or graph-based algorithms to extract keyframes. While simple, these methods lacked the 

ability to capture high-level semantics or temporal context, resulting in less coherent summaries. The advent of 
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machine learning introduced supervised and unsupervised models that improved quality through feature learning but 
still depended on manual feature engineering or shallow architectures, limiting their ability to model complex temporal 

dependencies. Models like Hidden Markov Models (HMMs) and Support Vector Machines (SVMs) provided a 
foundation but struggled with diverse or lengthy videos. Deep learning transformed the field by enabling hierarchical 
feature learning directly from raw inputs. CNNs improved spatial feature extraction, while RNNs and LSTMs enhanced 

temporal modeling but faced issues like vanishing gradients and limited long-range dependency capture. Recently, 
transformer architectures with self-attention have emerged as the dominant paradigm, offering superior global context 

modeling, parallelism, and multimodal compatibility. This progression reflects a shift from local, handcrafted features 
to scalable, semantically rich, and adaptable data-driven representations suitable for modern video analysis tasks. 

 

7.   Background and Classical Foundations 

To get how video summarization came to be, we need to look at where it started with older ways of doing things 
and how they were tested. The first systems used things made by hand, grouping, and ways to cut up time. These older 

ways could do some basic summarization, but they didn't have the give or understanding that today's deep learning 
gives you. This part groups the types of summarization plans, talks about the old ways before deep learning, and shows 
the test setups and data that were used to judge video summarization systems. 

 
7.1  Definitions and Types of Summarizations 

Video summarization tries to make short versions of videos without losing the important parts. There are a few 
ways to sort out how these summaries are made. First off, you have extractive summarization. It just grabs bits and 
pieces straight from the video [38]. Then there's abstractive summarization that sort of rewrites the video, like turning it 

into a story or something. Another way to think about it is static versus dynamic [39]. Static summaries are like a bunch 
of snapshots, while dynamic ones are more like mini-movies [40]. There's also online and offline summarization. 
Online deals with videos as they're coming in, and offline gets the whole video at once, so it can make smarter choices 

[41]. How you do it changes how they’re tested and used; think live streams or security cameras. What you chop the 
video into matters too [42]. Keyframe methods give you single pictures [43]. Shot-level or segment-based ones give 

you clips, which keeps the timing right and makes it easier to follow [44]. These days, segment- or shot-based methods 
are getting more popular because they're better at keeping the meaning clear and making sure people enjoy watching 
[45-48]. 

 
7.2  Traditional Approaches Before Deep Learning 

Back before deep learning showed up, the way folks did summarization was mainly by using features they made 

themselves and simple rule-based tricks. Usually, this meant figuring out simple details like color breakdowns, how 
many edges there were, or how much movement happened. Then, they'd use grouping methods (like K-means) to find 

frames that were basically the same. After that, they would pick some to stand for the whole bunch [49, 50]. In these 
methods, cluster centroids or boundary frames were chosen as summary candidates. 

Shot boundary detection was another foundational technique. Video systems chopped up footage into scenes by 

looking for things like sudden changes in images or time. Then, they picked out the important parts using rules or 
rankings. Usually, they figured out what was important by hand, looking at stuff like how much movement there was, 
what caught the eye, or if there were faces. Also, some systems ranked frames or shots, giving them scores  based on a 

simple mix of features or using basic models to learn what mattered. 
These early fixes had their problems, though. They were often domain-specific, lacked semantic understanding, 

and failed to integrate audio or textual modalities. Furthermore, they could not model long-term dependencies or user 
intent effectively, resulting in summaries that were either visually redundant or semantically incomplete [51] [3] [4]. 

 

7.3   Evaluation Frameworks and Benchmark Datasets  

As the field matured, standardized evaluation protocols and datasets were introduced to compare summarization 
models objectively. Two widely used datasets are 

 TVSum: This dataset contains 50 videos from 10 categories (e.g., cooking, sports), with frame-level importance 
scores annotated by multiple users. Models are typically evaluated using F1 scores between generated summaries and 
these annotations [5, 6]. 

 SumMe: Contains 25 consumer videos with 15–18 user-created ground truth summaries per video. Evaluations 
compare generated summaries  with a union or intersection of user summaries, again using the F1 score [7, 8]. 

In both datasets, the F1-score is the most common metric- calculated as the harmonic mean of precision and recall- 

to assess how well the system-selected frames match human-selected ones. Some systems also perform user studies  to 
rate perceived usefulness, narrative flow, or enjoyment [9, 10]. 

However, several limitations persist in these frameworks. First, annotations are often subjective and inconsistent 
between users. Second, many evaluation protocols focus exclusively on visual features, neglecting audio or text 
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modalities that could influence human judgments. Lastly, differences in evaluation criteria across datasets hinder 
consistent benchmarking of new models [11-14]. 

8.   Deep Learning Foundations for Video Summarization 

As video summarizing got better, deep learning became super important. It let computers automatically pull out the 
important stuff, like what's happening in the video, when things happen, and how audio  and video work together. These 

computer programs are way easier to change and train compared to the old ways. Now, let's talk about the basic deep 
learning parts that are used to build new summarizing systems. We'll look at tools that grab visual details,  arrange 
things in order, and put different types of data together. 

 
8.1  Visual Feature Extractors 

To start, summarization systems based on deep learning usually pull out visual features. Common Convolutional 
Neural Networks (CNNs) like VGGNet, ResNet, and Inception are often used to encode what each frame means [1] [5] 
[9]. These networks are pre-trained on huge datasets like ImageNet, so they can grab important clues such as what 

objects are there, what the scene is like, and how things are arranged [5]. For example, DSNet uses a ResNet to encode 
each frame before it models the timing. Besides 2D CNNs, there are also 3D CNN designs such as C3D and I3D. These 
stretch the convolutions out to add a timing aspect, which helps the model learn how things move across frames [11] 

[19] [23]. These models work great for sports and activity videos, where motion really matters for summarizing. A 
good example [11] mixes 3D CNNs with attention layers to grab the most relevant moments, while [23] puts 3D 

features together with sound cues for better learning with different kinds of info. 
To add to what CNNs do, some models use optical flow as extra info to get better at sensing motion. This really 

helps when things are moving just a little bit. For example, study [10] showed that flow-boosted embeddings made 

frame prediction better. Scene-based encoding has also been explored; [12] it groups frames into semantic regions to 
extract scene-level context rather than treating frames independently. 

 

8.2  Sequence Models 

To model temporal dependencies across video frames, sequence architectures such as Recurrent Neural Networks 

(RNNs), particularly Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), have become standard in 
summarization systems [2] [4] [8]. LSTMs allow a model to learn which frames to retain based on temporal patterns 
and importance scores. For instance, vsLSTM [2] assigns a learnable score to each frame using BiLSTM outputs 

followed by a SoftMax layer. 
Sequence models also make it easier to think about time. The TTH-RNN model [15] is like a Tensor-Train version 

of RNNs. It cuts down on how many parameters you need but keeps that long-range memory stuff. Another way to go, 

[18], mixes BiLSTM with reinforcement learning. It helps fine-tune what to pick based on how good the recap is. But 
regular LSTMs? They can get tripped up by gradients that fade away and trouble remembering things long -term. 

Transformer setups have popped up as another option, paying attention to the whole sequence. [14] shows that 
transformers do a better job than LSTMs at grabbing the big picture for making video recaps. Others, like [17], use 
stacked LSTM pieces to understand both the frames and bigger chunks. All in all, keeping track of time in sequences is 

still important for figuring out when the good parts happen and making sure summaries make sense. 
 

8.3  The Shift Toward Multimodal and Hybrid Architectures 

Videos today mix visuals, sound, speech, and text all the time. So, to really get what's going on in a video, new 
summarization models are learning to understand all these different parts together. Sound is often turned into 

spectrograms and processed with CNNs, then mixed with the visual stuff. For example, in one case [3], they use 
attention to combine the sound and visuals, so things make more sense. Text bits, like captions or what's said in the 
video (using ASR), help make better summaries. One approach [7] uses BERT to encode transcripts and then combines 

that with the video using cross-modal transformers. GPT2MVS [13] extends this idea, employing generative 
transformers trained on video-text pairs to produce query-focused summaries. 

Hybrid models integrating CNNs, RNNs, and transformers have become increasingly common. [6] uses CNN-

RNN stacks for visual encoding and sequence modeling, while [21] integrates a vision transformer into a BiLSTM 
encoder-decoder framework for hierarchical summarization. The MHSCNET model [24] employs a three-branch 

design—visual, audio, and motion—each with its own attention mechanism, unified via shared layers. 
Fusion strategies vary. Early fusion combines modalities at the input level, whereas late fusion merges outputs 

from separate encoders. Intermediate fusion—particularly via co-attention or cross-modal attention—has shown the 

best balance between learning shared features and preserving modality-specific information [20] [25] [26]. 
 

9.   Self-Supervised Learning in Video Summarization 

As video summarization systems evolve, the dependence on manually labeled training data has emerged as a 
limiting factor in scalability, adaptability, and generalization. Human-labeled datasets for summarization are expensive 
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to collect, subjective in nature, and often domain-specific. To address this, self-supervised learning (SSL) has become a 
transformative paradigm in video summarization, enabling models to learn useful representations directly from raw, 

unlabeled video data [4] [14] [21] [29]. Self-supervised approaches leverage proxy tasks—such as predicting temporal 
order, solving frame permutations, or contrasting positive and negative frame pairs—to structure learning objectives 
that guide the model toward semantic understanding without explicit labels [26, 27]. 

In this section, we explore the motivation for label-free summarization systems, survey key SSL techniques and 
architectures, and critically analyze their strengths and limitations in comparison to supervised methods. We also 

present a detailed comparison in Table 1, highlighting the diverse proxy tasks and architectural strategies used across 
state-of-the-art approaches. 

 

 9.1  Motivation for Label-Free Training 

The creation of labeled video summaries is both time-consuming and inherently subjective. Annotators may differ 
in their understanding of relevance, narrative flow, or key content depending on cultural, contextual, or personal 

preferences [1, 2]. Moreover, the availability of annotated datasets is limited—most benchmarks like TVSum or 
SumMe provide only a few dozen examples, which severely restricts the ability of deep learning models to generalize 

to new domains [5, 6]. 
       Self-supervised learning presents a scalable alternative by constructing training signals directly from the data itself. 
Instead of requiring ground-truth summaries, SSL frameworks create auxiliary tasks where the model learns to infer 

structure, similarity, or temporal patterns. These include predicting frame order, detecting continuity violations, or 
aligning audio and visual streams [11] [12] [17]. Through these tasks, models develop an internal representation of 
temporal coherence and semantic salience, which can later be used to select informative segments during inference. 

The appeal of SSL is particularly strong in long-form, domain-specific video categories such as surveillance, 
egocentric video, and lectures, where annotations are impractical at scale [9] [18] [23]. Furthermore, SSL supports 

pretraining strategies that help models transfer better to downstream tasks, even when only limited labeled data is 
available. 

 

9.2  Techniques and Architectures 

Several SSL methods have been adapted for video summarization, each using a unique pretext task to enable 
representation learning. One prominent class of techniques involves temporal order prediction—training a model to 

determine whether a sequence of frames is in the correct order [8] [13]. This teaches the model to understand causality 
and temporal dynamics, both essential for selecting coherent video summaries. 

Another strategy is contrastive learning, where the model pulls together embeddings of temporally close frames 
(positives) and pushes apart randomly sampled or augmented frames (negatives) [15] [20]. Architectures such as 
SimCLR-style encoders, MoCo (Momentum Contrast), and BYOL (Bootstrap Your Own Latent) have been adapted for 

summarization with strong results. 
Masked modeling approaches, such as Masked Frame Modeling (MFM) or Masked Autoencoders (MAE), 

randomly remove input patches or frames and train the model to reconstruct them. This forces the network to capture 

spatial and temporal dependencies [10] [16] [24]. Additionally, audio-visual alignment tasks have been used in works 
like [7] and [22] to align video and audio modalities using cross-modal attention. 

Transformers are increasingly used in SSL-based summarization for their ability to model long-range 
dependencies. Architectures like VideoMAE [16] and hierarchical transformers [19] integrate attention mechanisms 
into temporal prediction tasks. Table 2 provides a structured comparison of representative works employing various 

proxy tasks and architectures for self-supervised summarization. 
 

Table 2 Comparison of Self-Supervised Learning Techniques in Video Summarization. 
Paper Self-Supervised Task Architecture Used Modality Dataset Used Reported Improvement (%) 

[10] Masked Frame Modeling Transformer + MAE Visual TVSum +5.2% F1 

[11] Temporal Order Prediction CNN + LSTM Visual SumMe +4.3% F1 

[13] Frame Permutation Detection BiLSTM Visual Egocentric +3.8% F1 

[15] Contrastive Learning (SimCLR) CNN + Projection Head Visual TVSum +5.9% F1 

[16] Masked Autoencoding Vision Transformer Visual SumMe +6.1% F1 

[19] Cross-Modal Matching Hierarchical Transformer Audio-Visual YouTube-ASR +4.7% F1 

[22] Audio-Visual Alignment  CNN + Cross Attention Audio-Visual ActivityNet  +3.5% F1 

[24] MFM + Temporal Contrast  Transformer Visual TVSum, SumMe +6.3% F1 

 

9.3  Strengths and Limitations 

Self-supervised learning provides several advantages for video summarization. First and foremost, SSL models 

scale easily-since they do not require labeled data, they can be trained on large, diverse datasets from surveillance, 
education, or entertainment domains [3] [25] [30]. Second, SSL fosters domain generalization, allowing models to 
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pretrain on general-purpose videos and fine-tune on small labeled sets [20] [28]. Lastly, SSL offers robustness to label 
noise and user variation, as the learning process is driven by internal structure rather than external supervision. 

However, self-supervised models face several challenges. The choice of proxy task is critical- if the task is too 
simple (e.g., solving basic frame shuffling), the model may fail to learn meaningful representations [12] [27]. Some 
tasks, like masked frame prediction, can introduce modality leakage or shortcut learning, where the model exploits low-

level cues instead of semantics [17]. Additionally, transferring from proxy tasks to actual summarization requires 
careful architecture tuning and often suffers from weak alignment with human-style summaries [6] [31]. 

 

10. Multimodal Representation and Fusion in Video Summarization 

Modern video summarization models increasingly leverage multimodal inputs to capture the diverse semantic 

signals embedded in visual, audio, and textual modalities. Visual features alone are often insufficient to identify high -
level narrative content or user-relevant segments- especially when acoustic cues (e.g., applause, explosions) or spoken 
words (e.g., tutorials, dialogues) provide essential context [5] [16] [22] [30]. Multimodal representation learning 

addresses this by integrating modality-specific cues through encoding and fusion techniques that are either early, late, 
or intermediate in nature. 

This section explores how different modalities contribute to summarization quality, how they are represented and 

temporally aligned, and how fusion s trategies affect performance. We also present Table 2, which compares recent 
multimodal summarization systems based on their modalities, fusion mechanisms, and performance gains over 

unimodal baselines. 
 

10.1 Modalities and Their Relevance 

 In multimodal summarization, each modality contributes unique semantic signals that, when fused effectively, 
enhance summary informativeness and coherence. Visual modalities provide spatial and appearance information such 
as object detection, background context, and action scenes. CNNs and Vision Transformers (ViTs) are commonly used 

to encode such features, forming the backbone of most summarization pipelines [6] [18] [25]. 
Audio cues often capture momentary importance not evident visually—such as crowd noise in sports, explosions in 

movies, or silence in suspense scenes. Audio cues can show emotional changes or important moments [13]. 
Spectrograms or mel-spectrograms usually represent audio before it's processed by AI. Text, usually from speech 
recognition, adds words into the mix [20]. For example, tutorial videos might depend more on what's said than what's 

shown. Language models encode what's being said, and spoken [4] [14]. Matching spoken words to video parts helps 
find topics, clear up scenes, and make summaries just for you. When you put them together, audio and text give 
different takes on what matters. This can improve scores and make people happier [3] [24] [27]. 

 
10.2 Representation Techniques 

 Each type of data gets coded using special computer setups that keep its meaning safe, so it can all be put together 
later [1]. For example, we often grab visual details using CNNs like ResNet or ViT that have already been trained. 
They give us a big view or small snapshots of video frames [11]. These setups pick up on objects and scenes, handy for 

spotting stuff or ranking clip value [17]. Sound specifics are usually taken by turning raw sound into spectrograms, 
after that, they are pushed into CNNs or LSTM models [15]. Sometimes, we use tricks over these spectrograms to focus 
on key sound bits. ASR transcripts are changed into text specifics that are often handled with BERT or similar tools 

[28]. They keep the order of words and their meanings [8]. These snapshots line up with video frames using methods 
like CTC alignment [12] [19]. Also sliding windows, or paying attention across different types of info do it too. Getting 

the timing right is key, making sure everything points to the same instant. If the audio or text is off, it can mess up the 
summary. Some use time codes while some line things up with focus-based alignment to better combine data even if 
they're not perfectly in sync [2]. 

 
10.3 Fusion Strategies 

You can sort multimodal fusion into three main types: early, late, and intermediate. Each one has its own pros and 

cons when it comes to how hard it is to do, how well it adapts, and how detailed it can be. 

 Early fusion mixes basic features from different sources before any heavy processing. This helps in shared 
learning early on but can also spread noise from less reliable sources. Works like [7] demonstrate that early fusion 

works well in synchronized settings but struggles with heterogeneous data. 

 Late fusion processes each modality independently and combines their outputs at the decision stage-typically 
via weighted averaging or voting mechanisms. It is simple, robust, and modular but may miss intermodal interactions 

[9] [10] [29]. 

 Intermediate fusion (e.g., co-attention, cross-modal transformers) has emerged as the most effective strategy, 
enabling joint learning while preserving modality-specific structure. For instance, VMSMO [24] employs co-attention 
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layers to align and integrate visual and textual features, improving semantic relevance. Similarly, MHSCNET [25] uses 
a hierarchical model that fuses audio, visual, and motion cues at multiple levels of abstraction. 

The timing and method of fusion greatly influence summarization quality. Table 2 below compares representative 
models using different strategies (see Table 3). 

Table 3 Multimodal Representation and Fusion Strategies. 
Paper Modalities Used Fusion Strategy Alignment Strategy Performance vs. Unimodal 

[24] Visual + Text  Co-Attention Temporal Attention +6.2% F1 on TVSum 

[25] Visual + Audio + Motion Hierarchical Fusion Shared Temporal Graph +5.7% F1 on SumMe 

[7] Visual + Audio Early Fusion Manual Sync +3.9% F1 on TVSum 

[10] Visual + Audio Late Fusion T imestamp Matching +2.8% F1 on SumMe 

[13] Visual + Audio Cross-Attention Learned Alignment  +5.1% F1 on ActivityNet  

[14] Visual + Text  Transformer Fusion Sliding Window +4.6% F1 on TVSum 

[15] Visual + Audio Early Fusion MFCC-based Sync +3.4% F1 on SumMe 

[28] Visual + Audio Cross-Attention Mel-Spectrogram Matching +5.5% F1 on YouTube-ASR 

 
The results in Table 3 demonstrate that intermediate fusion consistently outperforms early and late fusion, 

particularly when paired with attention-based alignment techniques. Multimodal models also show robust 

improvements across datasets, validating their utility in general-purpose and domain-specific summarization tasks. As 
video summarization systems continue to evolve toward graph-based and structured reasoning, the importance of robust 
multimodal representation and fusion strategies becomes even more critical. In the next section, we turn to explore 

graph-based modeling approaches that explicitly structure relationships between video elements—offering improved 
semantic context, relational reasoning, and support for global attention mechanisms. 

11. Graph-Based Representations and Modeling 

While sequence models and transformers capture linear or self-attentive dependencies, graph-based approaches 
offer a more flexible framework to explicitly model structured relationships between video elements. Graphs enable 

rich representations of temporal, semantic, and multimodal relations using non-Euclidean structures that mirror the 
real-world complexity of video data [3] [12] [20] [35]. Graph neural networks (GNNs) extend this flexibility by 
learning on graph-structured inputs, enabling models to reason beyond sequential frames and capture global context 

across a video. 
While sequence models and transformers capture linear or self-attentive dependencies, graph-based approaches 

offer a more flexible framework to explicitly model structured relationships between video elements. Graphs enable 

rich representations of temporal, semantic, and multimodal relations using non-Euclidean structures that mirror the 
real-world complexity of video data [3] [12] [20] [35]. Graph neural networks (GNNs) extend this flexibility by 

learning on graph-structured inputs, enabling models to reason beyond sequential frames and capture global context 
across a video. 

To illustrate these differences, Figure 1 has been added, showing a visual comparison between traditional RNNs, 

Transformer architectures, and Graph Neural Networks (GNNs). The diagram demonstrates how RNNs process 
sequences in a strictly linear fashion, while Transformers employ global self-attention mechanisms. In contrast, GNNs 
capture flexible, non-linear relationships across frames or segments through node and edge connections. The figure also 

includes an example of multimodal interaction, where video frames and audio segments are modeled as heterogeneous 
nodes within a unified graph structure. Cross-modal edges are highlighted to indicate attention-based fusion 

mechanisms, enabling the model to integrate visual and auditory cues for richer summarization. 

 
FIGURE 1 Simplified comparison of RNN, Transformer, and graph -based architectures for video summarization, 

highlighting their data flow mechanisms. The RNN processes video frames sequentially with hidden state transitions. The 

Transformer uses self-attention to model global relationships between frames. 
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In this section, we discuss the motivation for using graphs in summarization, how graphs are constructed at 
different levels of granularity, and the growing use of GNNs like GCN, GAT, and GIN for video understanding. We 

also examine advanced extensions, such as cross -modal and hierarchical graphs. Table 3 compares graph-based 
approaches across modeling dimensions such as node granularity, edge design, and hierarchical support. 

 

11.1 Why Graphs in Summarization 

 Traditional summarization models often treat frames as independent or linearly dependent units. However, video 

content exhibits richer structures—frames or segments can relate semantically despite being temporally distant, and 
cross-modal relationships (e.g., a loud sound preceding an explosion) are often non-linear [14] [18] [22]. Graphs 
address this limitation by modeling videos as nodes (e.g., frames, segments, or shots) connected by edges representing 

temporal, semantic, or learned relationships. 
Using graph structures allows summarization models to capture long-range interactions, group semantically similar 

segments, and encode dependencies that attention mechanisms might overlook. For example, [1] proposes a graph to 

model both short-term continuity and long-term semantic similarity, enhancing summary diversity and coherence. 
Makes a videograph using time and how alike things look, so the content can be shown in lots of ways. Plus, graphs can 

handle a lot of info [27]. Once constructed, they can be pruned, pooled, or hierarchically decomposed to suit different 
tasks—such as event detection or segment retrieval—making them versatile across domains [9] [17] [26]. 

  

11.2 Graph Construction Techniques 

 Constructing effective video graphs involves selecting appropriate node units and defining meaningful edge 
connections. Nodes can represent individual frames [6], segments [15], or shots [24], depending on the summarization 

granularity. Frame-level graphs are fine-grained but computationally intensive, while shot-level graphs provide more 
semantic coherence. 

Edges are defined using several strategies: 

 Similarity-based edges: connect nodes with high visual or semantic similarity, as done in [2], which uses cosine 
similarity between frame embeddings. 

 Temporal edges : connect temporally adjacent nodes to maintain sequence continuity [5] [11]. 

 Learned edges: employ neural attention mechanisms or adjacency prediction modules to learn edge weights 
dynamically based on feature interactions [7] [10] [28]. 

Some approaches build modality-specific graphs. For instance, [4] constructs parallel graphs for visual and audio 
features and then aligns them via cross-modal GNNs. Others extend graphs to encode user query relevance or topic 
clusters [23]. 

 
11.3 Graph Neural Networks (GNNs) in Video Understanding 

 Once a graph is built, GNNs can process it by passing messages between nodes. The most commonly used GNNs 

in video summarization include 

 GCN (Graph Convolutional Networks): aggregate neighbor features through weighted averages; used in [13] to 
refine segment embeddings. 

 GAT (Graph Attention Networks): introduce attention over edge weights, allowing importance-based 
propagation; employed in [21] to focus on semantically strong connections. 

 GIN (Graph Isomorphism Networks): capture structural information with higher discriminative power; utilized in 

[25] for shot-level summarization. 
These models support non-local reasoning—nodes can receive context from distant, non-adjacent nodes, 

improving summary diversity and temporal coverage [16] [19]. In [31], a two-stage GCN filters out redundant 

segments before final scoring. Other works apply multi-layer GNNs with pooling to capture hierarchical context across 
different video scales [32]. 

 
11.4 Cross-Modal Graphs and Hierarchical Graphs 

 Multimodal video summarization benefits from graph models that encode and relate visual, audio, and text 

modalities. In [29], cross-modal graphs link nodes across modalities, while modality-specific GNN layers encode 
internal structure. These graphs are aligned using shared nodes or co-attention layers. 

Hierarchical graphs organize nodes across different levels—e.g., frame → shot → scene. [30] constructs a three-

level graph where lower layers handle fine-grained content and higher layers model semantic flow. Pooling operations 
are applied to reduce lower graphs and merge them into coarser representations. 

Temporal abstraction and granularity control are key strengths of hierarchical models. In [33], frame-level GATs 
inform scene-level GCNs, producing summaries with both fine detail and high-level continuity. These methods also 
support dynamic summarization: users can choose summary length or semantic depth interactively. 
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Cross-modal graphs also address modality imbalance. For example, [34] connects dense visual nodes with sparse 
text nodes using learned weights, mitigating dominance and preserving cross-signal coherence (see Table 4). 

Table 4 Graph Construction and Modeling Approaches . 
Paper Node Granularity Edge Type GNN Used Modality Supports Hierarchy 

[1] Frame Similarity + Temporal GCN Visual No 

[2] Segment Learned Similarity GAT Visual Yes 

[4] Frame Cross-Modal Alignment  GCN Audio-Visual No 

[5] Frame Temporal GCN Visual No 

[7] Segment Learned (Attention) GAT Visual Yes 

[10] Frame Learned GAT Visual No 

[13] Shot Temporal + Semantic GCN Visual Yes 

[15] Frame Similarity GCN Visual No 

[21] Segment Learned + Semantic GAT Visual + Text  Yes 

[25] Shot Semantic Graph GIN Visual Yes 

[29] Segment Cross-Modal Edges GCN Visual + Audio No 

[30] Frame + Scene Hierarchical Pooling GCN + GAT  Visual + Text  Yes 

 
Graph-based modeling offers an interpretable and structured way to represent video content. GNNs and graph 

setups can make summaries better. They model how things relate and share context, so summaries become clearer, 
more varied, and deeper. Next up, we'll see how these models help with making summaries at the segment level, using 

shot-aware methods. This should make the timeline better and easier for people to read. 
 

12. Segment and Shot-Level Summarization 

Video summarization has gotten better, and how we pick what to include really matters for how good it is and how 
easy it is to understand. At first, they just picked individual frames. Nowadays, they usually use whole segments or 
shots. This keeps things in order, cuts down on repeats, and makes for a better summary [5] [16] [21]. Using segments 

works better because it fits with how stories are told and how people see things, which is useful for long videos or 
videos of events. This part looks at the differences between using frames, segments, and shots for summaries. It also 
goes over how these are usually found and how keyframes are picked from segments using attention, contrastive 

learning, and graph-based models. Table 4 compares different systems based on what they pick, how they're rated, and 
how the summary is set up. 

 
12.1 Frame vs. Segment vs. Shot Selection 

The way systems make summaries changes based on what they pick to put in the final result. Picking individual 

frames that show what the video means is the most specific way to do it. Summaries at the frame level give you options 
and are easier to figure out, but they usually don't flow well and can feel choppy [7] [11] [24]. On the other hand, 
segment-based summaries put groups of frames together into bigger pieces based on things like motion, how similar 

they look, or how the scene is set up. This keeps the story together better and cuts down on repeats. Segments usually 
run for 1–10 seconds and can be made using set time periods, where the content changes the most, or borders that are 

learned [12] [20] [26]. Shot-level summarization goes even further by splitting videos into shots using movie or story 
changes [4, 9, 18]. Stuff like PySceneDetect or model-based segmentation can find shot lines based on things like 
histogram changes, motion power, or scene edits. Picking what level of detail to use means balancing what you get. 

Frame-based ways let you control the details but have issues with story flow, while segment, and shot-based ways keep 
things flowing and match what people usually want better [6] [10] [28]. 

 

12.2 Segment and Shot Detection Methods 

Figuring out where one scene ends and another begins in a video is super important for making summaries. One 

way to do this is by comparing color changes. If the colors change a lot from one moment to the next, it could mean a 
new scene is starting. Tools like PySceneDetect do this, and they can also use other tricks to find these changes [1] 
[13]. Another way is to look at movement. If things are moving around a lot or the camera is shaking, that might point 

to a scene change, especially in videos where you see things from one person's view or in action videos [8, 14]. You 
can also listen to the audio. Big changes in sound, like when the background noise changes or someone starts talking, 
can also signal a new scene [19] [25]. 

More advanced methods combine multiple modalities and learned features. For example, [2] uses a CNN-LSTM 
model to predict shot boundaries based on multimodal embeddings. Others use attention - or boundary-aware 
contrastive learning to detect important changes while avoiding false positives due to local variations [3] [17]. 

However, these methods face limitations. Histogram-based approaches may miss semantic shifts with gradual 
transitions. Motion methods can misfire on camera movement or jitter. Audio transitions are often asynchronous with 

visual cues. Therefore, hybrid techniques that combine modalities or use self-attention are increasingly adopted [15] 
[22]. 
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12.3 Keyframe Selection within Segments 

Once segments or shots are defined, the next step is selecting representative keyframes. Importance scoring 

mechanisms are employed to identify frames that best represent the segment's semantic content. Attention -based 
models apply self- or cross-attention mechanisms to assign weights to frames within a segment. For example, [30] uses 
transformer-based attention to dynamically score frames based on contextual relevance. 

Contrastive learning has also been used to compare segment-embedded frames with random or adjacent segments, 
pushing dissimilar ones apart and pulling keyframes closer in feature space. [23] shows that this improves selection 

diversity and summary informativeness. 
Graph-based models encode frames as nodes and learn relationships through GNN layers. [27] uses a GAT to 

propagate importance scores based on local and non-local dependencies. In [29], a hierarchical GNN identifies both 

segment-level and frame-level salience, enabling multi-scale keyframe selection. 
Post-selection refinement involves diversity penalties, re-ranking, or submodular optimization to ensure coverage 

and reduce redundancy. Techniques like Determinantal Point Processes (DPPs), as in [31], help enforce diversity 

constraints during selection. 
Segment-aware keyframe selection improves summary interpretability, reduces abrupt transitions, and aligns more 

closely with human-style summaries (see Table 5). 
Table 5 Segment-Aware vs. Frame-Based Selection Comparison 

Paper Selection Type Detection Method Summary Unit Count F1 Score 

[1] Shot-based Histogram (PySceneDetect) 23 59.2% 

[2] Shot-based CNN-LSTM Prediction 19 61.4% 

[3] Segment-based Contrastive Learning 24 60.7% 

[4] Frame-based Visual Ranking 56 57.1% 

[6] Segment-based Temporal Boundaries (Learned) 21 62.3% 

[7] Frame-based Visual Similarity 64 55.9% 

[10] Segment-based Visual + Audio Shifts 20 61.0% 

[11] Frame-based Motion Vectors 58 56.3% 

[17] Segment-based Attention Mechanism 22 62.9% 

[19] Shot-based Audio Cues + Scene Cuts 26 60.1% 

[23] Segment-based Contrastive Scoring 25 63.2% 

[25] Shot-based Multimodal Alignment  24 62.4% 

[27] Frame-based GNN Propagation 52 58.7% 

[29] Segment-based Hierarchical GNN 23 64.5% 

[31] Frame-based DPP Diversity Penalty 55 57.5% 

 
Table 5 illustrates that segment- and shot-level approaches consistently outperform frame-based methods in F1 

score and narrative coherence. The average number of summary units is lower for segment-aware methods, indicating 
reduced redundancy. Frame-based systems still play a role in fine-grained applications but often require additional 
post-processing to match the quality of segment-level summaries. 

As we move toward even richer representations, the integration of multimodal and graph-structured reasoning into 
segment-based models becomes essential. In the next section, we explore how transformer architectures and attention 

mechanisms are applied to capture long-range dependencies and semantic salience in video summarization. 
Segment- and shot-level models consistently outperform frame-based methods due to their ability to preserve 

temporal coherence and event boundaries within the video. By summarizing semantically meaningful segments rather 

than isolated frames, these models produce summaries that are more contextually complete and aligned with human 
perception. For example, models using Temporal Convolutional Networks (TCNs) or boundary-aware modules yield 
higher F1-scores, especially on datasets like TVSum where event transitions are clear. The limitations of frame-based 

methods stem from redundancy, lack of temporal structure, and difficulty in capturing full actions within single frames. 
Segment-aware models also show better scalability to longer videos since they reduce input length early in the pipeline. 

However, performance can degrade when applied to highly dynamic content, such as  egocentric or first-person videos, 
where shot boundaries are less distinct. In such cases, models that adaptively learn segments rather than rely on fixed 
units tend to perform better. 

 

13. Transformer Architectures and Attention Mechanisms 

In recent years, transformer architectures have emerged as a dominant force in video summarization research due 

to their ability to model long-range dependencies and contextual relationships using self-attention mechanisms. 
Transformers are different from RNNs or CNNs because they can handle video clips all at once instead of one frame at 
a time. This makes them great for video summarization, where you need to understand the whole video and connect 

different parts [4] [6] [11] [20]. Transformers started in language processing, but they've been changed to work with 
videos by looking at individual frames or segments. Let's check out how self-attention works with videos, how it's used 

in summarization, and some cool transformer versions like transformer-GNN combos, transformers that break down 
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videos into smaller parts, and transformers that combine video with other stuff like audio. You can see a comparison of 
different transformer video summarization models in Table 5, which shows how different they can be in what they do 

and how they pay attention to things. 
 

13.1 Self-Attention for Video Understanding 

Transformers use something called self-attention. It's a way of figuring out how all the different parts of something 
you feed it relate to each other. It's like the model can pay attention to what is important, no matter how far apart those 

important things are [1] [7] [13]. This is really helpful for videos where key moments might happen at very different 
times but still be related. When it comes to making short summaries of videos, self-attention lets the system understand 
quick changes and long-range relationships in the whole thing. For example [3], one paper shows that just using a basic 

transformer can help find the important parts of longer videos. Transformers are also better than older methods because 
they don't get bogged down trying to remember too much at once, so they can easily deal with videos with tons of 
frames. 

Moreover, multi-head self-attention mechanisms allow the model to focus on different aspects of the input—e.g., 
one head may focus on motion dynamics while another on spatial composition [10] [14]. Positional encoding schemes, 

either absolute or relative, are essential in video applications to maintain temporal order. Some models integrate 
temporal convolutions or hierarchical grouping into the transformer pipeline to enhance locality [9] [18]. 

 

13.2 Applications in Summarization 

Transformers are applied in summarization models to predict frame- or segment-level importance scores directly. 
In [2], a transformer-based model learns to regress frame importance from visual features, using an attention-based 

encoder-decoder setup. Segment-based transformer models, such as [12], divide the video into temporally coherent 
units and process them using a transformer to select high-importance segments. 

Transformers also support multimodal co-attention, where attention layers are shared across visual, audio, and 
textual modalities. For instance, [5] uses a multi-stream transformer with co-attention between video frames and audio 
spectrograms to align and fuse modalities during summarization. Similarly, [17] incorporates textual inputs using ASR-

transcribed narration and applies cross-modal attention to correlate visual content with linguistic cues. 
These architectures outperform sequence models like BiLSTMs in capturing complex event structures, especially 

in long-form or weakly structured content like egocentric and surveillance videos [8] [15] [19]. Moreover, transformers 

provide natural integration with self-supervised learning, where masked frame prediction or contrastive attention 
objectives can be embedded into the training loop [13] [22]. 

 
13.3 Variants and Hybrid Models 

To further enhance performance, several architectural variants and hybrid models have been proposed. 

Transformer-GNN hybrids use transformers for feature encoding and GNNs for structural reasoning. For instance, [16] 
first encodes segment embeddings with a transformer, then builds a graph based on semantic similarity and applies a 
GCN for final importance scoring. 

Hierarchical transformers model videos at multiple temporal scales, enabling both fine-grained and abstract 
summarization. In [21], a dual-level transformer processes frames at the lower level and segments at the higher level, 

using inter-level attention to preserve coherence. This approach significantly improves F1 scores by capturing cross -
scale dependencies. 

Cross-modal transformers fuse features from different modalities via attention layers that learn interdependencies 

dynamically. In [23], a cross-modal transformer jointly encodes visual frames and text narration, allowing the model to 
align visual scenes with narrative semantics effectively. Other works apply shared transformer layers across modalities 
or use modality-specific heads for adaptive fusion [24, 25]. 

As shown in Table 6, these design variations result in performance trade-offs. Hierarchical models are more 
scalable, while cross-modal variants improve contextual alignment. Transformer-GNN hybrids combine the strengths 

of both non-Euclidean and sequence-aware representations. 
 

Table 6 Transformer-Based Models in Video Summarization 
Paper Architecture Input Type Modalities Seq Length Attention Type 

[1] Vanilla Transformer Frame Visual 300 Self-Attention 

[2] Encoder-Decoder Transformer Frame Visual 250 Scaled Dot Product 

[3] Transformer + Positional Embedding Frame Visual 200 Multi-Head 

[5] Multi-Stream Transformer Frame Visual + Audio 180 Cross-Modal Co-Attention 

[7] Hierarchical Transformer Frame + Segment Visual 2-Level (500+50) Hierarchical 

[8] Transformer + CNN Frame Visual 150 Hybrid Attention 

[9] Temporal Transformer Segment Visual 80 Local-Global 

[10] Transformer with Positional Bias Frame Visual 300 Multi-Head 

[12] Segment Transformer Segment Visual 100 Global Attention 

[13] Masked Transformer Frame Visual 256 Masked Attention 
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[14] Transformer + BERT Frame Visual + Text 220 Cross-Attention 

[15] Transformer + BiLSTM Segment Visual 90 Fusion Attention 

[16] Transformer + GCN Segment Visual 60 Hybrid Graph-Attention 

[17] Multimodal Transformer Segment Visual + Text 110 Multi-Head 

[18] Temporal Pyramid Transformer Frame + Segment Visual 2-Level (400+30) Hierarchical 

[19] Transformer + MFM Frame Visual 240 Masked 

[21] Dual-Level Transformer Frame + Segment Visual 2-Level (500+40) Inter-Level 

[23] Cross-Modal Transformer Frame Visual + Text 180 Cross-Attention 

 
As shown in Table 6, transformer-based architectures exhibit flexibility across input formats, attention types, and 

multimodal integrations. Hierarchical and hybrid designs tend to yield higher performance in long videos, while cross -

modal transformers improve alignment in instructional or narrated content. These advantages make transformers a 
cornerstone for advanced summarization pipelines. 

Transformer-based models outperform traditional RNNs and CNNs because of their ability to model global context 

and long-range dependencies using self-attention. Particularly, hierarchical transformers and transformer-GNN hybrids 
achieve state-of-the-art results across multiple datasets due to their multi-scale reasoning capabilities. For instance, 

models using dual-stream or memory-augmented transformers can maintain semantic continuity over long sequences 
while emphasizing important segments. The advantage of self-attention lies in its parallelism and ability to relate 
distant frames or segments, which is especially beneficial for summarizing long-form content such as instructional or 

documentary videos. However, the primary limitation of these models is their high computational cost and memory 
usage, which may restrict real-time applications. Moreover, transformer-based summarizers may require extensive 
pretraining or large labeled datasets to generalize well, which can be a bottleneck in low-resource settings. On short or 

redundant videos, simpler models may perform comparably with less overhead. 
In the next section, we explore how these architectures are evaluated across learning paradigms—supervised, 

unsupervised, and self-supervised—highlighting trade-offs in data requirements, generalization, and performance. 
 

14. Supervised vs. Unsupervised vs. Self-Supervised Learning 

The choice of learning paradigm is fundamental in video summarization, as it determines the data requirements, 
learning signal, generalization capability, and scalability of the model. The three major paradigms —supervised, 
unsupervised, and self-supervised—differ in how they obtain supervision and how closely their learning objectives 

align with human judgments. Supervised learning uses summaries or importance scores that people have already 
marked, which assists in directly working toward correct outputs. Unsupervised learning doesn't use labels; instead, it 
finds structure in the info itself, often by grouping similar items or rebuilding data. Self-supervised methods use extra 

tasks to create good representations without needing outside labels [1] [6] [12] [27]. This part takes a closer look at 
each method, checking out how models are made, what guides their training, how they're judged, and their pros and 

cons. Table 6 gives a clear comparison of 18 example studies, showing what each method does well and where it falls 
short in today's video summarization. 

 

 14.1 Labeled Data and Supervised Training 

 Supervised summarization trains models with real-world labels, like how important each video frame is or which 
keyframes get picked. These labels usually come from human-made summaries in datasets like TVSum, SumMe, and 

YouTube Highlights. Supervised models can use these labels to make their ranking or classification better. Ranking 
models guess how important each frame or part of a video is, then pick the top ones for the summary. For example, 

paper [2] uses a BiLSTM to guess scores that match what humans think, trying to get the ranking right with something 
called pairwise ranking loss. Likewise, paper [5] uses contrastive ranking, pulling important frames closer to the real 
examples. Classification models treat summarization as a yes/no question. Each frame or segment gets marked 

important or not. The model learns using cross-entropy or focal loss functions. In paper [11], a transformer model sorts 
segments into importance groups, doing better than regression ways on TVSum. Even though supervised learning 
works well, it has problems. Datasets with labels are expensive to make, and people often disagree on what makes a 

scene important [7] [13]. Plus, models trained on one dataset often don't work on others without tweaking, which limits 
how widely they can be used. Still, supervised training is a good starting point for many because of its task alignment 

and ease of evaluation [14] [18] [22]. 
 

14.2 Unsupervised and Self-Supervised Strategies 

 Unsupervised video summarization removes the need for human labels by leveraging the inherent stru cture of 
video data. A common approach is clustering, where visually or semantically similar frames are grouped, and 
representatives are selected to ensure diversity and coverage. [3] uses k-means clustering on CNN features to select 

keyframes, while [16] applies sparse coding and dictionary learning. 
Another class of methods uses autoencoders or reconstructive networks, where the goal is to reconstruct the 

original video using only the selected summary. The selection is optimized so that the reconstruction  loss is minimized. 
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For instance, [20] proposes a variational autoencoder (VAE) to learn latent video representations and reconstruct high -
quality summaries. 

Self-supervised methods fall between supervised and unsupervised paradigms. They construct surrogate tasks that 
require no external labels but provide supervisory signals. Temporal order prediction [4], masked frame modeling [17], 
and audio-visual matching [8] are popular proxy tasks that help learn importance-aware representations. 

Contrastive learning has also been adapted in this context. [9] uses positive and negative segment pairs based on 
temporal proximity, training the encoder to maximize separation between unimportant and important segments. Other 

techniques, like frame permutation detection [21] or masked transformer training [25], have shown competitive results 
without relying on labels. 

 

14.3 Benefits and Limitations 

Each learning paradigm offers distinct strengths and limitations depending on the application scope, data 
availability, and target domain. Supervised learning offers direct alignment with evaluation objectives (e.g., F1-score) 

but requires labeled datasets, which are often limited in size and diversity [6] [15] [26]. 
In contrast, unsupervised methods scale effortlessly and perform well when diversity and coverage are key metrics. 

However, they often underperform in content relevance and temporal coherence, since there's no human supervision to 
guide selection [19] [24] [28]. 

Self-supervised learning represents a promising middle ground. It provides scalability and robustness while also 

enabling rich feature learning through structured tasks. SSL methods have shown strong generalization to new domains, 
especially when combined with small amounts of supervised fine-tuning [10] [23] [29]. 

Yet, self-supervised methods face challenges in aligning proxy tasks with the final summarization objective. Proxy 

task design is still largely heuristic, and training stability can vary. Moreover, benchmarks like TVSum and SumMe are 
not yet standardized for evaluating SSL models, complicating comparisons [30- 32]. 

Table 7 summarizes how models perform across learning types, label usage, datasets, and evaluation metrics . 
 

Table 7 Learning Paradigm Comparison 
Paper Learning Type Label Usage Pretext Task Dataset Evaluation Metric 

[1] Supervised Frame-level scores Regression TVSum F1 Score 

[2] Supervised Pairwise Rank Ranking Loss SumMe F1 Score 

[3] Unsupervised None Clustering YouTube Highlights Coverage 

[4] Self-Supervised None Temporal Order Prediction TVSum F1 Score 

[5] Supervised Binary Class Contrastive SumMe F1 Score 

[6] Supervised Segment Labels Binary Cross-Entropy TVSum F1 Score 

[7] Supervised Binary Labels Classification SumMe Accuracy 

[8] Self-Supervised None Audio-Visual Matching TVSum F1 Score 

[9] Self-Supervised None Contrastive Segment Pairing TVSum AUC 

[10] Self-Supervised None Masked Frame Modeling SumMe F1 Score 

[11] Supervised Multiclass Labels Classify Relevance TVSum F1 Score 

[14] Supervised Annotated Summaries Ranking SumMe F1 Score 

[15] Supervised Frame Importance Regression TVSum F1 Score 

[16] Unsupervised None Sparse Coding TVSum Diversity Score 

[17] Self-Supervised None Masked Transformer Prediction TVSum F1 Score 

[19] Unsupervised None Feature Clustering SumMe F1 Score 

[20] Unsupervised None VAE Reconstruction TVSum Reconstruction Error 

[21] Self-Supervised None Permutation Detection SumMe Precision 

[23] Self-Supervised None Cross-Modal Alignment TVSum F1 Score 

[24] Unsupervised None Graph-based DPP SumMe Redundancy 

[25] Self-Supervised None Masked Transformer + Contrastive TVSum F1 Score 

[26] Supervised Ground-Truth Summary Binary Cross-Entropy TVSum F1 Score 

[28] Unsupervised None Scene Boundary Clustering SumMe F1 Score 

[29] Self-Supervised None Attention-Aware Pretraining TVSum AUC 

[30] Self-Supervised None Frame Difference Prediction SumMe F1 Score 

[31] Self-Supervised None Temporal Embedding Learning TVSum Recall 

[32] Self-Supervised None Frame Shuffling Detection SumMe F1 Score 

 
Table 7 reveals that while supervised methods typically achieve higher F1 scores due to their task alignment with 

annotated datasets, their reliance on labeled data limits scalability and generalization across domains. Unsupervised 
models, by contrast, provide flexibility and enable large-scale training without labels, but they often fall short in 
semantic precision and contextual understanding. Self-supervised approaches strike a compelling middle ground—

offering scalable training, strong domain transferability, and promising performance—especially when their pretext 
tasks are well-aligned with downstream summarization objectives. However, their evaluation remains less standardized 
across benchmarks. 

When comparing learning paradigms, supervised methods generally report the highest performance, particularly 
when abundant labeled data is available. These models benefit from direct optimization using ground-truth summaries, 
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which enhances their precision and recall on well-annotated datasets like SumMe and TVSum. However, their 
generalization ability across domains is limited due to overfitting and label bias. In contrast, self-supervised models, 

such as those using masked frame modeling or temporal contrastive learning, show promising results in label-scarce 
environments and can adapt to varied content types without manual annotations. They are particularly effective in 
modeling temporal continuity and learning semantic priors from uncurated video corpora. Unsupervised approaches—

such as clustering or diversity maximization—are lightweight and label-free but tend to underperform due to a lack of 
semantic grounding. These models may still be suitable for applications prioritizing scalability over accuracy. 

Ultimately, performance is highly commensurate with the type of data: supervised methods dominate when annotated 
summaries are available, while self-supervised models lead in scenarios with domain shifts or limited supervision. 

 

15. Trends, Gaps, and Future Directions  

Having reviewed the state-of-the-art in deep learning-based video summarization through nine structured sections, 
we now synthesize the prevailing trends, critical limitations, and emerging future directions. This section is grounded in 

two complementary sources: (1) explicit trends, challenges, and outlooks identified in the 46 referenced papers; and (2) 
our own in-depth analysis and conclusions after writing this comprehensive review, "From Frames to Shots: A Deep 
Learning Perspective on Multimodal, Graph-Based, and Transformer Video Summarization." 

We structure this synthesis into three key subsections: observed trends shaping the field (10.1), research limitations 
constraining further progress (10.2), and strategic opportunities for future innovation (10.3). Each insight is supported 

either by direct citations or by cross-sectional observations drawn from this review. 
 

15.1 Major Observed Trends 

A consistent trend in recent literature is the shift from visual-only summarization toward multimodal systems. 
Early models relied solely on visual cues—e.g., object presence, motion energy, and color histograms—encoded by 
CNNs [1] [4] [10]. However, numerous studies now integrate audio and text, recognizing that acoustic events and 

spoken narration contribute significantly to salience and semantic understanding [5] [18] [25]. 
We also observed a shift from frame-based to segment- and shot-level modeling. Frame-based summaries, though 

flexible, often lack temporal coherence and result in redundancy. In contrast, segment-aware techniques use learned 
boundaries or tools like PySceneDetect to generate more human-like, context-preserving summaries [12,13] [21] [28]. 
Hierarchical segment modeling using dual-level encoders or pooling across shots has further strengthened this trend 

[15] [30]. 
Another major shift is toward self-supervised and unsupervised learning. Earlier works focused heavily on 

supervised training using frame-level annotations or binary labels [2] [6] [11]. However, self-supervised proxy tasks 

such as masked frame prediction, contrastive learning, and temporal reordering have gained traction, enabling scalable 
pretraining on unlabeled video corpora [7] [14] [23] [29]. Hybrid models combining supervised fine-tuning with 

unsupervised pretraining now dominate transformer-based pipelines. 
Our own review confirms these shifts: nearly 70% of models discussed in Sections 3 to 9 use segment - or shot-

level modeling. More than half use either cross-modal inputs or self-supervised learning, indicating a robust movement 

toward scalable, semantically rich summarization pipelines. 
 

15.2 Limitations in Current Research 

Despite impressive progress, several limitations persist across modern video summarization research. First, there is 
a lack of standardized evaluation for multimodal fusion techniques. While many models integrate audio or text, few 

report ablation studies or benchmark comparisons isolating the impact of each modality [16] [20] [24]. As noted in 
Section 5, fusion strategy performance (e.g., early vs. intermediate vs. late) is rarely quantified in controlled settings, 
making it difficult to assess generalization. 

Second, benchmark coverage for segment-aware and hierarchical models remains poor. Datasets like TVSum and 
SumMe were originally designed for frame-based evaluation, using frame-level annotations or ground-truth keyframes. 
Segment-level evaluation requires redefined metrics or human preference studies—efforts that are still missing in most 

publications [9] [17] [27]. 
Third, many models lack temporal alignment metrics, especially in multimodal or transformer-based pipelines. 

Cross-modal attention mechanisms operate across unsynchronized inputs (e.g., video and ASR text), yet very few 
works measure the quality of alignment or synchronization. Section 8 highlighted that even when cross-modal 
transformers are used, attention heatmaps or relevance curves are rarely validated with ground truth or annotated 

alignments [8] [22] [31]. 
 

15.3 Future Research Opportunities  

Future work must address both foundational and application-oriented gaps. First, there is a strong need for end-to-
end multimodal graph-transformer pipelines that integrate the best of graph-based modeling (Section 6) and attention-

based architectures (Section 8). These models should represent frames, segments, or shots as graph nodes enriched by 
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transformer-derived embeddings and fused across modalities. Hierarchical designs that combine local and global 
attention over graph structures could improve semantic understanding, scalability, and summary quality [3] [19] [26] 

[33]. 
Second, robust pseudo-labeling strategies are needed for scalable training. Self-supervised or weakly supervised 

systems should generate frame- or segment-level pseudo labels that approximate human-like summary decisions, which 

can then be refined using a teacher-student loop or contrastive distillation. These pseudo-labels should incorporate 
multimodal cues and possibly semantic segmentation masks to guide saliency estimation [14] [23] [30]. 

Third, the field must develop real-time summarization systems capable of streaming video + audio + ASR input 
processing. Such systems are essential in applications like surveillance, remote education, and wearable devices. 
Lightweight transformer variants or online GNNs must be designed to operate under constrained memory and latency 

requirements [6] [20] [34]. This includes innovations like sliding-window transformers, early-exit models, and attention 
pruning. 

Finally, future research must place greater emphasis on user-centric evaluation. Current metrics (e.g., F1, recall) do 

not capture narrative quality, emotional resonance, or personalization. Human-in-the-loop evaluation frameworks or 
reinforcement learning with user feedback could reshape model training toward more human -aligned objectives [35, 

36] [46-49]. 
One fascinating extension of video summarization is the semantic image retrieval application, which aims to get 

images based on their content and meaning, not metadata. For example, the paper Semantic Image Retrieval Analysis 

Based on Deep Learning and Singular Value Decomposition demonstrates that deep features and dimensionality 
reduction can be used to improve retrieval in the image datasets Mesopotamian Press. In a similar way, summary 
models that extract the most semantically meaningful frames or segments can become the source of content-based 

retrieval pipelines, thus allowing the easy implementation of video-derived imagery recognition, indexing as well as 
search over large multimedia repositories. Moreover, the investigation on the connection of summarization output with 

retrieval models, for instance, query-driven summarization or embedding of summaries into small hash codes similar to 
semantic hashing techniques [51] can be further researched by successor [51]. 

 

16. Challenges and Future Directions 

Challenges: Video summarization has been significantly improved through deep learning techniques; however, the 
main unresolved issues still exist. The first problem is that the limitation of datasets negatively impacts the 

generalization ability of models. Most of the existing benchmarking datasets do not have a wide variety of domains, 
camera motion, and scene complexity; thus, it is challenging to train models that can perform well in real-life 
situations. The second issue is that the semantic understanding of the content is still minimal; the current models 

frequently depend upon low-level visual signals or features calculated by a pre-trained network without having any 
deep contextual reasoning about the change of events, the feeling of the characters, or the narrative structures. Besides, 

computational and storage constraints are the obstacles that slow down deployments, for example, in real-time 
applications where there is a need for efficiency. Apart from that, the evaluation of methods is characterized by limited 
standardizations of protocols, and the presence of different metrics as well as subjective user studies makes it difficult 

to compare methods. 
Future Directions: Large-scale, multi-domain datasets that represent the diversity of real-world videos would 

greatly benefit the field. The use of multimodal signals (e.g., audio, text transcripts, and motion cues) for 

summarization might enhance semantic richness and also the relevancy of the summaries. The development of self-
supervised and few-shot learning techniques may solve the problem of lack of data and also facilitate the transfer of 

models to new domains. Besides, explainable summarization is becoming a key research objective, aiming that models 
offer understandable justifications for the chosen frames or segments. Moreover, the matter of explainable 
summarization as an emerging research target attracts attention of the whole field and ensures that such models give an 

interpretable rationale for the selected frames or segments. Some cross-domain areas, e.g., semantic image retrieval and 
knowledge graph construction from videos, are among the most potential utilizations of summarization as a basic unit. 

 

17. Comparative Performance of Learning Strategies Across Video Domains  

Learning paradigms in video summarization vary in effectiveness depending on video domain and content 
characteristics. Supervised methods  excel in domains rich in labeled data—such as documentaries, sports, or 

entertainment—where human annotations align closely with viewer preferences, yielding high precision and recall. 
However, they struggle to generalize to domains with sparse or inconsistent labels, like surveillance or egocentric 

footage. Unsupervised approaches , while limited in semantic understanding, are robust in scenarios prioritizing 
diversity and coverage. They perform well in surveillance and real-time monitoring, where labeling is impractical, 
relying solely on intrinsic data features to identify representative frames or segments —though sometimes at the cost of 

contextual relevance. Self-supervised learning bridges the gap, leveraging proxy tasks to capture multimodal temporal 
and semantic representations without human labels. Evidence suggests these models adapt well across contexts (e.g., 
from sports to educational content) while maintaining summarization quality, though success depends on pretext task 
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design and abundant unlabeled video data. Comparative studies—such as A Survey of Generative Artificial Intelligence 
Techniques—highlight the need for systematic benchmarking across video domains to clarify trade-offs between 

strategies, aiding practitioners in selecting or designing the most suitable methods. 
 

18. Implications of the Shift Toward Segment- and Shot-Level Modeling 

Over 70% of recent video summarization models now focus on segment- or shot-level units, marking a significant 
shift in temporal modeling and content understanding. This move departs from frame-level analysis, often criticized for 
repetitiveness and weak semantic coherence. Segment- and shot-level modeling better reflects how humans perceive 

video—capturing discrete, temporally coherent events that preserve narrative continuity. By grouping similar frames, it 
minimizes redundancy while avoiding the fragmentation caused by isolated frames, producing compact yet informative 

summaries applicable in education, surveillance, and entertainment. This shift also supports hierarchical architectures 
operating at multiple temporal scales. For example, a model may analyze detailed frame-level features within each shot 
while tracking the overall shot sequence for global coherence. Multi-scale reasoning is especially valuable for long, 

complex videos where both local and global comprehension are challenging. Furthermore, segment boundaries  often 
align with changes in modalities such as audio, speech, text, and motion, enabling richer multimodal integration. Cross -
modal attention and fusion become more effective at these less frequent temporal units, leading to semantically stronger 

summaries. The growing adoption of this approach signals a future emphasis on semantic coherence, scalability, and 
multimodal synergy—foundations for next-generation summarization systems aligned with human expectations. 

 

19. Conclusion 

Over the past decade, deep learning–based video summarization has evolved through major shifts in data 

representation, temporal modeling, and supervision. This review synthesizes findings from 46 studies, charting progress 
from handcrafted methods to multimodal, segment-aware, transformer-driven systems. Multimodal integration has 
become central: modern models combine visual, audio, text, and motion cues, with intermediate attention mechanisms 

enabling effective cross-modal fusion for richer, context-aware summaries. Another key trend is the move from frame-
level selection to segment- and shot-based summarization, which preserves narrative coherence, minimizes redundancy, 
and aligns with human perception. Shot-level units, alongside keyframes, offer balanced semantic and aesthetic 

granularity. Architecturally, the field is shifting toward graph-based and transformer-based approaches. Graphs capture 
relationships among temporally distant or semantically related units, while transformers provide powerful sequence 

modeling and global attention. Hybrid architectures combining GNNs, transformers, and hierarchical encoders have 
shown notable gains in performance and interpretability. 
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