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ABSTRACT: Video summarization has become a vital solution for handling the explosive growth of video data
across domains such as surveillance, education, entertainment, and healthcare. As visual media increasingly
dominate digital communication, users and systens alike require fast, semantically rich access to content without
viewing entire videos. Deep leaming has fundamentally transformed this task, enabling models to detect, rank, and
condense relevant segments into concise summaries that retain meaning, context, and narrative coherence.

However, this change is still hindered by some problems that keep coming back: the large variety of video formats
and domains, the non-uniform temporal structures of the content, and the restricted scalability of annotated datasets
that are used for supervised learning. However, the diversity of video sources, inconsistency in temporal structure,
and limited access to labeled training data pose persistent challenges. Traditional frame-based modelk often suffer
from redundancy and fragmented outputs, while supervised methods are constrained by annotation cost and
domain generalization. Many summarization systems still under-address multimodal fusion, temporal alignment,
and long-range semantic reasoning, and benchmark evaluations rarely account for cross-modal contributions or
human subjectivity in summary preferences. This review offers a comprehensive and technically grounded survey
of 46 deep leaming-based approaches, organized around five foundational techniques: multimodal representation
and fusion, segment/shot-level summarization, graph-based modeling, transformer architectures, and leaming
paradigms including supervised, unsupervised, and selfsupervised frameworks. By structuring the discussion
through architectural innovations rather than individual models or datasets, we identify core methodological
patterns, highlight the evolution of leaming strategies, and analyze the impact of unit granularity and modality
integration on summarization quality. We conclude with an original synthesis of trends, research gaps, and future
opportunities in real-time, hybrid, and label-free summarization design. Key results from our comparative analysis
show that segment- or shot-based methods comprise over 70% of modern models, reflecting a broad shift away
from frame-based summarization. Additionally, transformer-based architectures, often combined with GNNs or
hierarchical encoders, have overtaken RNNs as the dominant sequence modeling strategy. Examples from our
analysis include the observation that over 70% of recent models now incorporate segment- or shot-level units
rather than isolated frames, while transformer-based architectures—often fused with GNNs or hierarchical
encoders—have replaced RNNs as the dominant modeling paradigm. Similarly, our comparative tables reveal that
intermediate fusion techniques consistently outperform early and late strategies, especially when paired with
attention-based alignment.These results show what kind of architectural and learning design decisions
implementation are features, which mean better coverage of semantics, higher scalability and pe rformance—thus
giving practical insights to the researchers and developers who work on the next generation of summarization

systems.
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1. INTRODUCTION

The rapid proliferation of video content across surveillance, social media, education, entertainment, and healthcare
has created an urgent need for automatic summarization methods that deliver concise, semantically faithful surrogates
of long videos [1]. We now accumulate billions of hours of footage annually—from security cameras and social
platforms to classrooms, film, and clinical environments—making manual review infeasible [2, 3]. Consequently, this
review discusses why video summarization matters, how the field has evolved from rule-based pipelines to leaming-
driven approaches, and what questions this survey seeks to answer [4, 5]. The volume of online video continues to
surge; for example, YouTube receives over 500 hours of uploads every minute, while municipalities stream extensive
camera feeds for safety and traffic analytics, and schools, sports broadcasters, and news outlets generate both live and
archived content [6-10].

This data deluge produces cognitive and infrastructural bottlenecks: manual processing is slow, labor-intensive,
and error-prone. There & a clear demand for automated summarization that compresses content while preserving
essential meaning and narrative continuity [11, 12]. Established techniques include key frame extraction [13], shot-level
segmentation [14], and dynamic skimming [15]. Modem applications span security [16], healthcare [17], media
indexing [18], and video-based retrieval [19], all of which require models that are efficient, context-aware, and
semantically coherent[20-22].

Earlier systems relied on handcrafted cues—motion intensity, shot boundaries, and histogram comparisons—that
were often brittle and domain-dependent [23]. Although clustering, ranking, and heuristic rules could capture
superficial importance, they struggled to generalize across video genres and user preferences and to capture deeper
semantics or multimodal cues [24, 25].

Deep learning has substantially advanced video summarization by enabling end-to-end leaming from raw inputs
summary outputs. Convolutional neural networks extract high-level spatial semantics (objects, actions, scene context)
from frames [26, 27]. Recurrent architectures such as LSTMs extend this to temporal dependencies, modeling event
evolution and scene transitions [28]. These capabilities are further enhanced by attention mechanisms and transformer
architectures, which provide non-local, content-driven focus and scalable computation for long sequences [29].

This review presents a comprehensive, technically grounded survey of 46 deep learning—based approaches to video
summarization, organized by architectural principles rather than by individual modek or datasets. The analysis is
structured around five pillars: (i) multimodal representation and fusion, (ii) segment/shot-level summarization, (iii)
graph-based modeling, (iv) transformer architectures (including hybrid GNN-transformer designs), and (v) leaming
paradigms spanning supervised, unsupervised, and self-/weakly supervised methods. The goals are to (a) distill
methodological pattems that drive semantic coverage and scalability, (b) quantify shifts in unit granularity (from
frames to segments/shots) and sequence modeling (from RNNs to transformers), (c) assess fusion strategies and
attention-based alignment, and (d) surface open problems in domain generalization, long-video reasoning, and real-time
operation. The review concludes with actionable design guidelines and research opportunities for hybrid, label-
efficient, and deployment-ready summarization systems.

2. Focus of This Review

This review focuses on the foundational techniques and architectural paradigms that shape deep leaming -based
video summarization. Rather than surveying model by model or dataset by dataset, we organize the review around five
major methodological categories that reflect coreinnovations across the literature :

e Selfsupervised learning: techniques that enable modek to learn summary-relevant features from unlabeled data,
using tasks suchas temporal order prediction, masked modeling, or contrastive learning.

e Multimodal representation and fusion: combining visual, audio, and textual information to generate
semantically rich, user-aligned summaries.

e Graph-based modeling and reasoning: leveraging graph structures and neural message passing to model inter-
frame or inter-shot relationships for more globally optimized summarization.

e Segment-aware and shot-level summarization: using temporal units that preserve local coherence and event
boundaries to improve summary readability and user satisfaction.

Transformer setups and attention tricks: using attention models to grab distant links and estimate fine-grained
importance across full video sequences. Each part of this review uses these groups to give astructured, in-depth look at
howtoday's summarization models are made, tested, and set up.

3. Research Gap and Contribution

Despite notable progress in video summarization, existing literature remains fragmented. Most reviews focus
narrowly on a single deep leaming model type (e.g., CNN or Transformer), specific datasets, or teaching paradigns,
without offering a unified comparison of network architectures, multimodal strategies, and temporal granularity. This
leaves practitioners unclear about which models best fit different video types, user needs, or deploymentcontexts.

A major gap lies in architecture-focused analysis. While primary studies detail individual modek, few reviews
compare the development and efficiency of CNNs, RNNs, Transformers, Graph Neural Networks (GNNs), and hybrids.
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Our work addresses this by classifying 46 contemporary approaches not only by timeline or dataset but also by design
structure, revealing how architecture influences summarization quality, scalability, and modality alignment.

Temporal granularity & also underexplored: over 70% of recent models now adopt segment- or shot-level
summarization, which improves semantic coherence, reduces overlap, and boosts F1scores on datasets such as TVSum
and SumMe.

Multimodal integration remains challenging. Few surveys systematically assess early, late, and intermediate
fusion; our review shows intermediate fusion (e.g., co-attention, cross-modal transformers) often outperforms others,
especially forasynchronous modalities.

Learning paradigms receive uneven attention, with limited comparisons of supervised, unsupervised, and self-
supervised methods. We provide comparative tables (e.g., Table 6) outlining trade-offs, scalability, and proxy tasks in
self-supervised learning.

Finally, we highlight emerging hybrid designs—Transformer-GNN models, hierarchical temporal encoders, and
streaming-oriented summarization—as promising solutions for real-time and low-resource scenarios. Qur review
delivers a panoramic, architecture-aware perspective, clarifying methodological trade-offs and future research
directions.

4. Review Methodology

This review systematically analyzed 46 peer-reviewed studies on deep leaming-based video summarization
published between 2018 and early 2024, sourced from IEEE Xplore, SpringerLink, ScienceDirect, and Google Scholar
using keywords such as “video summarization deep leaming,” “multimodal video summarization,” and “transformer
video summarization.” Inclusion criteria required each paper to ntroduce a novel model or significant architectural
extension, employ publicly available datasets (e.g., TVSum, SumMe, ActivityNet, YouTube-ASR), and report
quantitative results (e.g., F1-score, AUC). Studies were evaluated across five dimensions: architecture type (CNN,
RNN, Transformer, GNN, hybrid), modalities (visual, audio, text, multimodal), learning paradigm (supervised,
unsupervised, selfsupervised), datasets, and performance metrics. The analysis aimed to identify architectural trends,
the role of multimodal integration, and the impact of segment- or shot-level modeling on summary quality, providing a
comprehensive, comparable foundation for assessing state-of-the-art methods (see Table 1).

Table 1 Summary of Reviewed Studies Displayedhere is an excerpt from the comprehensive comparative

table

Ref. Architecture Modality Learning Type Dataset Used Best Reported Result
[30] CNN + LSTM Visual Supervised TVSum 59.2%F1
[31] Transformer Visual + Audio Supervised SumMe 61.4%F1
[32] GAT (Graph Attn) Visual Self-Supervised TVSum +5.2% F1 over baseline
[33] BiLSTM Visual Self-Supervised Egocentric +3.8% F1

34 Hierarchical GNN Visual + Audio Self-Supervised ActivityNet +4.7% F1

35 Transformer + GCN Visual + Text Supervised SumMe 62.4%F1
[36] Transformer Visual Masked Modeling TVSum +6.3% F1
[37] CNN + DPP Visual Unsupervised SumMe Diversity gain +8%

This structured methodology and detailed tabulation allow us to not only observe performance trends but ako offer
a clear mapping of architectural evolutionand methodological strengths across the literature.

5. Limitations of Methodological Approaches

Deep learning-based video summarization methods, as examined, have shown the ability to deliver great results,
yet their ability to generalize across various video domains is still a major challenge. For instance, models that have
been trained on selected datasets, like those consisting of cinematic or sports footage, may not be able to move
effectively to areas that have different visual and temporal characteristics, such as low-resolution surveillance streans
or pedagogical lecture videos. Besides, the differences in motion dynamics, scene complexity, and semantic richness
may become a performance bottleneck when the method is used outside the training domain. This problem is very
similar to what has been observed with other deep leaming applications, such as medical imaging (eg., multi-view
COVID-19 X-ray diagnosis), where data characteristics that are specific to the domain have great influence on the
accuracy of the model. To solve this constraint, one may have to deploy domain adaptation strategies, use multi-domain
training datasets, orevenresort to hybrid approaches that merge deep features with traditional summarization cues.

6. Evolutionof Deep Learning-Based Video Summarization Techniques

Video summarization has evolved from heuristic, handcrafted approaches to advanced deep leaming-based
methods. Early techniques relied on low-level features such as color histograms, motion vectors, and edge detection,
often combined with clustering or graph-based algorithims to extract keyframes. While simple, these methods lacked the
ability to capture high-level semantics or temporal context, resulting in less coherent summaries. The advent of
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machine learning introduced supervised and unsupervised models that improved quality through feature learning but
still depended on manual feature engineering or shallow architectures, limiting their ability to model complextemporal
dependencies. Modek like Hidden Markov Modek (HMMs) and Support Vector Machines (SVMs) provided a
foundation but struggled with diverse or lengthy videos. Deep learning transformed the field by enabling hierarchical
feature learning directly from raw inputs. CNNs improved spatial feature extraction, while RNNs and LSTMs enhanced
temporal modeling but faced issues like vanishing gradients and limited long-range dependency capture. Recently,
transformer architectures with self-attention have emerged as the dominant paradigm, offering superior global context
modeling, parallelism, and multimodal compatibility. This progression reflects a shift from local, handcrafted features
to scalable, semantically rich, and adaptable data-driven representations suitable for modern video analysis tasks.

7. Background and Classical Foundations

To get how video summarization came to be, we need to look at where it started with older ways of doing things
and how they were tested. The first systems used things made by hand, grouping, and ways to cut up time. These older
ways could do some basic summarization, but they didnt have the give or understanding that today's deep leaming
gives you. This part groups the types of summarization plans, talks about the old ways before deep leaming, and shows
the test setups and datathatwere used to judge video summarization systems.

7.1 Definitions and Types of Summarizations

Video summarization tries to make short versions of videos without losing the important pars. There are a few
ways to sort out how these summaries are made. First off, you have extractive summarization. It just grabs bits and
pieces straight from the video [38]. Then there's abstractive summarization that sort of rewrites the video, like tuming it
into astory orsomething. Another way to think about it is static versus dynamic [39]. Static summaries are like a bunch
of snapshots, while dynamic ones are more like mini-movies [40]. There's ako online and offline summarization.
Online deak with videos as they're coming in, and offline gets the whole video at once, so it can make smarter choices
[41]. How you do it changes how they’re tested and used; think live streams or security cameras. What you chop the
video into matters too [42]. Keyframe methods give you single pictures [43]. Shot-level or segment-based ones give
you clips, which keeps the timing right and makes it easier to follow [44]. These days, segment- or shot-based methods
are getting more popular because they're better at keeping the meaning clear and making sure people enjoy watching
[45-48].

7.2 Traditional Approaches Before Deep Learning

Back before deep leaming showed up, the way folks did summarization was mainly by using features they made
themselves and simple rule-based tricks. Usually, this meant figuring out simple details like color breakdowns, how
many edges there were, or how much movement happened. Then, they'd use grouping methods (like K-means) to find
frames that were basically the same. After that, they would pick some to stand for the whole bunch [49, 50]. In these
methods, cluster centroids or boundary frames were chosenas summary candidates.

Shot boundary detection was another foundational technique. Video systems chopped up footage into scenes by
looking for things like sudden changes in images or time. Then, they picked out the important parts using rules or
rankings. Usually, they figured out what was important by hand, looking at stuff like how much movement there was,
what caught the eye, or if there were faces. Ao, some systens ranked frames or shots, giving them scores based on a
simple mix of featuresorusingbasic models to learn what mattered.

These early fixes had their problems, though. They were often domain-specific, lacked semantic understanding,
and failed to integrate audio or textual modalities. Furthermore, they could not model long-term dependencies or user
intent effectively, resulting in summaries thatwere either visually redundant or semantically incomplete [51] [3] [4].

7.3 Bvaluation Frameworks and Benchmark Datasets

As the field matured, standardized evaluation protocok and datasets were introduced to compare summarization
models objectively. Two widely used datasets are
e  TVSum: This dataset contains 50 videos from 10 categories (e.g., cooking, sports), with frame-level importance
scores annotated by multiple users. Modek are typically evaluated using F1 scores between generated summaries and
these annotations [5, 6].

e  SumMe: Contains 25 consumer videos with 15-18 user-created ground truth summaries per video. Evaluations
compare generated summaries with a union or intersection of user summaries, again usingtheF1score [7, 8].

In both datasets, the F1-score is the most common metric- calculated as the harmonic mean of precision and recall-
to assess how well the system-selected frames match human-selected ones. Some systems ako perform user studies to
rate perceived usefulness, narrative flow, orenjoyment [9, 10].

However, several limitations persist in these frameworks. First, annotations are often subjective and inconsistent
between users. Second, many evaluation protocok focus exclusively on visual features, neglecting audio or text
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modalities that could influence human judgments. Lastly, differences in evaluation criteria across datasets hinder
consistentbenchmarking of new models [11-14].

8. Deep Learning Foundations for Video Summarization

As video summarizing got better, deep leaming became super important. It let computers automatically pull out the
important stuff, like what's happening in the video, when things happen, and how audio and video work together. These
computer programs are way easier to change and train compared to the old ways. Now, let's talk about the basic deep
learning parts that are used to build new summarizing systers. We'll look at took that grab visual details, arrange
things in order, and putdifferent types of data together.

8.1 Visual Feature Extractors

To start, summarization systems based on deep learning usually pull out visual features. Common Convolutional
Neural Networks (CNNs) like VGGNet, ResNet, and Inception are often used to encode what each frame means [1] [5]
[9]. These networks are pre-trained on huge datasets like ImageNet, so they can grab important clues such as what
objects are there, what the scene is like, and how things are arranged [5]. For example, DSNet uses a ResNet to encode
each frame before it models the timing. Besides 2D CNNs, there are also 3D CNN designs such as C3D and 13D. These
stretch the convolutions out to add a timing aspect, which helps the model leam how things move across frames [11]
[19] [23]. These models work great for sports and activity videos, where motion really matters for summarizing. A
good example [11] mixes 3D CNNs with attention layers to grab the most relevant moments, while [23] puts 3D
features together with sound cues for better learning with differentkinds of info.

To add to what CNNs do, some modek use optical flow as extra info to get better at sensing motion. This really
helps when things are moving just a little bit. For example, study [10] showed that flow-boosted embeddings made
frame prediction better. Scene-based encoding has ako been explored; [12] it groups frames into semantic regions to
extract scene-level context rather than treating frames independently.

8.2 Sequence Models

To model temporal dependencies across video frames, sequence architectures such as Recurrent Neural Networks
(RNNs), particularly Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), have become standard in
summarization systems [2] [4] [8]. LSTMs allow a model to learn which frames to retain based on temporal pattems
and importance scores. For instance, vsLSTM [2] assigns a leamable score to each frame using BILSTM outputs
followed by a SoftMaxlayer.

Sequence modek also make it easier to think about time. The TTH-RNN model [15] is like a Tensor-Train version
of RNNs. It cuts down on how many parameters you need but keeps that long-range memory stuff. Another way to go,
[18], mixes BILSTM with reinforcement leaming. It helps fine-tune what to pick based on how good the recap . But
regular LSTMs? They can get tripped up by gradients that fade away and trouble remembering things long-term.
Transformer setups have popped up as another option, paying attention to the whole sequence. [14] shows that
transformers do a better job than LSTMs at grabbing the big picture for making video recaps. Others, like [17], use
stacked LSTM pieces to understand both the frames and bigger chunks. Allin all, keeping track of time in sequences is
still important for figuring out whenthegood parts happen and making sure summaries make sense.

8.3 The Shift Toward Multimodal and Hybrid Architectures

Videos today mix visuak, sound, speech, and text all the time. So, to really get what's going on in a video, new
summarization modek are leaming to understand all these different parts together. Sound is often tumed into
spectrograms and processed with CNNSs, then mixed with the visual stuff. For example, in one case [3], they use
attention to combine the sound and visuak, so things make more sense. Text bits, like captions or what's said in the
video (using ASR), help make better summaries. One approach [7] uses BERT to encode transcripts and then combines
that with the video using cross-modal transformers. GPT2MVS [13] extends this idea, employing generative
transformers trained on video-text pairs to produce query-focused summaries.

Hybrid models integrating CNNs, RNNs, and transformers have become increasingly common. [6] uses CNN-
RNN stacks for visual encoding and sequence modeling, while [21] integrates a vision transformer into a BiLSTM
encoder-decoder framework for hierarchical summarization. The MHSCNET model [24] employs a three-branch
design—visual, audio, and motion—each with its own attention mechanism, unified via shared layers.

Fusion strategies vary. Early fusion combines modalities at the input level, whereas late fusion merges outputs
from separate encoders. Intermediate fusion—particularly via co-attention or cross-modal attention—has shown the
best balance between learning shared features and preserving modality-specific information [20] [25] [26].

9. Self-Supervised Learning in Video Summarization

As video summarization systems evolve, the dependence on manually labeled training data has emerged as a
limiting factor in scalability, adaptability, and generalization. Human-labeled datasets for summarization are expensive
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to collect, subjective in nature, and often domain-specific. To address this, self-supervised leaming (SSL) has become a
transformative paradigm in video summarization, enabling modek to leam useful representations directly from raw,
unlabeled video data [4] [14] [21] [29]. Self-supervised approaches leverage proxy tasks—such as predicting temporal
order, solving frame permutations, or contrasting positive and negative frame pairs—to structure leaming objectives
that guide the model toward semantic understanding withoutexplicit labels [26, 27].

In this section, we explore the motivation for label-free summarization systens, survey key SSL techniques and
architectures, and critically analyze their strengths and limitations in comparison to supervised methods. We also
present a detailed comparison in Table 1, highlighting the diverse proxy tasks and architectural strategies used across
state-of-the-artapproaches.

9.1 Motivation for Label-Free Training

The creation of labeled video summaries is both time-consuming and inherently subjective. Annotators may differ
in their understanding of relevance, narrative flow, or key content depending on cultural, contextual, or personal
preferences [1, 2]. Moreover, the availability of annotated datasets is limited—most benchmarks like TVSum or
SumMe provide only a few dozen examples, which severely restricts the ability of deep learning models to generalize
to newdomains [5, 6].

Self-supervised learning presents ascalable altemative by constructing training signak directly fromthe data itself.
Instead of requiring ground-truth summaries, SSL frameworks create auxiliary tasks where the model learns to infer
structure, similarity, or temporal patterns. These include predicting frame order, detecting continuity violations, or
aligning audio and visual streams [11] [12] [17]. Through these tasks, models develop an internal representation of
temporal coherenceand semantic salience, which can later be usedto selectinformative segments during inference.

The appeal of SSL is particularly strong in long-form, domain-specific video categories such as surveillance,
egocentric video, and lectures, where annotations are impractical at scale [9] [18] [23]. Furthermore, SSL supports
pretraining strategies that help modek transfer better to downstream tasks, even when only limited labeled data is
available.

9.2 Techniques and Architectures

Several SSL methods have been adapted for video summarization, each using a unique pretext task to enable
representation learning. One prominent class of techniques involves temporal order prediction—training a model to
determine whether a sequence of frames i in the correct order [8] [13]. This teaches the model to understand causality
and temporal dynamics, both essential for selecting coherent video summaries.

Another strategy is contrastive learning, where the model pulls together embeddings of temporally close frames
(posttives) and pushes apart randomly sampled or augmented frames (negatives) [15] [20]. Architectures such as
SimCLR-style encoders, MoCo (Momentum Contrast), and BYOL (Bootstrap Your Own Latent) have been adapted for
summarization with strongresults.

Masked modeling approaches, such as Masked Frame Modeling (MFM) or Masked Autoencoders (MAE),
randomly remove input patches or frames and train the model to reconstruct them. This forces the network to capture
spatial and temporal dependencies [10] [16] [24]. Additionally, audio-visual alignment tasks have been used in works
like [7] and [22] to align video and audio modalities using cross-modal attention.

Transformers are increasingly used in SSL-based summarization for their ability to model long-range
dependencies. Architectures like VideoMAE [16] and hierarchical transformers [19] integrate attention mechanisns
into temporal prediction tasks. Table 2 provides a structured comparison of representative works employing various
proxy tasks and architectures for self-supervised summarization.

Table 2 Comparison of Self-Supervised Learning Techniques inVideo Summarization.

Paper Self-Supervised Task Architecture Used Modality Dataset Used Reported Improvement (%)
[10] Masked Frame Modeling Transformer + MAE Visual TVSum +5.2% F1
[11] Temporal Order Prediction CNN +LSTM Visual SumMe +4.3% F1
[13] Frame Permutation Detection BILSTM Visual Egocentric +3.8% F1
[15] | Contrastive Learning (SImCLR) CNN + Projection Head Visual TVSum +5.9% F1
[16] Masked Autoencoding Vision Transformer Visual SumMe +6.1% F1
[19] Cross-Modal Matching Hierarchical T ransformer | Audio-Visual YouT ube-ASR +4.7% F1
[22] Audio-Visual Alignment CNN + Cross Attention Audio-Visual ActivityNet +3.5% F1
[24] MFM + Temporal Contrast Transformer Visual TVSum, SumMe +6.3% F1

9.3 Strengthsand Limitations

Self-supervised learning provides several advantages for video summarization. First and foremost, SSL modek
scale easilysince they do not require labeled data, they can be trained on large, diverse datasets from surveillance,
education, or entertainment domains [3] [25] [30]. Second, SSL fosters domain generalization, allowing models to
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pretrain on general-purpose videos and fine-tune on small labeled sets [20] [28]. Lastly, SSL offers robustness to label
noise and user variation, as the learning process is driven by internal structure rather thanexternal supervision.
However, self-supervised modek face several challenges. The choice of proxy task is critical- if the task is too
simple (e.g., solving basic frame shuffling), the model may fail to learn meaningful representations [12] [27]. Some
tasks, like masked frame prediction, can introduce modality leakage orshortcut learning, where the model exploits low-
level cues instead of semantics [17]. Additionally, transferring from proxy tasks to actual summarization requires
carefularchitecture tuning and oftensuffers fromweak alignment with human -style summaries [6] [31].

10. Multimodal Representation and Fusion in Video Summarization

Modern video summarization modek increasingly leverage multimodal inputs to capture the diverse semantic
signals embedded in visual, audio, and textual modalities. Visual features alone are often insufficient to identify high -
level narrative content or user-relevant segments- especially when acoustic cues (e.g., applause, explosions) or spoken
words (e.g., tutoriak, dialogues) provide essential context [5] [16] [22] [30]. Multimodal representation leaming
addresses this by integrating modality-specific cues through encoding and fusion techniques that are either early, late,
or intermediate in nature.

This section explores how different modalities contribute to summarization quality, how they are represented and
temporally aligned, and how fusion strategies affect performance. We ako present Table 2, which compares recent
multimodal summarization systems based on their modalities, fusion mechanisnms, and performance gains over
unimodal baselines.

10.1 Modalities and Their Relevance

In multimodal summarization, each modality contributes unique semantic signak that, when fused effectively,
enhance summary informativeness and coherence. Visual modalities provide spatial and appearance information such
as object detection, background context, and action scenes. CNNs and Vision Transformers (ViTs) are commonly used
to encodesuchfeatures, forming the backbone of most summarization pipelines [6] [18] [25].

Audio cues often capture momentary importance not evident visually—such as crowd noise in sports, explosions in
movies, or silence in suspense scenes. Audio cues can show emotional changes or important moments [13].
Spectrograms or mel-spectrograms usually represent audio before it's processed by Al. Text, usually from speech
recognition, adds words into the mix [20]. For example, tutorial videos might depend more on what's said than what's
shown. Language models encode what's being said, and spoken [4] [14]. Matching spoken words to video parts helps
find topics, clear up scenes, and make summaries just for you. When you put them together, audio and text give
different takes on what matters. This can improve scores and make people happier [3] [24] [27].

10.2 Representation Techniques

Each type of data gets coded using special computer setups that keep its meaning safe, so it can all be put together
later [1]. For example, we often grab visual details using CNNs like ResNet or VIT that have already been trained.
They give us abig view or small snapshots of video frames [11]. These setups pick up on objects and scenes, handy for
spotting stuff or ranking clip value [17]. Sound specifics are usually taken by tuming raw sound into spectrograns,
after that, they are pushed into CNNs or LSTM modek [15]. Sometimes, we use tricks over these spectrograns to focus
on key sound bits. ASR transcripts are changed into text specifics that are often handled with BERT or similar took
[28]. They keep the order of words and their meanings [8]. These snapshots line up with video frames using methods
like CTC alignment [12] [19]. Also sliding windows, or paying attention across different types of info do it too. Getting
the timing right is key, making sure everything points to the same instant. If the audio or text is off, it can mess up the
summary. Some use time codes while some line things up with focus-based alignment to better combine data even if
they're not perfectly in sync [2].

10.3 Fusion Strategies

You can sort multimodal fusion into three main types: early, late, and intermediate. Each one has its own pros and
cons whenit comes to howhardit is to do, howwell it adapts, andhow detailed it can be.
) Early fusion mixes basic features from different sources before any heavy processing. This helps in shared
learning early on but can ako spread noise from less reliable sources. Works like [7] demonstrate that early fusion
works well in synchronized settings butstruggles with heterogeneous data.
) Late fusion processes each modality independently and combines their outputs at the decision stage-typically
via weighted averaging or voting mechanisms. It is simple, robust, and modular but may miss intermodal interactions
[9] [10] [29].
. Intermediate fusion (e.g., co-attention, cross-modal transformers) has emerged as the most effective strategy,
enabling joint learning while preserving modality specific structure. For instance, VMSMO [24] employs co-attention
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layers to align and integrate visual and textual features, improving semantic relevance. Similarly, MHSCNET [25] uses
a hierarchicalmodel that fuses audio, visual, and motion cues at multiple levels of abstraction.
The timing and method of fusion greatly influence summarization quality. Table 2 below compares representative
models using different strategies (see Table 3).
Table 3 Multimodal Representationand Fusion Strategies.

Paper Modalities Used Fusion Strategy Alignment Strategy Performance vs. Unimodal
[24] Visual + Text Co-Attention Temporal Attention +6.2% F1 on TVSum
[25] | Visual + Audio + Motion Hierarchical Fusion Shared Temporal Graph +5.7% F1 on SumMe

7] Visual + Audio Early Fusion Manual Sync +3.9% F1 on TVSum
[10] Visual + Audio Late Fusion Timestamp Matching +2.8% F1 on SumMe
[13] Visual + Audio Cross-Attention Learned Alignment +5.1% F1 on ActivityNet
[14] Visual + Text Transformer Fusion Sliding Window +4.6% F1 on TVSum
[15] Visual + Audio Early Fusion MFCC-based Sync +3.4% F1 on SumMe
[28] Visual + Audio Cross-Attention Mel-Spectrogram Matching | +5.5% F1 on YouT ube-ASR

The results in Table 3 demonstrate that intermediate fusion consistently outperforms early and late fusion,
particularly when paired with attention-based alignment techniques. Multimodal models ako show robust
improvements across datasets, validating their utility in general-purpose and domain-specific summarization tasks. As
video summarization systems continue to evolve toward graph-based and structured reasoning, the importance of robust
multimodal representation and fusion strategies becomes even more critical. In the next section, we tum to explore
graph-based modeling approaches that explicitly structure relationships between video elements—offering improved
semantic context, relational reasoning, and support for global attention mechanisms.

11. Graph-Based Representations and Modeling

While sequence models and transformers capture linear or self-attentive dependencies, graph-based approaches
offer a more flexible framework to explicitly model structured relationships between video elements. Graphs enable
rich representations of temporal, semantic, and multimodal relations using non-Euclidean structures that mirror the
real-world complexity of video data [3] [12] [20] [35]. Graph neural networks (GNNs) extend this flexibility by
learning on graph-structured inputs, enabling modek to reason beyond sequential frames and capture global context
acrossavideo.

While sequence models and transformers capture linear or self-attentive dependencies, graph-based approaches
offer a more flexible framework to explicitly model structured relationships between video elements. Graphs enable
rich representations of temporal, semantic, and multimodal relations using non-Euclidean structures that mirror the
real-world complexity of video data [3] [12] [20] [35]. Graph neural networks (GNNs) extend this flexibility by
learning on graph-structured inputs, enabling modek to reason beyond sequential frames and capture global context
acrossavideo.

To illustrate these differences, Figure 1 has been added, showing a visual comparison between traditional RNNSs,
Transformer architectures, and Graph Neural Networks (GNNs). The diagram demonstrates how RNNs process
sequences in a strictly linear fashion, while Transformers employ global self-attention mechanisms. In contrast, GNNs
capture flexible, non-linear relationships across frames or segments through node and edge connections. The figure ako
includes an example of multimodal interaction, where video frames and audio segments are modeled as heterogeneous
nodes within a unified graph structure. Cross-modal edges are highlighted to indicate attention-based fusion
mechanisms, enablingthe modelto integrate visual and auditory cues for richer summarization.

RNN Transformer Graph
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I

Video Frame [Video Frame] [Video Frame]
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Frame

Video
Frame
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FIGURE 1 Simplified comparison of RNN, Transformer, and graph -based architectures for video summarization,
highlightingtheir data flow mechanisms. The RNN processes video frames sequentially with hidden state transitions. The
Transformer usesself-attention to model global relationships between frames.
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In this section, we discuss the motivation for using graphs in summarization, how graphs are constructed at
different levek of granularity, and the growing use of GNNs like GCN, GAT, and GIN for video understanding. We
also examine advanced extensions, such as cross-modal and hierarchical graphs. Table 3 compares graph-based
approaches across modeling dimensions such as node granularity, edge design, and hierarchical support.

11.1 Why Graphs in Summarization

Traditional summarization modek often treat frames as independent or linearly dependent units. However, video
content exhibits richer structures—frames or segments can relate semantically despite being temporally distant, and
cross-modal relationships (e.g., a loud sound preceding an explosion) are often non-linear [14] [18] [22]. Graphs
address this limitation by modeling videos as nodes (e.g., frames, segments, orshots) connected by edges representing
temporal, semantic, or learned relationships.

Using graph structures allows summarization modek to capture long-range interactions, group semantically similar
segments, and encode dependencies that attention mechanisms might overlook. For example, [1] proposes a graph to
model both short-term continuity and long-term semantic similarity, enhancing summary diversity and coherence.
Makes a videograph using time and how alike things look, so the content can be shown in lots of ways. Plus, graphs can
handle a lot of info [27]. Once constructed, they can be pruned, pooled, or hierarchically decomposed to suit different
tasks—such as eventdetection or segment retrieval—making themversatile across domains [9] [17] [26].

11.2 Graph Construction Techniques

Constructing effective video graphs involves selecting appropriate node units and defining meaningful edge
connections. Nodes can represent individual frames [6], segments [15], or shots [24], depending on the summarization
granularity. Frame-level graphs are fine-grained but computationally intensive, while shot-level graphs provide more
semantic coherence.

Edges are defined using several strategies:

e  Similarity-based edges: connect nodes with high visual or semantic similarity, as done in [2], which uses cosine
similarity between frame embeddings.

e  Temporal edges:connecttemporally adjacent nodes to maintain sequence continuity [5] [11].

e Learned edges: employ neural attention mechanisms or adjacency prediction modules to leam edge weights
dynamically based on feature interactions [7] [10] [28].

Some approaches build modality-specific graphs. For instance, [4] constructs parallel graphs for visual and audio
features and then aligns them via cross-modal GNNs. Others extend graphs to encode user query relevance or topic
clusters [23].

11.3 Graph Neural Networks (GNNs) in Video Understanding

Once a graph is built, GNNs can process it by passing messages between nodes. The most commonly used GNNs
in video summarization include
e GCN (Graph Convolutional Networks): aggregate neighbor features through weighted averages; used in [13] to
refine segment embeddings.

e GAT (Graph Attention Networks): introduce attention over edge weights, allowing importance-based
propagation; employed in [21] to focus onsemantically strong connections.

e GIN (Graph Isomorphism Networks): capture structural information with higher discriminative power; utilized in
[25] for shot-level summarization.

These models support non-local reasoning—nodes can receive context from distant, non-adjacent nodes,
improving summary diversity and temporal coverage [16] [19]. In [31], a two-stage GCN filters out redundant
segments before final scoring. Other works apply multi-layer GNNs with pooling to capture hierarchical context across
different video scales [32].

11.4 Cross-Modal Graphs and Hierarchical Graphs

Multimodal video summarization benefits from graph modek that encode and relate visual, audio, and text
modalities. In [29], cross-modal graphs link nodes across modalities, while modality-specific GNN layers encode
internal structure. Thesegraphs are aligned using shared nodes or co-attention layers.

Hierarchical graphs organize nodes across different levek—e.g., frame — shot — scene. [30] constrcts a three-
level graph where lower layers handle fine-grained content and higher layers model semantic flow. Pooling operations
are applied to reduce lower graphs and merge theminto coarser representations.

Temporal abstraction and granularity control are key strengths of hierarchical modek. In [33], frame-level GATs
inform scene-level GCNs, producing summaries with both fine detail and high-level continuity. These methods ako
support dynamic summarization: users can choose summary length or semantic depth interactively.
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Cross-modal graphs ako address modality imbalance. For example, [34] connects dense visual nodes with sparse
text nodesusing learned weights, mitigating dominance and preserving cross-signal coherence (see Table 4).
Table 4 Graph Construction and Modeling Approaches.

Paper | Node Granularity Edge Type GNN Used Modality Supports Hierarchy
[1] Frame Similarity + Temporal GCN Visual No
[2] Segment Learned Similarity GAT Visual Yes
[4] Frame Cross-Modal Alignment GCN Audio-Visual No
[5] Frame Temporal GCN Visual No
[7] Segment Learned (Attention) GAT Visual Yes
[10] Frame Learned GAT Visual No
[13] Shot Temporal + Semantic GCN Visual Yes
[15] Frame Similarity GCN Visual No
[21] Segment Learned + Semantic GAT Visual + Text Yes
[25] Shot Semantic Graph GIN Visual Yes
[29] Segment Cross-Modal Edges GCN Visual + Audio No
[30] Frame + Scene Hierarchical Pooling GCN + GAT Visual + Text Yes

Graph-based modeling offers an interpretable and structured way to represent video content. GNNs and graph
setups can make summaries better. They model how things relate and share context, so summaries become clearer,
more varied, and deeper. Next up, we'll see how these models help with making summaries at the segment level, using
shot-aware methods. This should make the timeline better and easier for people to read.

12. Segment and Shot-Level Summarization

Video summarization has gotten better, and how we pick what to include really matters forhow good it is and how
easy it is to understand. At first, they just picked individual frames. Nowadays, they usually use whole segments or
shots. This keeps things in order, cuts down on repeats, and makes for a better summary [5] [16] [21]. Using segments
works better because it fits with how stories are told and how people see things, which is useful for long videos or
videos of events. This part looks at the differences between using frames, segments, and shots for summaries. It ako
goes over how these are usually found and how keyframes are picked from segments using attention, contrastive
learning, and graph-based modek. Table 4 compares different systems based on what they pick, how they're rated, and
howthe summary is set up.

12.1 Frame vs. Segmentvs. Shot Selection

The way systerrs make summaries changes based on what they pick to put in the final result. Picking individual
frames that show what the video means is the most specific way to do it. Summaries at the frame level give you options
and are easier to figure out, but they usually don't flow well and can feel choppy [7] [11] [24]. On the other hand,
segment-based summaries put groups of frames together into bigger pieces based on things like motion, how similar
they look, or how the scene is set up. This keeps the story together better and cuts down on repeats. Segments usually
run for 1-10 seconds and can be made using set time periods, where the content changes the most, or borders that are
learned [12] [20] [26]. Shot-level summarization goes even further by splitting videos into shots using movie or story
changes [4, 9, 18]. Stuff like PySceneDetect or model-based segmentation can find shot lines based on things like
histogram changes, motion power, or scene edits. Picking what level of detail to use means balancing what you get.
Frame-based ways let you control the details but have issues with story flow, while segment, and shot-based ways keep
things flowing and match what people usually want better [6] [10] [28].

12.2 SegmentandShot Detection Methods

Figuring out where one scene ends and another begins in a video is super important for making summaries. One
way to do this s by comparing color changes. If the colors change a lot fromone moment to the next, it could mean a
new scene is starting. Tools like PySceneDetect do this, and they can ako use other tricks to find these changes [1]
[13]. Another way is to look at movement. If things are moving around a lot or the camera is shaking, that might point
to a scene change, especially in videos where you see things from one person's view or in action videos [8, 14]. You
can ako listen to the audio. Big changes in sound, like when the background noise changes or someone starts talking,
can also signalanewscene[19] [25].

More advanced methods combine multiple modalities and learned features. For example, [2] uses a CNN-LSTM
model to predict shot boundaries based on multimodal embeddings. Others use attention- or boundary-aware
contrastive learning to detect important changes while avoiding false positives dueto local variations [3] [17].

However, these methods face limitations. Histogram-based approaches may miss semantic shifts with gradual
transitions. Motion methods can misfire on camera movement or jitter. Audio transitions are often asynchronous with
visual cues. Therefore, hybrid techniques that combine modalities or use self-attention are increasingly adopted [15]
[22].
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12.3 Keyframe Selection within Segments

Once segments or shots are defined, the next step is selecting representative keyframes. Importance scoring
mechanisms are employed to identify frames that best represent the segment’s semantic content. Attention-based
models apply self- or cross-attention mechanisms to assign weights to frames within a segment. For example, [30] uses
transformer-based attention to dynamically score frames based on contextual relevance.

Contrastive leaming has also been used to compare segment-enbedded frames with random or adjacent segments,
pushing dissimilar ones apart and pulling keyframes closer in feature space. [23] shows that this improves selection
diversity and summary informativeness.

Graph-based modek encode frames as nodes and learn relationships through GNN layers. [27] uses a GAT ©
propagate importance scores based on local and non-local dependencies. In [29], a hierarchical GNN identifies both
segment-leveland frame-level salience, enabling multi-scale keyframe selection.

Post-selection refinement involves diversity penalties, re-ranking, or submodular optimization to ensure coverage
and reduce redundancy. Techniques like Determinantal Point Processes (DPPs), as in [31], help enforce diversity
constraints duringselection.

Segment-aware keyframe selection improves summary interpretability, reduces abrupt transitions, and aligns more
closely with human-style summaries (see Table 5).

Table 5 Segment-Aware vs. Frame-Based Selection Comparison
Paper | Selection Type Detection Method Summary Unit Count | F1 Score
1 Shot-based Histogram (PySceneDetect) 23 59.2%
2 Shot-based CNN-LSTM Prediction 19 61.4%
[3] Segment-based Contrastive Learning 24 60.7%
[4] Frame-based Visual Ranking 56 57.1%
[6] Segment-based | Temporal Boundaries (Learned) 21 62.3%
[7] Frame-based Visual Similarity 64 55.9%
[10] | Segment-based Visual + Audio Shifts 20 61.0%
[11] Frame-based Motion Vectors 58 56.3%
[17] | Segment-based Attention Mechanism 22 62.9%
[19] Shot-based Audio Cues + Scene Cuts 26 60.1%
[23] | Segment-based Contrastive Scoring 25 63.2%
[25] Shot-based Multimodal Alignment 24 62.4%
[27] Frame-based GNN Propagation 52 58.7%
[29] | Segment-based Hierarchical GNN 23 64.5%
[31] Frame-based DPP Diversity Penalty 55 57.5%

Table 5 illustrates that segment- and shot-level approaches consistently outperform frame-based methods in F1
score and narrative coherence. The average number of summary units s lower for segment-aware methods, indicating
reduced redundancy. Frame-based systens still play a role in fine-grained applications but often require additional
post-processing to match the quality of segment-level summaries.

As we move toward even richer representations, the integration of multimodal and graph structured reasoning into
segment-based modek becomes essential. In the next section, we explore how transformer architectures and attention
mechanisms are applied to capture long-range dependencies and semantic salience in video summarization.

Segment- and shot-level modek consistently outperform frame-based methods due to their ability to preserve
temporal coherence and event boundaries within the video. By summarizing semantically meaningful segments rather
than isolated frames, these models produce summaries that are more contextually complete and aligned with human
perception. For example, modelk using Temporal Convolutional Networks (TCNs) or boundary-aware modules yield
higher F1-scores, especially on datasets like TVSum where event transitions are clear. The limitations of frame -based
methods stem from redundancy, lack of temporal structure, and difficulty in capturing full actions within single frames.
Segment-aware models ako show better scalability to longer videos since they reduce input length early in the pipeline.
However, performance can degrade when applied to highly dynamic content, such as egocentric or first-person videos,
where shot boundaries are less distinct. In such cases, modek that adaptively leam segments rather than rely on fixed
units tendto performbetter.

13. Transformer Architectures and Attention Mechanisms

In recent years, transformer architectures have emerged as a dominant force in video summarization research due
to their ability to model long-range dependencies and contextual relationships using self-attention mechanisms.
Transformers are different from RNNs or CNNs because they can handle video clips all at once instead of one frame at
a time. This makes them great for video summarization, where you need to understand the whole video and connect
different parts [4] [6] [11] [20]. Transformers started in language processing, but they've been changed to work with
videos by looking at individual frames or segments. Let's check out how self-attention works with videos, how it's used
in summarization, and some cool transformer versions like transformer-GNN combos, transformers that break down
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videos into smaller parts, and transformers that conmbine video with other stuff like audio. You can see a comparison of
different transformer video summarization models in Table 5, which shows how different they can be in what they do
and howthey pay attention tothings.

13.1 Self-Attention for Video Understanding

Transformers use something called self-attention. It's a way of figuring out how all the different parts of something
you feed it relate to each other. It's like the model can pay attention to what is important, no matter how far apart those
important things are [1] [7] [13]. This is really helpful for videos where key moments might happen at very different
times but still be related. When it comes to making short summaries of videos, self-attention lets the system understand
quick changes and long-range relationships in the whole thing. For example [3], one paper shows that just using a basic
transformer can help find the important parts of longer videos. Transformers are also better than older methods because
they don't get bogged down trying to remember too much at once, so they can easily deal with videos with tons of
frames.

Moreover, multi-head self-attention mechanisns allow the model to focus on different aspects of the input—e.g.,
one head may focus on motion dynamics while another on spatial composition [10] [14]. Positional encoding schemes,
either absolute or relative, are essential in video applications to maintain temporal order. Some models integrate
temporal convolutions or hierarchical grouping into the transformer pipeline to enhance locality [9] [18].

13.2 Applications in Summarization

Transformers are applied in summarization modek to predict frame- or segment-level importance scores directly.
In [2], a transformer-based model learns to regress frame importance from visual features, using an attention-based
encoder-decoder setup. Segment-based transformer models, such as [12], divide the video into temporally coherent
units and process themusing a transformer to select high-importance segments.

Transformers ako support multimodal co-attention, where attention layers are shared across visual, audio, and
textual modalities. For instance, [5] uses a multi-stream transformer with co-attention between video frames and audio
spectrograms to align and fuse modalities during summarization. Similarly, [17] incorporates textual inputs using ASR-
transcribed narrationandapplies cross-modal attention to correlate visual contentwith linguistic cues.

These architectures outperform sequence modek like BILSTMs in capturing complex event structures, especially
in long-form or weakly structured content like egocentric and surveillance videos [8] [15] [19]. Moreover, transformers
provide natural integration with self-supervised learning, where masked frame prediction or contrastive attention
objectives canbe embedded intothe training loop [13] [22].

13.3 Variants and Hybrid Models

To further enhance performance, several architectural variants and hybrid modek have been proposed.
Transformer-GNN hybrids use transformers for feature encoding and GNNs for structural reasoning. For instance, [16]
first encodes segment embeddings with a transformer, then builds a graph based on semantic similarity and applies a
GCN forfinal importance scoring.

Hierarchical transformers model videos at multiple temporal scales, enabling both fine-grained and abstract
summarization. In [21], a dual-level transformer processes frames at the lower level and segments at the higher level,
using inter-level attention to preserve coherence. This approach significantly improves F1 scores by capturing cross -
scale dependencies.

Cross-modal transformers fuse features from different modalities via attention layers that learn interdependencies
dynamically. In [23], a cross-modal transformer jointly encodes visual frames and text narration, allowing the model to
align visual scenes with narrative semantics effectively. Other works apply shared transformer layers across modalities
or use modality-specific heads for adaptive fusion [24, 25].

As shown in Table 6, these design variations result in performance trade-offs. Hierarchical models are more
scalable, while cross-modal variants improve contextual alignment. Transformer-GNN hybrids combine the strengths
of both non-Euclideanand sequence-aware representations.

Table 6 Transformer-Based Models in Video Summarization

Paper Architecture Input Type Modalities Seq Length Attention Type
[1] Vanilla T ransformer Frame Visual 300 SelfAttention
[2] Encoder-Decoder T ransformer Frame Visual 250 Scaled Dot Product
[3] Transformer + Positional Embedding Frame Visual 200 Multi-Head
[5] Multi-Stream T ransformer Frame Visual + Audio 180 Cross-Modal Co-Attention
[7] Hierarchical Transformer Frame + Segment Visual 2-Level (500+50) Hierarchical
8 Transformer + CNN Frame Visual 150 Hybrid Attention
9 Temporal Transformer Segment Visual 80 Local-Global
10 Transformer with Positional Bias Frame Visual 300 Multi-Head
12 Segment Transformer Segment Visual 100 Global Attention

[13] Masked T ransformer Frame Visual 256 Masked Attention
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[14] Transformer + BERT Frame Visual + Text 220 Cross-Attention
[15] Transformer + BiLSTM Segment Visual 90 Fusion Attention
[16] Transformer + GCN Segment Visual 60 Hybrid Graph-Attention
[17] Multimodal T ransformer Segment Visual + Text 110 Multi-Head

18 Temporal Pyramid Transformer Frame + Segment Visual 2-Level (400+30) Hierarchical

19 Transformer + MFM Frame Visual 240 Masked

21 Dual-Level Transformer Frame + Segment Visual 2-Level (500+40) Inter-Level

23 Cross-Modal Transformer Frame Visual + Text 180 Cross-Attention

As shown in Table 6, transformer-based architectures exhibit flexibility across input formats, attention types, and
multimodal integrations. Hierarchical and hybrid designs tend to yield higher performance in long videos, while cross -
modal transformers improve alignment in instructional or narrated content. These advantages make transformers a
cornerstone for advanced summarization pipelines.

Transformer-based models outperform traditional RNNs and CNNs because of their ability to model global context
and long-range dependencies using self-attention. Particularly, hierarchical transformers and transformer-GNN hybrids
achieve state-of-the-art results across multiple datasets due to their multi-scale reasoning capabilities. For instance,
modek using dual-stream or memory-augmented transformers can maintain semantic continuity over long sequences
while emphasizing important segments. The advantage of self-attention lies in its parallelism and ability to relate
distant frames or segments, which is especially beneficial for summarizing long-form content such as instructional or
documentary videos. However, the primary limitation of these modek is their high computational cost and memory
usage, which may restrict real-time applications. Moreover, transformer-based summarizers may require extensive
pretraining or large labeled datasets to generalize well, which can be a bottleneck in low-resource settings. On short or
redundantvideos, simpler models may performcomparably with less overhead.

In the next section, we explore how these architectures are evaluated across leaming paradigms—supervised,
unsupervised, and self-supervised—nhighlighting trade-offs in datarequirements, generalization, and performance.

14. Supervised vs. Unsupervised vs. Self-Supervised Learning

The choice of leaming paradigm is fundamental in video summarization, as it determines the data requirements,
learning signal, generalization capability, and scalability of the model. The three major paradigns—supervised,
unsupervised, and self-supervised—differ in how they obtain supervision and how closely their learning objectives
align with human judgments. Supervised leaming uses summaries or importance scores that people have already
marked, which assists in directly working toward correct outputs. Unsupervised leaming doesn't use labels; instead, it
finds structure in the info itself, often by grouping similar items or rebuilding data. Self-supervised methods use extra
tasks to create good representations without needing outside labels [1] [6] [12] [27]. This part takes a closer look at
each method, checking out how modelk are made, what guides their training, how they're judged, and their pros and
cons. Table 6 gives a clear comparison of 18 example studies, showing what each method does well and where it falls
short in today's video summarization.

14.1 Labeled Data and Supervised Training

Supervised summarization trains modelks with real-world labelks, like how important each video frame is or which
keyframes get picked. These labels usually come from human-made summaries in datasets like TVSum, SumMe, and
YouTube Highlights. Supervised modek can use these labels to make their ranking or classification better. Ranking
modek guess how important each frame or part of a video is, then pick the top ones for the summary. For example,
paper [2] uses a BILSTM to guess scores that match what humans think, trying to get the ranking right with something
called pairwise ranking loss. Likewise, paper [5] uses contrastive ranking, pulling important frames closer to the real
examples. Classification modek treat summarization as a yes/no question. Each frame or segment gets marked
important or not. The model learns using cross -entropy or focal loss functions. In paper [11], a transformer model sorts
segments into importance groups, doing better than regression ways on TVSum. Even though supervised leaming
works well, it has problens. Datasets with labels are expensive to make, and people often disagree on what makes a
scene important [7] [13]. Plus, modek trained on one dataset often don't work on others without tweaking, which limits
how widely they can be used. Still, supervised training i a good starting point for many because of its task alignment
and ease of evaluation [14] [18] [22].

14.2 Unsupervisedand Self-SupervisedStrategies

Unsupervised video summarization removes the need for human labek by leveraging the inherent structure of
video data. A common approach is clustering, where visually or semantically similar frames are grouped, and
representatives are selected to ensure diversity and coverage. [3] uses k-means clustering on CNN features to select
keyframes, while [16] applies sparse codinganddictionary learning.

Another class of methods uses autoencoders or reconstructive networks, where the goal is to reconstruct the
original video using only the selected summary. The selection is optimized so that the reconstruction loss i minimized.
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For instance, [20] proposes a variational autoencoder (VAE) to learn latent video representations and reconstruct high -
quality summaries.

Self-supervised methods fall between supervised and unsupervised paradigns. They construct surrogate tasks that
require no external labels but provide supervisory signals. Temporal order prediction [4], masked frame modeling [17],
and audio-visual matching [8] are popular proxy tasks thathelp learn importance-aware representations.

Contrastive learning has ako been adapted in this context. [9] uses positive and negative segment pairs based on
temporal proximity, training the encoder to maximize separation between unimportant and important segments. Other
techniques, like frame permutation detection [21] or masked transformer training [25], have shown competitive results
without relying onlabels.

14.3 Benefitsand Limitations

Each leaming paradigm offers distinct strengths and limitations depending on the application scope, data
availability, and target domain. Supervised learning offers direct alignment with evaluation objectives (e.g., F1-score)
but requires labeled datasets, which are often limited in size and diversity [6] [15] [26].

In contrast, unsupervised methods scale effortlessly and perform well when diversity and coverage are key metrics.
However, they often undemperformin content relevance and temporal coherence, since there's no human supervision to
guide selection [19] [24] [28].

Self-supervised leaming represents a promising middle ground. It provides scalability and robustness while also
enabling rich feature learning through structured tasks. SSL methods have shown strong generalization to new domains,
especially when combined with smallamounts of supervised fine-tuning [10] [23] [29].

Yet, self-supervised methods face challenges in aligning proxy tasks with the final summarization objective. Proxy
task design is still largely heuristic, and training stability can vary. Moreover, benchmarks like TVSumand SumMe are
notyet standardized for evaluating SSL models, complicating comparisons [30- 32].

Table 7 summarizes how models performacross learningtypes, label usage, datasets, and evaluation metrics .

Table 7 Learning Paradigm Comparison

Paper Learning Type Label Usage Pretext Task Dataset Evaluation Metric
[1] Supervised Frame-level scores Regression TVSum F1 Score

[2] Supervised Pairwise Rank Ranking Loss SumMe F1 Score

[3] Unsupervised None Clustering YouT ube Highlights Coverage

[4] SelfSupervised None Temporal Order Prediction TVSum F1 Score

[5] Supervised Binary Class Contrastive SumMe F1 Score

6 Supervised Segment Labels Binary Cross-Entropy TVSum F1 Score

7 Supervised Binary Labels Classification SumMe Accuracy

8 SelfSupervised None Audio-Visual Matching TVSum F1 Score

9 SelfSupervised None Contrastive Segment Pairing TVSum AUC

[10] Self-Supervised None Masked Frame Modeling SumMe F1 Score
[11] Supervised Multiclass Labels Classify Relevance TVSum F1 Score
[14] Supervised Annotated Summaries Ranking SumMe F1 Score
[15] Supervised Frame Importance Regression TVSum F1 Score

16 Unsupervised None Sparse Coding TVSum Diversity Score

17 SelfSupervised None Masked T ransformer Prediction TVSum F1 Score

19 Unsupervised None Feature Clustering SumMe F1 Score

20 Unsupervised None VAE Reconstruction TVSum Reconstruction Error
[21] SelfSupervised None Permutation Detection SumMe Precision
[23] SelfSupervised None Cross-Modal Alignment TVSum F1 Score
[24] Unsupervised None Graph-based DPP SumMe Redundancy
[25] SelfSupervised None Masked Transformer + Contrastive TVSum F1 Score

26 Supervised Ground-Truth Summary Binary Cross-Entropy TVSum F1 Score

28 Unsupervised None Scene Boundary Clustering SumMe F1 Score

29 SelfSupervised None Attention-Aware Pretraining TVSum AUC

30 SelfSupervised None Frame Diflerence Prediction SumMe F1 Score
[31] Self-Supervised None Temporal Embedding Learning TVSum Recall

[32] Self-Supervised None Frame Shuffling Detection SumMe F1 Score

Table 7 reveals that while supervised methods typically achieve higher F1 scores due to their task alignment with

annotated datasets, their reliance on labeled data limits scalability and generalization across domains. Unsupervised
models, by contrast, provide flexibility and enable large-scale training without labelk, but they often fall short in
semantic precision and contextual understanding. Self-supervised approaches strike a compelling middle ground—
offering scalable training, strong domain transferability, and promising performance—especially when their pretext
tasks are well-aligned with downstream summarization objectives. However, their evaluation remains less standardized
across benchmarks.

When comparing learning paradigns, supervised methods generally report the highest performance, particularly
when abundant labeled data is available. These modek benefit from direct optimization using ground-truth summaries,
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which enhances their precision and recall on well-annotated datasets like SumMe and TVSum. However, their
generalization ability across domains is limited due to overfitting and label bias. In contrast, self-supervised models,
such as those using masked frame modeling or temporal contrastive leaming, show promising results in label-scarce
environments and can adapt to varied content types without manual annotations. They are particularly effective in
modeling temporal continuity and leaming semantic priors from uncurated video compora. Unsupervised approaches—
such as clustering or diversity maximization—are lightweight and label-free but tend to undemperform due to a lack of
semantic grounding. These modek may still be suitable for applications prioritizing scalability over accuracy.
Ultimately, performance & highly commensurate with the type of data: supervised methods dominate when annotated
summaries are available, while self-supervised models lead in scenarios with domain shifts or limited supervision.

15. Trends, Gaps, and Future Directions

Having reviewed the state-of-the-art in deep learning-based video summarization through nine structured sections,
we now synthesize the prevailing trends, critical limitations, and emerging future directions. This section is grounded in
two complementary sources: (1) explicit trends, challenges, and outlooks identified in the 46 referenced papers; and (2)
our own in-depth analysis and conclusions after writing this comprehensive review, "From Frames to Shots: A Deep
Learning Perspective on Multimodal, Graph-Based, and Transformer Video Summarization."”

We structure this synthesis into three key subsections: observed trends shaping the field (10.1), research limitations
constraining further progress (10.2), and strategic opportunities for future innovation (10.3). Each insight is supported
either by direct citations or by cross-sectional observations drawn fromthis review.

15.1 Major Observed Trends

A consistent trend in recent literature is the shift from visual-only summarization toward multimodal systems.
Early modek relied solely on visual cues—e.g., object presence, motion energy, and color histograms—encoded by
CNNs [1] [4] [10]. However, numerous studies now integrate audio and text, recognizing that acoustic events and
spoken narration contribute significantly to salienceand semantic understanding [5] [18] [25].

We also observed a shift from frame-based to segment- and shot-level modeling. Frame-based summaries, though
flexible, often lack temporal coherence and result in redundancy. In contrast, segment-aware techniques use learned
boundaries or took like PySceneDetect to generate more human-like, context-preserving summaries [12,13] [21] [28].
Hierarchical segment modeling using dual-level encoders or pooling across shots has further strengthened this trend
[15] [30].

Another major shift is toward self-supervised and unsupervised learning. Earlier works focused heavily on
supervised training using frame-level annotations or binary labek [2] [6] [11]. However, self-supervised proxy tasks
such as masked frame prediction, contrastive leaming, and terporal reordering have gained traction, enabling scalable
pretraining on unlabeled video comora [7] [14] [23] [29]. Hybrid modek combining supervised fine-tuning with
unsupervised pretraining now dominate transformer-based pipelines.

Our own review confirms these shifts: nearly 70% of modek discussed in Sections 3 to 9 use segment- or shot-
level modeling. More than half use either cross-nmodal inputs or self-supervised leaming, indicating a robust movement
toward scalable, semantically rich summarization pipelines.

15.2 Limitations in Current Research

Despite impressive progress, several limitations persist across modern video summarization research. First, there is
a lack of standardized evaluation for multimodal fusion techniques. While many models integrate audio or text, few
report ablation studies or benchmark comparisons isolating the impact of each modality [16] [20] [24]. As noted in
Section 5, fusion strategy performance (e.g., early vs. intermediate vs. late) is rarely quantified in controlled settings,
making it difficult to assess generalization.

Second, benchmark coverage for segment-aware and hierarchical models remains poor. Datasets like TVSum and
SumMe were originally designed for frame-based evaluation, using frame-level annotations or ground-truth keyframes.
Segment-level evaluation requires redefined metrics or human preference studies—efforts that are still missing in most
publications [9] [17] [27].

Third, many modek lack temporal alignment metrics, especially in multimodal or transformer-based pipelines.
Cross-modal attention mechanisnms operate across unsynchronized inputs (eg., video and ASR text), yet very few
works measure the quality of alignment or synchronization. Section 8 highlighted that even when cross-modal
transformers are used, attention heatmaps or relevance curves are rarely validated with ground truth or annotated
alignments [8][22] [31].

15.3 Future Research Opportunities

Future work must address both foundational and application-oriented gaps. First, there is a strong need for end-to-
end multimodal graph-transformer pipelines that integrate the best of graph-based modeling (Section 6) and attention-
based architectures (Section 8). These models should represent frames, segments, or shots as graph nodes enriched by
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transformer-derived embeddings and fused across modalities. Hierarchical designs that combine local and global
attention over graph structures could improve semantic understanding, scalability, and summary quality [3] [19] [26]
[33].

Second, robust pseudo-labeling strategies are needed for scalable training. Self-supervised or weakly supervised
systems should generate frame- or segment-level pseudo labek that approximate human-like summary decisions, which
can then be refined using a teacher-student loop or contrastive distillation. These pseudo-labels should incorporate
multimodal cues and possibly semantic segmentation masks to guide saliency estimation [14] [23] [30].

Third, the field must develop real-time summarization systems capable of streaming video + audio + ASR input
processing. Such systens are essential in applications like surveillance, remote education, and wearable devices.
Lightweight transformer variants or online GNNs must be designed to operate under constrained memory and latency
requirements [6] [20] [34]. This includes innovations like sliding-window transformers, early-exit modelk, and attention
pruning.

Finally, future research must place greater emphasis on user-centric evaluation. Current metrics (eg., F1, recall) do
not capture narrative quality, emotional resonance, or personalization. Human-in-the-loop evaluation frameworks or
reinforcement learning with user feedback could reshape model training toward more human -aligned objectives [35,
36] [46-49].

One fascinating extension of video summarization is the semantic image retrieval application, which aims to get
images based on their content and meaning, not metadata. For example, the paper Semantic Image Retrieval Analysis
Based on Deep Learning and Singular Value Decomposition demonstrates that deep features and dimensionality
reduction can be used to improve retrieval in the image datasets Mesopotamian Press. In a similar way, summary
modek that extract the most semantically meaningful frames or segments can become the source of content-based
retrieval pipelines, thus allowing the easy implementation of video-derived imagery recognition, indexing as well as
search over large multimedia repositories. Moreover, the investigation on the connection of summarization output with
retrieval models, for instance, query-driven summarization or embedding of summaries into small hash codes similar to
semantic hashing techniques [51] can be further researched by successor [51].

16. Challenges and Future Directions

Challenges: Video summarization has been significantly improved through deep leaming techniques; however, the
main unresolved issues still exist. The first problem is that the limitation of datasets negatively impacts the
generalization ability of modek. Most of the existing benchmarking datasets do not have a wide variety of domains,
camera motion, and scene complexity; thus, it is challenging to train models that can perform well in real-life
situations. The second issue is that the semantic understanding of the content is still minimal; the current modek
frequently depend upon low-level visual signak or features calculated by a pre-trained network without having any
deep contextual reasoning about the change of events, the feeling of the characters, or the narrative structures. Besides,
computational and storage constraints are the obstacles that slow down deployments, for example, in real-time
applications where there is aneed for efficiency. Apart fromthat, the evaluation of methods is characterized by limited
standardizations of protocols, and the presence of different metrics as well as subjective user studies makes it difficult
to compare methods.

Future Directions: Largescale, multi-domain datasets that represent the diversity of real-world videos would
greatly benefit the field. The use of multimodal signals (e.g., audio, text transcripts, and motion cues) for
summarization might enhance semantic richness and ako the relevancy of the summaries. The development of self-
supervised and few-shot leaming techniques may solve the problem of lack of data and ako facilitate the transfer of
modek to newdomains. Besides, explainable summarization is becoming a key research objective, aiming that modek
offer understandable justifications for the chosen frames or segments. Moreover, the matter of explainable
summarization as an emerging research target attracts attention of the whole field and ensures that such modek give an
interpretable rationale for the selected frames or segments. Some cross-domain areas, e.g., semantic image retrieval and
knowledge graph construction fromvideos, are among the most potential utilizations of summarization as a basic unit.

17. Comparative Performance of Learning Strategies Across Video Domains

Learning paradigms in video summarization vary in effectiveness depending on video domain and content
characteristics. Supervised methods excel in domains rich in labeled data—such as documentaries, sports, or
entertainment—where human annotations align closely with viewer preferences, yielding high precision and recall.
However, they struggle to generalize to domains with sparse or inconsistent labels, like surveillance or egocentric
footage. Unsupervised approaches, while limited in semantic understanding, are robust in scenarios prioritizing
diversity and coverage. They perform well in surveillance and real-time monitoring, where labeling is impractical,
relying solely on intrinsic data features to identify representative frames or segments—though sometimes at the cost of
contextual relevance. Selfsupervised learning bridges the gap, leveraging proxy tasks to capture multimodal temporal
and semantic representations without human labek. Evidence suggests these modek adapt well across contexts (eg.,
from sports to educational content) while maintaining summarization quality, though success depends on pretext task
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design and abundant unlabeled video data. Comparative studies—such as A Survey of Generative Artificial Intelligence
Techniques—highlight the need for systematic benchmarking across video domains to clarify trade-offs between
strategies, aiding practitioners in selecting or designing the most suitable methods.

18. Implications of the Shift Toward Segment- and Shot-Level Modeling

Over 70% of recent video summarization modek now focus on segment- or shot-level units, marking a significant
shift in temporal modeling and content understanding. This move departs from frame-level analysis, often criticized for
repetitiveness and weak semantic coherence. Segment- and shot-level modeling better reflects how humans perceive
video—capturing discrete, temporally coherent events that preserve narrative continuity. By grouping similar frames, it
minimizes redundancy while avoiding the fragmentation caused by isolated frames, producing compact yet informative
summaries applicable in education, surveillance, and entertainment. This shift also supports hierarchical architectures
operating at multiple temporal scales. For example, a model may analyze detailed frame-level features within each shot
while tracking the overall shot sequence for global coherence. Multiscale reasoning is especially valuable for long,
complex videos where both local and global comprehension are challenging. Furthermore, segment boundaries often
align with changes in modalities such as audio, speech, text, and motion, enabling richer multimodal integration. Cross -
modal attention and fusion become more effective at these less frequent temporal units, leading to semantically stronger
summaries. The growing adoption of this approach signak a future emphasis on semantic coherence, scalability, and
multimodal synergy—foundations for next-generation summarization systems aligned with human expectations.

19. Conclusion

Over the past decade, deep leaming-based video summarization has evolved through major shifts in data
representation, temporal modeling, and supervision. This review synthesizes findings from 46 studies, charting progress
from handcrafted methods to multimodal, segment-aware, transformer-driven systems. Multimodal integration has
become central: modem models combine visual, audio, text, and motion cues, with intermediate attention mechanisns
enabling effective cross-modal fusion for richer, context-aware summaries. Another key trend is the move from frame-
levelselection to segment- and shot-based summarization, which preserves narrative coherence, minimizes redundancy,
and aligns with human perception. Shot-level units, alongside keyframes, offer balanced semantic and aesthetic
granularity. Architecturally, the field is shifting toward graph-based and transformer-based approaches. Graphs capture
relationships among temporally distant or semantically related units, while transformers provide powerful sequence
modeling and global attention. Hybrid architectures combining GNNs, transformers, and hierarchical encoders have
shown notable gains in performanceandinterpretability .
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