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Abstract  

This paper aims to present a special family of Chebyshev polynomial (SFCP). The 

SFCP have been defined and their important properties are discussed. Then, the 

derivative of the state variable in the dynamic constraint of quadratic optimal 

control problem is approximated by SFCP with unknown coefficients. The 

operational matrix of derivative together with the dynamical constraints is used to 

approximate the control variable directly as a function of the state variable. Finally, 

these approximations are substituted in the performance index and necessary 

conditions for optimality transform the original quadratic optimal control problem 

to a quadratic programming problem. The resulting performance index optimal 

value shows that the proposed method provides a good treatment with fast 

convergence. The effectiveness of the presented method is illustrated by solving 

some numerical examples. The obtained results reveal that utilizing SFCP gives an 

efficient solution and it may exactly converge to the analytical one with minimum 

number of SFCP.  

Keywords: Special family of Chebyshev polynomials, quadratic programming 

problem, quadratic optimal control problem, convergence. 

 

 متعذدات حذود شفشف الخاصة لحل مسائل السيطرة المثلى التربيعية

 غفشاٌ ياسيٍ عثاس, سهى َجية شهاب

 انعشاق -لسى انعهىو انتطثيميىح, انجايعح انتكُىنىجيح 

 الخلاصة 

 SFCP(.  تى تعشيف SFCPيهذف هزا انثحث انى تمذيى عائهح خاصح يٍ يتعذداخ حذود شفشف )     

تعذ رنك , يتى تمشية يشتمح يتغيش انحانح في انميذ انذيُاييكي نًشكهح انتحكى الأيثم  ويُمشح خىاصها انًهًح.

يع يعايلاخ غيش يعشوفح. يتى استخذاو انًصفىفح انتشغيهيح نهًشتماخ يع انميىد  SFCPانتشتيعي تىاسطح 

ج كذانح نًتغيش انحانح. أخيشًا , يتى تعىيض هزِ انتمشيثاخ في يعايم انذيُاييكيح نتمشية يتغيش انسيطشج يثاشش

الأداء وانششوط انلاصيح نتحميك الأيثهيح وتحىيم يشكهح انتحكى الأيثم انتشتيعي الأصهي إنى يشكهح انثشيجح 

تماسب سشيع. انتشتيعيح. تظهش انميًح انًثهى نًعايم الأداء انُاتج أٌ انطشيمح انًمتشحح تىفش يعانجح جيذج يع 

يتى تىضيح فعانيح انطشيمح انًمذيح يٍ خلال حم تعض الأيثهح انعذديح. تكشف انُتائج انتي تى انحصىل عهيها 

 .SFCPيعطي حلاً فعالاً ولذ يتماسب تًايًا يع انحم انتحهيهي تألم عذد يٍ  SFCPأٌ استخذاو 

يشكهح انثشيجح انتشتيعيح , يشكهح انتحكى ,   Chebyshev: عائهح خاصح يٍ كثيشاخ حذودالكلمات المفتاحية

 .الأيثم انتشتيعي , انتماسب
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1. Introduction 

     Approximate methods based on orthogonal functions have been applied to find 

the solution for calculus of varaitional problems [1-6], fractional Optimal Control 

and fractional variation problem [7], fractional Emden-Fowler equation [8], 

nonlinear fractional optimal control problem [9], some problems arising in 

engineering [10] and in astrophyscics [11].The characteristic of most methods is 

that they transform the original problem under consideration conditions to a system 

of algebraic equations. It is known that orthogonal polynomials allow 

approximation of smooth functions where truncation error approaches zero faster 

than any negative power of the number of basic functions utilized in the 

approximation technique.  

    The optimal control of a system, which is minimization of a performance index 

subject to dynamical system, is one of the most practical subjects in science and 

engineering [12-14]. The numerical solution of optimal control problems have 

been investigated by many researchers. For example, Chebyshev cardinal functions 

[15], Hermite polynomials [16], Gegenbauer Polynomials [17], Hermite Wavelet 

method [18]. The main aim of this paper is to present an efficient direct approach 

based on special family of Chebyshev polynomials for solving quadratic optimal 

control problems. 

     The outline of this paper is as follows: In Section 2, special family of 

Chebyshev polynomials and their important properties are presented. Section 3 

deals with numerical solution of quadratic optimal control problem. In Section 4, 

three illustrative test examples are included to show the accuracy and efficiency of 

the special family Chebyshev polynomials. Finally, concluding remarks are listed 

in Section 5. 

 

 

2. Special Family of Chebyshev polynomials and Their Properties 

   The special family of Chebyshev polynomials (SFCP) can be defined recursively 

as below:  
   ( )        ( )       ( )                                                                (1) 

with initial conditions     ( )       ( )     
In other words 

   ( )  {

        
        

      ( )       ( )        
  

The eight SFCP are:   ( )   ,   ( )   ,   ( )      ,   ( )       , 

  ( )          ,   ( )           ,   ( )               
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  ( )                                                                        
Note that the general matrix form of SFCP can be written as below: 

      ( )    ( )                                                                                                  (2) 

where    ( )      ( )    ( )     ( )    ( ) ,   ( )            
and   is the lower triangle matrix constructed as  

For odd   

    

(

 
 
 
 
 

      
      

       
         

         

      

    
 

 
               )

 
 
 
 
 

 

For even  , the last row in matrix  can be defined as 

(                     )   
The entries     in matrix   can be constructed as 

    {
(        )        )         

           
                                           

    Another important property for SFCP is the derivative matrix of SFCP. By 

differentiating SFCP, one can obtain  

  ̇ ( )       ̇ ( )       ̇ ( )        ̇ ( )           ̇ ( )        , 

  ̇ ( )                ̇ ( )                  ̇ ( )           
      . 

Now, rewrite the above equation in matrix from as 

   ̇ ( )    ̇( )   

(

 
 

 
 
  
 

     )

 
 

 

or   ̇ ( )    (   )   ( ) 

where  (   )   

(

 
 

    
    
    
    
    )

 
 

 and  ( )  

(

 
 

 
 
  

 
    )

 
 

 

3. The SFCP Algorithm for Solving Optimal Control Problems  
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    Suppose that the process of certain optimal control problem described by the 

system of nonlinear differential equations on        as below 

 ( )   ( ( )  ̇( ))                                                                                              (3) 

with initial conditions 

 (  )      ( )                                                                                              (4) 

where:  ( )                                 ,  

 ( )                                  and   is a real valued  continuously 

differentiable function yielding the performance index   which is given by  

   ( )  ( )   ∫  (  ( )   ( ))  
 

  
                                                                  (5) 

The proposed algorithm can be summarized by the following steps: 

Step 1: Approximate the state variable  ( ) using SFCP, gives 

 ( )      ( )                                                                                                      (6) 

where                    (   )      ector of unknown parameters,  

Step 2: Approximate  ̇( ) to get  

 ̇( )      ̇( )                                                                                                      (7) 

where    ̇( ) is the derivative vector of   ( )   
Step 3: Obtain the approximation for the control variable by substituting Eq. 6 and 

Eq. 7 into Eq. 3 to obtain 

 ( )   (    ( )     ̇( ))                                                                               (8) 

Step 4: Determine the performance index value   as a function of the unknown 

              as below  

 (             )  ∫  ((    ( ))
 
 (    ̇( ))

 

)
 

  
    

    The functional   represents a nonlinear mathematical programming problem of 

unknown parameters              .  

Step 5: Approximate the boundary conditions     (  )         ( )     
The resulting quadratic mathematical programming problem can be simplified as 

below: 

 (             )  
 

 
     

where    ∫  ((  ( ))
 
 (  ̇( ))

 

)
 

  
  ,  

subject to        

where   [
   (  )

   ( )
]       *

 
 + 

Using Lagrange multiplier technique to obtain the optimal values of the unknown 

parameters     
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        (      )     

4. Numerical Results   
     All problems considered in the present paper have analytical solution to allow 

the validation of the algorithm comparing with exact solution results. Three 

quadratic optimal control problems have been solved by using the presented 

method for various values of  . 

Example 1: This problem is concerned with minimization of 

  
 

 
∫ ( ( )   ( ) )   

 

  
                                                                 

subject to  

 ( )    ̇( )                                                                                           

with the conditions: 

 (  )      ( )     .  The exact performance index value for this problem is 

given by                                                                                                    
    In Table 1, we list the optimal values of the unknown parameters    in case 

        using the proposed SFCP algorithm. The absolute error    of  |       

      | is also listed in Table 1. 

Table 1: Optimal values of the unknown parameters    and    for Example 1. 

               

                                                         

                                                          

                                                         

                                         

                       

                                                            

                     

Example 2: Consider the following optimal control problem  

     
 

 
∫ (   

  
( )    ( ))                                                             

when  ( )    ̇( )   ( )                                                                                
and   (  )       ( )               are satisfied.   

   In Table 2, we list the optimal values of the unknown parameters    and    in 

case         using the proposed SFCP algorithm.  

Table 2: Optimal values of the unknown parameters    and    for Example 2. 
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Example 3: Consider the following optimal control problem  

     
 

 
∫ (   

  
( )     ( ))                                                             

when  ( )    ̇( )   ( )                                                                                
and   (  )       ( )              
The exact value                     

        In Table 3, we list the optimal values of the unknown parameters    and   in 

case         using the proposed SFCP algorithm.  

Table 3: The optimal values of the unknown parameters    and    for Example 3. 

               
                                                         

                                                            
                                                         

                                          

                       

   

 

                                                         

                      

5. Conclusion 

     The suggested modification in the direct parameterization method based on 

SFCP is applied to solve quadratic optimal control problems. Such technique gives 

an approximation to the state variable  ( ) in terms of SFCP which satisfy the 

given boundary conditions. The improvement in the suggested algorithm has 

succeeded to reach the solution with less number of SFCP terms. Three numerical 

examples are tested and the obtained results illustrate that the presented method is 

efficient and only small numbers of SFCP terms are needed to get satisfactory 

convergence.                         
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