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Abstract

This paper aims to present a special family of Chebyshev polynomial (SFCP). The
SFCP have been defined and their important properties are discussed. Then, the
derivative of the state variable in the dynamic constraint of quadratic optimal
control problem is approximated by SFCP with unknown coefficients. The
operational matrix of derivative together with the dynamical constraints is used to
approximate the control variable directly as a function of the state variable. Finally,
these approximations are substituted in the performance index and necessary
conditions for optimality transform the original quadratic optimal control problem
to a quadratic programming problem. The resulting performance index optimal
value shows that the proposed method provides a good treatment with fast
convergence. The effectiveness of the presented method is illustrated by solving
some numerical examples. The obtained results reveal that utilizing SFCP gives an
efficient solution and it may exactly converge to the analytical one with minimum
number of SFCP.

Keywords: Special family of Chebyshev polynomials, quadratic programming
problem, quadratic optimal control problem, convergence.
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1. Introduction

Approximate methods based on orthogonal functions have been applied to find
the solution for calculus of varaitional problems [1-6], fractional Optimal Control
and fractional variation problem [7], fractional Emden-Fowler equation [8],
nonlinear fractional optimal control problem [9], some problems arising in
engineering [10] and in astrophyscics [11].The characteristic of most methods is
that they transform the original problem under consideration conditions to a system
of algebraic equations. It is known that orthogonal polynomials allow
approximation of smooth functions where truncation error approaches zero faster
than any negative power of the number of basic functions utilized in the
approximation technique.

The optimal control of a system, which is minimization of a performance index
subject to dynamical system, is one of the most practical subjects in science and
engineering [12-14]. The numerical solution of optimal control problems have
been investigated by many researchers. For example, Chebyshev cardinal functions
[15], Hermite polynomials [16], Gegenbauer Polynomials [17], Hermite Wavelet
method [18]. The main aim of this paper is to present an efficient direct approach
based on special family of Chebyshev polynomials for solving quadratic optimal
control problems.

The outline of this paper is as follows: In Section 2, special family of
Chebyshev polynomials and their important properties are presented. Section 3
deals with numerical solution of quadratic optimal control problem. In Section 4,
three illustrative test examples are included to show the accuracy and efficiency of
the special family Chebyshev polynomials. Finally, concluding remarks are listed
in Section 5.

2. Special Family of Chebyshev polynomials and Their Properties
The special family of Chebyshev polynomials (SFCP) can be defined recursively
as below:
SE,(t) = tSF,,_,(t) — SF,,_,(t), mE€N (1)
with initial conditions SF,(t) = 2, SF,(t) = t.
In other words
2 ifm=0,
SE,(t) = t ifm=1,
tSF,,_1(t) — SF,,_,(t) if m>1.
The eight SFCP are: My(t) = 2, M (t) = t, M,(t) = t? — 2, M5(t) = t3 — 3t,
My(t) = t* —4t2 + 2, Ms(t) = t> — 5¢3 + 5t, Mg (t) = t® — 6t* + 9t2 — 2
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M,(t) =t7 — 7t5 + 14¢3 — 7t.
Note that the general matrix form of SFCP can be written as below:

SF(t) = Ht(t)T (2)
where SF(t) = [SFy(t) SF,(t) SF,(t)---SE,(O)], t(t)=1[1 ¢t % - t™]
and H is the lower triangle matrix constructed as
For odd n

2 0 0 0 0
/ 0 1 0 0 0\
-2 0 1 0 0
H = 0 931 0 1 0
2 0  gao 0 0
\ZCOS % T hp1 hmz hmz o 1/
For even n, the last row in matrix Hcan be defined as
(0 hm,l hm,Z hm,3 hm,m—1 1).

The entries h;; in matrix H can be constructed as

h;; = {(hi—l,j—l) - hi—z,j) [ —J = odd,
! 0 otherwise. o _
Another important property for SFCP is the derivative matrix of SFCP. By

differentiating SFCP, one can obtain

SF,(t) = 0, SF,(t) = 1, SF,(t) = 2t, SF;(t) = 3t? — 3, SF,(t) = 4t — 8¢,
SFs(t) = 5t* — 15t? + 5, SF,(t) = 6t° — 24t% + 18t, SF,(t) = 7t® — 35t* +
42t% — 7.
Now, rewrite the above equation in matrix from as
0
1
SE,(t) =Hi(t)=H| 2t

mpm-1
or SFm(t) = Hy(m+1)><mT(t)

0O 0 - 0 1
1 0 - O t
where Yon+1)xm = \0 o 0 landz(t) =| t2

0 0 - m gm-1

3. The SFCP Algorithm for Solving Optimal Control Problems

N
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Suppose that the process of certain optimal control problem described by the
system of nonlinear differential equations on [—1,1] as below

u(t) = f(x(@),%(t)) (3)
with initial conditions
x(-1)=a x(1)=p 4)

where: x(-):[—1,1] - R is the state variable,
u(*):[—1,1] —» R, is the control variable and f is a real valued continuously
differentiable function yielding the performance index J which is given by

JIx@®,u® 1= 1, F(x2(®),u?(®))dt (5)
The proposed algorithm can be summarized by the following steps:

Step 1: Approximate the state variable x(t) using SFCP, gives

x(t) = aTSF(t), (6)
where a = [a4, dy, ..., a,,]7,is (m + 1) X 1 vector of unknown parameters,

Step 2: Approximate x(t) to get

x(t) = aTSF(t) (7)
where SF(t) is the derivative vector of SF(t).

Step 3: Obtain the approximation for the control variable by substituting Eq. 6 and
Eq. 7 into Eq. 3 to obtain

u(t) = f (a”SF(t),a’SF(t)) (8)
Step 4. Determine the performance index value J as a function of the unknown
ag,ap, ay, ..., ay as below

J(ap,a1,ay, v, ay) = f_llF <(aTSF(t))2, (aTSF(t))2> dt

The functional J represents a nonlinear mathematical programming problem of
unknown parameters ag, a;, d,, ..., Q.-
Step 5: Approximate the boundary conditions a’ SF(—1) = a, a’ SF(1) = B.
The resulting quadratic mathematical programming problem can be simplified as

below:

1
](aO; di,dy, ---;am) = EaT}[a

) 2
where 7 = 2 [ F ((SF(t))Z, (sF®) )dt,
subjectto Fa—b =0

SFT(-1) a
where F = [ ] b=

SFT(1) [/3]
Using Lagrange multiplier technique to obtain the optimal values of the unknown
parameters a*,
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4. Numerical Results
All problems considered in the present paper have analytical solution to allow
the validation of the algorithm comparing with exact solution results. Three
quadratic optimal control problems have been solved by using the presented
method for various values of m.
Example 1: This problem is concerned with minimization of
J =3[ @®)? +x(0)?)dr, te[-1,1]
subject to
u(t) = 2x(t)
with the conditions:
x(—1) =0, x(1) = 0.5. The exact performance index value for this problem is
given by Joyacr = 0.328258821379.

In Table 1, we list the optimal values of the unknown parameters a* in case
m = 3,4,5 using the proposed SFCP algorithm. The absolute error E,; of
Jappr.| is also listed in Table 1.

Table 1: Optimal values of the unknown parameters a* and E; for Example 1.
a, m=3 m=4 m=>5
a, |0.13920454545454| 0.13920454545454| 0.14031835414808

a; |0.27034883720930| 0.2703488372093( 0.27034883720930
a, |0.01017441860465| 0.02840909090909| 0.03005129348795

as 0.01017441860465 0.01017441860465
ay 0.0005.854148082(0

E; | —0.0003396634694 —0.0000005161826 —0.0000000093300

]exact -

Example 2: Consider the following optimal control problem
min] = if_ll(u2 (t) + x%(t))dt, t € [-1,1]
when u(t) = 2x(t) + x(¢t),
and x(—1) =1, x(1) = 0.2819695348 are satisfied.

In Table 2, we list the optimal values of the unknown parameters a* and E; in
case m = 3,4, 5 using the proposed SFCP algorithm.

Table 2: Optimal values of the unknown parameters a* and E; for Example 2.
a,, m=3 m=4 m=>5
ao | 0.387261630304167 | 0.387261630304167 | 0.397633552106756
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a; | 0.359015232600000 | —0.416131292331818 | —0.41613129233181
a, | 0.133538493208333 | 0.133538493208333 | 0.148837077867152
as —0.028558029865909 | —0.02855802986590
Ay 0.005445258946359
E;, | —0.00138934373504 | —0.0000.2230803705 | —0.000000.14722411

Example 3: Consider the following optimal control problem
minj = %f_ll(uz (t) + 3x%(t))dt, t € [—1,1]

when u(t) = 2x(t) — x(t),

and x(—=1) =1, x(1) = 0.51314538.

The exact value J,,4cr = 2.791658875.

In Table 3, we list the optimal values of the unknown parameters a* and Ej;in
case m = 3,4, 5 using the proposed SFCP algorithm.
Table 3: The optimal values of the unknown parameters a* and E; for Example 3.

a, m=3 m=4 m=>5

ap | 0.513388611071429 | 0.513388611071429 | 0.554580117194293

a; | —0.243427310000000 | —0.317513882608696 | —0.317513882608696

a, | 0.270204532142857 | 0.270204532142857 | 0.331000551875000

as —0.037043286304348 | —0.0370432863043438

ay 0.021586992513587

E; | —0.005522360397764 | —0.000713108377162 | —0.000002049699817

5. Conclusion

The suggested modification in the direct parameterization method based on
SFCP is applied to solve quadratic optimal control problems. Such technique gives
an approximation to the state variable x(t) in terms of SFCP which satisfy the
given boundary conditions. The improvement in the suggested algorithm has
succeeded to reach the solution with less number of SFCP terms. Three numerical
examples are tested and the obtained results illustrate that the presented method is
efficient and only small numbers of SFCP terms are needed to get satisfactory
convergence.
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