

Kufa Journal of Pharmaceutical Sciences

© 2025KJPS | Volume 2 | Issue 2 | Print ISSN : 3005-7833

Therapeutic Impact of Fluvastatin and Metformin Against Hepatocellular Carcinoma

Ghasaq Sami Mshary*1

*1Department of Physiology, Chemistry and Pharmacology, College of Veterinary, AL-Muthanna University, Samawah, Iraq

ABSTRACT

Hepatocellular carcinoma (HCC) is the most detrimental and intrusive state of liver cancer. The incidence of HCC resumed advancing rapidly, ranking as the sixth most common cancer and the fourth ultimate cause of death. To evaluate the utility of metformin and fluvastatin, alone or in combination, as potential anticancer therapeutics using human liver cell lines (HepG2). Four groups were allocated and treated for 24 hours as follows: The control(Group1) consists of HepG2 cells treated with 0.1% dimethyl sulfoxide with an average absorption at 570 nm of 0.651; the fluvastatin (Group 2)in (6.5, 12.5, 25, 50, and 100 μ M) concentrations; the metformin (Group 3) in (6.5, 12.5, 25, 50, and 100 μ M); and the (Group 4) of 10 mM metformin with fluvastatin in (10, 15, 20, and 40 μ M) of HepG2 cell. The results revealed a synergistic effect between metformin and fluvastatin, where the combination is more effective in achieving an IC50 of about 25. These are more potent at reducing cell viability by about 44.62%. Also, combining of 10 μ M metformin with 10 and 40 μ M fluvastatin concentrations. A current study demonstrated that metformin and fluvastatin separately reduced the viability of HepG2 liver cancer cells in a dose-dependent way. Also, when metformin (10 mM) was used together with fluvastatin (10–40 μ M), it displayed stronger cancer-killing properties than using any drug by itself. These recommend a potential synergistic effect of the combination.

Keywords: Fluvastatin, Metformin, Cytotoxicity, Cell Lines, Hepatocellular Carcinoma.

INTRODUCTION

Most cancers advance from chronic manifestations, and in this context, originally specified medications against the chronic disorder, such as statin and metformin, might be frequently administered during cancer therapy¹. According to the World Health Organization, the 4th ultimate reason for death in upper-middle-income nations by 2019 is predicted to extend to 21.7 million unique cancer issues and 13 million cancer deaths by 2030^{2,3}. The consequences of liver cancer coupled with the hepatitis C virus, are elevated plasma glucose concentration, hepatic steatosis conditions, adiposity, and dyslipidaemia^{4,5}. Hepatocellular carcinoma (HCC) has been categorized as accounting for roughly 80% of all diagnoses⁶. In 1992, cancer cells generated an alternative means of utilizing cholesterol for cell synthesis, leading scientists to suggest that pharmaceuticals involving cholesterol utilization can control or restrict cancer growth⁷. The incidence of cirrhosis is a substantial hazard element for hepatocellular carcinoma, rendered primarily by hepatitis virus infection and alcohol misuse merged with metabolic ailments⁸ serious in the elderly and male^{9,10}. Different drugs have miscellaneous effects on the proliferation of cancer cells¹¹. Clinical investigations have exhibited that the incidence of hepatocellular carcinomas is declined by statins ^{12,13}. Statin is linked to a lower risk of cancer appearance, decreases angiogenesis and metastasis, stimulates apoptosis, and guides an antitumor impact¹⁴⁻¹⁷. The mevalonate pathway was the foremost antitumor mechanism of statins that was found and is even the most exhaustively represented¹⁸. Statins handle Yes-associated protein (YAP) access into the nucleus by affecting the conformation of the cytoskeleton¹⁹. Although statins like fluvastatin (FLV) and metformin (MET) are widely assumed to be hypolipidemic and hypoglycaemic drugs, respectively, there are multiple prognoses around their improving antitumor effects when they are integrated with conventional chemotherapeutics²⁰. The use of metformin or statins had a decreased risk of colon cancer compared to non-users²¹. Metformin has an acceptable safety profile with rare adverse effects, making it an engaging prospect for use in cancer medicines in vivo and in vitro²²⁻²⁴. Metformin reduced cell viability, proliferation, and migration, controlled the cell cycle, and improved the apoptosis of human cervical cancer²⁵.

Statins, or 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA), were discovered in the 1970s by a Japanese researcher²⁶. Fungal concluded statins entail lovastatin, pravastatin, and simvastatin, while nonnatural statins carry atorvastatin, cerivastatin, fluvastatin, pravastatin, pita vastatin, and rosuvastatin²⁷⁻³⁰. In line with medical studies, fluvastatin minimizes the chance of proliferation of HCC, prostate carcinoma, and breast cancer 12,13,28. The use of statin decreases hepatic portal vessel pressure, less HCC prevalence, and reduced mortality in liver cirrhosis cases, with no discernible impact on the risk of bleeding or bacterial peritonitis²⁹. Moreover, fluvastatin is metabolized by the CYP2C9 isoenzyme³¹. Excluding the precluding of cardiovascular disease, statins have medicinal effects in ovary and uterus-related diseases³². Fluvastatin reduces breast tumour proliferation, boosts apoptosis, and is associated with advantageous results on tumour cell apoptosis³³. Fluvastatin has anti-inflammatory actions and inhibits the liberation of cytokines in diverse cell culture experiments³⁴ and it steadily rises cytokine creation in IL-33-refreshed mouse and human mast cells³⁵.

Metformin is a dimethyl biguanide, a manufactured product of glargine (isoprenyl guanidine) that originates from *Galego officinalis*^{36,37}. Metformin is a widely used, first-line oral hypoglycaemic mechanism for patients with type 2 Diabetes³⁸. Numerous studies have suggested that

the anticancer effects of metformin in HCC can be enhanced using additional medications³⁹, dichloroacetate⁴⁰, loin⁴¹, and empagliflozin⁴². Some analyses have pointed out that the defensive effect of metformin may have direct and indirect mechanisms⁴³. Among the indirect mechanisms of inhibition of carcinogenic, the antitumor action of metformin attributed to both metabolic and epigenetic modulation of the cancer cells, the involvement of several signalling tracks as AMPKdependent and AMPK-independent mechanisms⁴⁴, AKT, mechanistic target of rapamycin (mTOR), and the activation of P53^{45,20}. Metformin is collected in cells, mainly in the mitochondria⁴³ as a positive charge (NH3+) carries it towards the negative side of the transmembrane possibility. Metformin reduces the proliferation of hepatic triglycerides in non-alcoholic fatty liver disease and represses obesity-induced inflammation^{46,47}. The combination therapy with metformin and locoregional treatment has enhanced prevalent survival, decreased tumour duplication, and declined cell proliferation and migration⁴⁸. Metformin has numerous procedures, such as inhibition of hepatic stellate cell activation, decrease of liver fibrosis, and suppression of decompensated cirrhosis⁴⁹. Numerous practices have studied statins and metformin for a spectrum of malignancies, including brain tumours and glioblastoma cell cultures⁵⁰⁻⁶⁰. The aim of this study is assess the value of metformin and fluvastatin, alone or in combination, as prospective anticancer therapeutics using human liver cell lines.

I. METHODS AND MATERIAL

As a means of our indicated objectives, we categorized the groups as follows: 0.1% DMSO-treated HepG2 cells constitute the control group (untreated sample)⁵². Fluvastatin group; HepG2 cells were treated with fluvastatin alone at concentrations of (6.5, 12.5, 25, 50, and 100 μ M). Metformin group; HepG2 cells were treated with metformin alone at concentrations of (6.5,12.5, 25,50 and 100 mM). Metformin and Fluvastatin group; HepG2 cells were treated for 24 hours with 10 mM Metformin and Fluvastatin (10,15, 20, 40 μ M).

Cell line and culture

Hepatocellular carcinoma cell line (HepG2) cells are generally used in pharmaco-toxicological analysis [53]. The National Cell Bank of Iran (Pasteur Institute, Iran) donated the HepG2. 10% FBS (Gibco) along with antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin) for cultivating cells in RPMI-1640 (Gibco). Trypsin/EDTA (Gibco) and a phosphate-buffered saline (PBS) solution were applied to pass the cells, which were possessed at 37° C in humidified air through 5% CO₂.

MTT Assay

The MTT assay is presently the most broadly used approach for IC50 MTT 5-dimethylthiazol-2-yl)-2, proportions. The (3-(4,diphenyltetrazolium bromide) (Sigma-Aldrich) analysis was carried out to assess cell growth and viability⁵⁹. To describe it, cells were trypsinoutlined, collected, and adapted to a density of 1×10^4 cells/ well before being planted on 96-well plates with 200 µl of fresh media per well for 24 hours. Following the formation of a monolayer, cells were revealed to 100-6.25 mM metformin (Sigma, cat. #317240) or 100-6.25 μM fluvastatin (Sigma, cat. #SML0038) for 24 hours at 37°C in 5% CO₂. The monolayer culture was kept intact in the initial plate at the final stage of the treatment (24 hours); while the supernatant was discarded, and 200 μl/well of MTT solution (0.5 mg/ml in phosphate-buffered saline [PBS]) was added. The plate was subsequently incubated for a further four hours at 37°C. The MTT solution (100 µl per well) was made by discarding the cell supernatant and putting in dimethyl sulfoxide. Cells were shaken at 37°C until the crystals melted totally. Using an ELISA reader (Model Wave XS2, Biotech, USA), absorbance at 570 nm was used to assess cell

viability. The corresponding dose-response curves were consulted to calculate the concentration of the chemicals that led to 50% of cell death (IC50).

Statistical analysis

The practical results are proposed as \pm the standard deviation (SD). Viability percentages were analysed using one-way ANOVA followed by using the Tukey's HSD post-hoc test using SPSS v.11 software. P < 0.05 was considered statistically significant.

II. RESULTS AND DISCUSSION

The inhibitory concentration (IC50) is crucial to the performance of the pharmacological and biological features of a chemotherapeutic mechanism⁵⁴. This study concentrates on widely advised metformin (met) and fluvastatin (FLV) as anticancer activities in HPG2 cells. Various FLV and metformin concentrations were applied to determine the antiproliferative impact on HepG2 cells. IC50 values for the treatment groups were resolved as follows: FLV = $42.02663 \mu M$, met = $45.74343 \mu M$, and 10 mM MET + FLV = $25.22704 \mu M$. The IC50 of fluvastatin only in HepG2 cells is 42.02 µM after 24 h; this ratio negligibly decreased cancer cell proliferation compared with combined treatments. The IC50 of metformin only in HepG2 cells is 45.74 µM after 24 h; this ratio dramatically decreased cancer cell proliferation but was less if compared with combined therapies. The IC50 of metformin and fluvastatin in HepG2 cells is 25.22 µM after 24 h; this integrated treatment in this ratio dramatically reduced cancer cell proliferation compared with single treatments. (Table I) demonstrated that the viability of HepG2 cells at 6.25, 12.5, 25, 50, and 100 μM concentrations of fluvastatin was 78.26, 69.35, 58.29, 53.99, and 44.62%, respectively. The viability of the HepG2 cells is also calculated to be at 6.25, 12.5, 25, 50, and 100 mM concentrations of metformin (83.08, 68.03, 51.64, 51.64, and 40.16%, respectively) (Table II). Then, in a combination of 10 mM metformin with 10, 15, 20, and 40 µM fluvastatin, hepG2 cell viability% is (66.44, 59.90, 48.75, and 31.11%, respectively) (Table 3). In the present investigation, the increase of hepatocellular carcinoma cells (HepG2) was restricted by fluvastatin and metformin, as demonstrated by MTT assay marks.

TABLE I: The viability measurements at different fluvastatin (FLV) concentrations.

Sample ID	(Group 2)									
Concentra tion FLV (µM)	6.25		12.5		25		50		100	
absorption at 570 nm	0.5 29	0.4 90	0.4 72	0.4	0.4	0.3 44	0.3 44	0.3 59	0.2	0.2
Viability (%)	81. 26	75. 27	72. 50	66. 21	63. 75	52. 84	52. 84	55. 15	31. 49	30. 72
Average Viability (%)	78.26		69.35		58.29		53.99		44.62	
IC50	42.0266μΜ									

This table illustrates the inhibitory effect of Fluvastatin (FLV) on human hepatocellular carcinoma cell lines (HepG2), the variability percentages are significant for all concentrations. Lower absorption values at 570 nm correspond to lower viability percentages, the highest average absorption is observed at 6.25 μM FLV. The data are presented as mean \pm SD; p < 0.05 was considered significant.

* Control (Group 1) untreated sample, average absorption at 570 nm 0.671

TABLE II: The viability measurements at different Metformin concentrations.

Sample ID	(Group3)									
metformi n Concentr ation (mM)	6.25		12.5		25		50		100	
absorptio n at 570 nm	0.5 73	0.5 42	0.4 81	0.4 32	0.3 35	0.3 58	0.3 02	0.3 91	0.2 58	0.2 81
Viability (%)	85. 39	80. 77	71. 68	64. 38	49. 93	53. 35	45. 01	58. 27	38. 45	41. 88
Average Viability (%)	83.08		68.03		51.64		51.64		40.16	
IC50	45.7434 μM									

This table illustrates the inhibitory effect of Metformin (met) on human hepatocellular carcinoma cell lines (HepG2), the variability percentages are significant for all concentrations. The highest average absorption is observed at 6.25 mM metformin. The data are presented as mean \pm SD; p<0.05 was considered significant.

TABLE III: The viability measurements at different fluvastatin + 10mM Metformin concentrations

Sample ID	(Group4)								
10 met (mM)+FLV Concentrati on (µM)	10		15		20		40		
absorption at 570 nm	0.33	0.36	0.31	0.31	0.28 6	0.22	0.253	0.21	
Viability (%)	63.6 5	69.2	59.6 2	60.1 9	55.0 0	42.50	48.6 5	40.58	
Average Viability (%)	66.44		59.90		48.75		31.11*		
IC50	IC50 25.227μM								

This table illustrates the inhibitory effect of 10 mM metformin(met) and fluvastatin (FLV) in proliferation of human hepatocellular carcinoma cell lines (HepG2). The data are presented as mean \pm SD; p < 0.05 was considered significant.

Based on the abovementioned upshots, the data implies that the combination of 10 mM metformin with rising concentrations of FLV results in a dose-dependent reduction in cell viability. More elevated concentrations of FLV lead to lower cell viability, as predicted by the decreasing average viability percentages. Our results are an asset and augment previous data⁵⁵ revealing the antitumor actions of metformin, fluvastatin, and especially their combination as a possible new therapeutic mechanism for the management of HPG2.

Thus, based on all these results documented herein, it appears appropriate to indicate that the co-administration of both drugs, metformin and fluvastatin, might also exert antitumor actions in HPG2 cells⁶⁰. It could imply that HPG2's anti-cancer effects are obtained with modest dosages or short-term metformin use. The results indicate that neither FLV nor metformin increases the incidence of HPG2. Furthermore, the increased cytotoxicity of FLV due to conjugation with metformin highlights a possible function for HPG2. Numeral of possible cells was dosedependently decreased in metformin treated cells when compared to

untreated cells [56]. The acquired results displayed that with an increase in metformin concentration, the rate of cell survival slowly decreases⁵⁷. The potential use of fluvastatin in future immune therapy plans for combinational treatment is established in compliance with clinical tests¹. Statins can stop cancer, especially HCC, via their anti-inflammatory and antioncogenic effects⁵⁸. The present data reveal that metformin and fluvastatin, alone or in combination, exerted a high antitumor effect on HepG2 with significant differences observed at higher doses. The treatment of HepG2 cells with combined low quantities of FLV that significantly did not inhibit cell proliferation each (6.25 µm) resulted in statistically significant inhibition of cell proliferation (78.26% by MTT test) (Table I).

III. CONCLUSION

Typical medications, such as fluvastatin and metformin, are inexpensive, have a favourable safety profile, and could have metabolic results in additional organs. Our results display that FLV holds a dose-dependent cytotoxic effect on cells, with noteworthy reductions in viability marked at higher engagements. Similarly, metformin also exposed cytotoxic action, though its result was relatively minor . Finally, prospective reflections should concentrate on fluvastatin efficacy in other types of cytotoxicity.

IV. Ethical clearance

The study was approved by the ethical committee of the National Cell Bank of Iran (NCBI) of the Tehran Research Center (ethical code: 1000.000) in January of 2025.

V. REFERENCES

- Wang J, Liu C, Hu R, Wu L, Li C. Statin therapy: a potential adjuvant to immunotherapies in hepatocellular carcinoma. Frontiers in Pharmacology. 2024 Feb 1; 15:1324140. https://doi.org/ 10.3389/fphar.2024.1324140
- 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: A cancer Journal for Clinicians. 2019 Jan;69(1):7-34. https://doi.org/ 10.3322/caac.21551
- Hussein BH, Kasabri V, Al-Hiari Y, Arabiyat S, Ikhmais B, Alalawi S, Al-Qirim T. Selected statins as dual antiproliferative-anti-inflammatory compounds. Asian Pacific Journal of Cancer Prevention: APJCP. 2022 Dec;23(12):4047. https://doi.org/10.31557%2FAPJCP.2022.23.12.4047
- Bakiri L, Hamacher R, Graña O, Guío-Carrión A, Campos-Olivas R, Martinez L, Dienes HP, Thomsen MK, Hasenfuss SC, Wagner EF. Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. Journal of Experimental Medicine. 2017 May 1;214(5):1387-409. https://doi.org/10.1084/jem.20160935
- Wong MC, Jiang JY, Goggins WB, Liang M, Fang Y, Fung FD, Leung C, Wang HH, Wong GL, Wong VW, Chan HL. International incidence and mortality trends of liver cancer: a global profile. Scientific Reports. 2017 Mar 31;7(1):45846. https://doi.org/10.1038/srep45846.
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer Journal for Clinicians. 2021 May;71(3):209-49. https://doi.org/10.3322/caac.21660
- Mohammed K, Sadath S, Jamal T, Razvi SS, Al-Orabi A, Aseeri AH, Al-Abbasi FA, Anwar F. Biochemical and Toxicological Evaluation of Atorvastatin and Riboflavin in Diethylnitrosamine Induced Hepatocellular Carcinoma growth. 2018 Jan 1; 1:2. https://doi.org/10.9734/JPRI/2018/39652.
- Chen VL, Yeh ML, Yang JD, Leong J, Huang DQ, Toyoda H, Chen YL, Guy J, Maeda M, Tsai PC, Huang CF. Effects of cirrhosis and diagnosis scenario in metabolic-associated fatty liver disease-related hepatocellular carcinoma. Hepatology Communications. 2021 Jan;5(1):122-32. https://doi.org/10.1002/hep4.1606
- Liu M, Tseng TC, Jun DW, Yeh ML, Trinh H, Wong GL, Chen CH, Peng CY, Kim SE, Oh H, Kwak MS. Transition rates to cirrhosis and liver cancer by age, gender, disease and treatment status in Asian chronic hepatitis B patients. Hepatology International. 2021 Feb; 15:71-81. https://doi.org/10.1007/s12072-020-10113-2

- Tsai PC, Kuo HT, Hung CH, Tseng KC, Lai HC, Peng CY, Wang JH, Chen JJ, Lee PL, Chien RN, Yang CC. Metformin reduces hepatocellular carcinoma incidence after successful antiviral therapy in patients with diabetes and chronic hepatitis C in Taiwan. Journal of Hepatology. 2023 Feb 1;78(2):281-92. https://doi.org/ 10.1016/j.jhep.2022.09.019
- 11. Zhang Q, Dong J, Yu Z. Pleiotropic use of Statins as non-lipid-lowering drugs. International Journal of Biological Sciences. 2020;16(14):2704. https://doi.org/10.7150/ijbs.42965
- German MN, Lutz MK, Pickhardt PJ, Bruce RJ, Said A. Statin use is protective against hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: a case-control study. Journal of Clinical Gastroenterology. 2020 Sep 1;54(8):733-40. https://doi.org/ 10.1097/MCG.000000000001260
- Goh MJ, Sinn DH, Kim S, Woo SY, Cho H, Kang W, Gwak GY, Paik YH, Choi MS, Lee JH, Koh KC. Statin use and the risk of hepatocellular carcinoma in patients with chronic hepatitis B. Hepatology. 2020 Jun 1;71(6):2023-32. https://doi.org/10.1002/hep.30973
- Mei Z, Liang M, Li L, Zhang Y, Wang Q, Yang W. Effects of statins on cancer mortality and progression: a systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. International Journal of Cancer. 2017 Mar 1;140(5):1068-81. https://doi.org/10.1002/ijc.30526
- Alhakamy NA, Ahmed OA, Aldawsari HM, Alfaifi MY, Eid BG, Abdel-Naim AB, Fahmy UA. Encapsulation of lovastatin in zein nanoparticles exhibits enhanced apoptotic activity in hepg2 cells. International Journal of Molecular Sciences. 2019 Nov 18;20(22):5788. https://doi.org/10.3390/ijms20225788
- 16. Dautović E, Rustemović-Čorbić M, Srabović N, Softić A, Smajlović A, Husejnović MŠ, Hatkić A, Halilčević D. Some pleiotropic effects of statins on hepatocellular carcinoma cells: Comparative study on atorvastatin, rosuvastatin and simvastatin. Advances in Medical Sciences. 2023 Sep 1;68(2):258-64. https://doi.org/10.1016/j.advms.2023.07.002
- 17. Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the anticancer potential of statins: mechanisms and clinical significance. Cancers. 2023 Sep 29;15(19):4787. https://doi.org/10.3390/cancers15194787
- Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. Journal of Experimental & Clinical Cancer Research. 2021 Dec; 40:1-33. https://doi.org/10.1186/s13046-021-02041-2
- Hao F, Xu Q, Wang J, Yu S, Chang HH, Sinnett-Smith J, Eibl G, Rozengurt E. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS One. 2019 May 17;14(5): e0216603. https://doi.org/10.1371/journal.pone.0216603
- Salim EI, Elsebakhy S, Hessien M. Repurposing of atorvastatin and metformin denotes their individual and combined antiproliferative effects in non-small cell lung cancer. Fundamental & Clinical Pharmacology. 2024 Jan 23. https://doi.org/10.1111/fcp.12981
- 21. Xu Y, Che H, Liu J, Ye P. Association of metformin and statin uses with the prognosis of colon cancer: a meta-analysis. European Journal of Cancer Prevention. 2024 Jan 15:10-97. https://doi.org/ 10.1097/CEJ.00000000000000872
- 22. Lee J, Hong EM, Kim JH, Jung JH, Park SW, Koh DH, Choi MH, Jang HJ, Kae SH. Metformin induces apoptosis and inhibits proliferation through the AMP-activated protein kinase and insulin-like growth factor 1 receptor pathways in the bile duct cancer cells. Journal of Cancer. 2019;10(7):1734. https://doi.org/10.7150/jca.26380
- Kim HS, Kim JH, Jang HJ, Lee J. The addition of metformin to systemic anticancer therapy in advanced or metastatic cancers: A meta-analysis of randomized controlled trials. International Journal of Medical Sciences. 2020;17(16):2551. https://doi.org/10.7150%2Fijms.50338
- 24. Papadakos SP, Ferraro D, Carbone G, Frampton AE, Vennarecci G, Kykalos S, Schizas D, Theocharis S, Machairas N. The emerging role of metformin in the treatment of hepatocellular carcinoma: is there any value in repurposing metformin for HCC immunotherapy? Cancers. 2023 Jun 13;15(12):3161. https://doi.org/10.3390/cancers15123161
- 25. Chen YH, Yang SF, Yang CK, Tsai HD, Chen TH, Chou MC, Hsiao YH. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Molecular Medicine Reports. 2021 Jan 1;23(1):1-. https://doi.org/10.3892/mmr.2020.11725
- Endo A, Tsujita Y, Kuroda M, Tanzawa K. Inhibition of Cholesterol Synthesis in vitro and in vivo by ML-236A and ML-236B, Competitive Inhibitors of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase. European Journal of Biochemistry. 1977 Jul;77(1):31-6. https://doi.org/ 10.1111/j.1432-1033. 1977.tb11637.x
- 27. Lopez LM. Rosuvastatin: a high-potency HMG-CoA reductase inhibitor. Journal of the American Pharmacists Association. 2005 Jul 1;45(4):503-13. https://doi.org/10.1331/1544345054475522

- 28. Goh MJ, Sinn DH. Statin and aspirin for chemoprevention of hepatocellular carcinoma: Time to use or wait further? Clinical and Molecular Hepatology. 2022 Jul;28(3):380. https://doi.org/ 10.3350%2Fcmh.2021.0366
- Gu Y, Yang X, Liang H, Li D. Comprehensive evaluation of effects and safety of statin on the progression of liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterology. 2019 Dec; 19:1-3. https://doi.org/10.1186/s12876-019-1147-1
- 30. Li X, Liu L, Hu Y. Statin use and the prognosis of patients with hepatocellular carcinoma: a meta-analysis. Bioscience Reports. 2020 Apr;40(4): BSR20200232. https://doi.org/10.1042/BSR20200232
- 31. Althanoon Z, Faisal IM, Ahmad AA, Merkhan MM, Merkhan MM. Pharmacological aspects of statins are relevant to their structural and physicochemical properties. Systematic Reviews in Pharmacy. 2020 Jul 1;11(7):167-71. https://doi.org/10.31838/SRP.2020.7.27
- 32. Jiao XF, Li HL, Jiao XY, Guo YC, Zhang C, Yang CS, Zeng LN, Bo ZY, Chen Z, Song HB, Zhang LL. Ovary and uterus related adverse events associated with statin use: an analysis of the FDA Adverse Event Reporting System. Scientific Reports. 2020 Jul 20;10(1):1-0. https://doi.org/10.1038/s41598-020-68906-2
- Longo J, Hamilton RJ, Masoomian M, Khurram N, Branchard E, Mullen PJ, Elbaz M, Hersey K, Chadwick D, Ghai S, Andrews DW. A pilot window-of-opportunity study of preoperative fluvastatin in localized prostate cancer. Prostate Cancer and Prostatic Diseases. 2020 Dec;23(4):630-7. https://doi.org/10.1038/s41391-020-0221-7
- 34. Choi HW, Shin PG, Lee JH, Choi WS, Kang MJ, Kong WS, Oh MJ, Seo YB, Kim GD. Anti-inflammatory effect of lovastatin is mediated via the modulation of NF-κB and inhibition of HDAC1 and the PI3K/Akt/mTOR pathway in RAW264. 7 macrophages. International Journal of Molecular Medicine. 2018 Feb 1;41(2):1103-9. https://doi.org/ 10.3892/ijmm.2017.3309
- 35. Taruselli M T, Kolawole E M, Qayum A A, Haque TT, Caslin H L, Abebayehu D, ... & Ryan JJ. Fluvastatin enhances IL-33-mediated mast cell IL-6 and TNF production. Cellular immunology. 2022; 371, 104457. https://doi.org/10.1016/j.cellimm.2021.104457
- 36. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017 Sep;60(9):1577-85. https://doi.org/10.1007/s00125-017-4342-z
- Salim EI, Alabasy MM, Nashar EM, Al-Zahrani NS, Alzahrani MA, Guo Z, Beltagy DM, Shahen M. Molecular interactions between metformin and D-limonene inhibit proliferation and promote apoptosis in breast and liver cancer cells.
 BMC Complementary Medicine and Therapies. 2024 May 6;24(1):185. https://doi.org/10.1186/s12906-024-04453-x
- 38. Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Research and Clinical Practice. 2018 Sep 1; 143:409-19. https://doi.org/10.1016/j.diabres.2018.05.023
- 39. Abdelhamid AM, Saber S, Youssef ME, Gaafar AG, Eissa H, Abd-Eldayem MA, Alqarni M, Batiha GE, Obaidullah AJ, Shahien MA, El-Ahwany E. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomedicine & Pharmacotherapy. 2022 Jan 1; 145:112455. https://doi.org/10.1016/j.biopha.2021.112455
- 40. Sun R, Zhai R, Ma C, Miao W. Combination of aloin and metformin enhances the antitumor effect by inhibiting the growth and invasion and inducing apoptosis and autophagy in hepatocellular carcinoma through PI3K/AKT/mTOR pathway. Cancer Medicine. 2020 Feb;9(3):1141-51. https://doi.org/ 10.1002/cam4.2723
- Kim TS, Lee M, Park M, Kim SY, Shim MS, Lee CY, Choi DH, Cho Y. Metformin and dichloroacetate suppress proliferation of liver cancer cells by inhibiting mTOR complex 1. International Journal of Molecular Sciences. 2021 Sep 17;22(18):10027. https://doi.org/10.3390/ijms221810027
- 42. Lin H, Zhou W, Huang Y, Ren M, Xu F, Wang H. Systemic hypoxia potentiates anti-tumor effects of metformin in hepatocellular carcinoma in mice. Acta Biochimica et Biophysica Sinica. 2020 Apr;52(4):421-9. https://doi.org/10.1093/abbs/gmaa010
- Cunha V, Cotrim HP, Rocha R, Carvalho K, Lins-Kusterer L. Metformin in the prevention of hepatocellular carcinoma in diabetic patients: a systematic review. Annals of Hepatology. 2020 May 1;19(3):232-7. https://doi.org/ 10.1016/j.aohep.2019.10.005
- 44. Podhorecka M, Ibanez B, Dmoszyńska A. Metformin–its potential anti-cancer and anti-aging effects. Advances in Hygiene and Experimental Medicine. 2017 Mar 2; 71:170-5. https://doi.org/ 10.5604/01.3001.0010.3801
- Saraei P, Asadi I, Kakar MA, Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Management and Research. 2019 Apr 17:3295-313. https://doi.org/ 10.2147/CMAR.S200059
- 46. Zhou J, Massey S, Story D, Li L. Metformin: an old drug with new applications. International Journal of Molecular Sciences. 2018 Sep 21;19(10):2863. https://doi.org/10.3390/ijms19102863
- 47. Li Q, Xu H, Sui C, Zhang H. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus. Clinics and Research in Hepatology

- and Gastroenterology. 2022 Feb 1;46(2):101781. https://doi.org/10.1016/j.clinre.2021.101781
- 48. Choksi EJ, Elsayed M, Kokabi N. Antitumor Activity of Metformin Combined with Locoregional Therapy for Liver Cancer: Evidence and Future Directions. Cancers. 2023 Sep 13;15(18):4538. https://doi.org/10.3390/cancers15184538
- Shankaraiah RC, Callegari E, Guerriero P, Rimessi A, Pinton P, Gramantieri L, Silini EM, Sabbioni S, Negrini M. Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene. 2019 Nov 7;38(45):7035-45. https://doi.org/10.1038/s41388-019-0942-z
- Mazurek M, Litak J, Kamieniak P, Kulesza B, Jonak K, Baj J, Grochowski C. Metformin as potential therapy for high-grade glioma. Cancers. 2020 Jan 15;12(1):210. https://doi.org/10.3390/cancers12010210
- Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. In Seminars in Cancer Biology. 2021 Aug 1 (Vol. 73, pp. 116-133). Academic Press. https://doi.org/10.1016/j.semcancer.2020.08.002
- 52. Kamal M. Protective effect of quercetin against statins induced- hepatotoxicity in cell line. Al-Azhar Journal of Pharmaceutical Sciences. 2020 Sep 1;62(2):135-51. https://doi.org/10.21608/ajps.2020.118380
- 53. Donato MT, Tolosa L, Gómez-Lechón MJ. Culture and functional characterization of human hepatoma HepG2 cells. *Protocols in vitro* Hepatocyte Research. 2015:77-93. https://doi.org/10.1007/978-1-4939-2074-75
- 54. He Y, Zhu Q, Chen M, Huang Q, Wang W, Li Q, Huang Y, Di W. The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016 Oct 10;7(43):70803. https://doi.org/ 10.18632%2Foncotarget.12223
- Mamdouh AM, Khodeer DM, Tantawy MA, Moustafa YM. In-vitro and in-vivo investigation of amygdalin, metformin, and combination of both against doxorubicin on hepatocellular carcinoma. Life Sciences. 2021 Nov 15; 285:119961. https://doi.org/10.1016/j.lfs.2021.119961
- Sharma A, Bandyopadhayaya S, Chowdhury K, Sharma T, Maheshwari R, Das A, Chakrabarti G, Kumar V, Mandal CC. Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One. 2019 Jan 9;14(1): e0209435. https://doi.org/10.1371/journal.pone.0209435
- Ebrahimi G, Abdolahinia ED, Pouya P, Jalili Bolhasani A, Sharifi S, Dizaj SM. Combination of Metformin and Laser against Head and Neck Cancer Cells In Vitro.
 The Open Dentistry Journal. 2023 Nov 30;17(1). https://doi.org/10.2174/0118742106276363231123071425
- Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. Journal of Hepatology. 2018 Mar 1;68(3):526-49. https://doi.org/10.1016/j.jhep.2017.09.016.
- Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Monitoring ZEO apoptotic potential in 2D and 3D cell cultures and associated spectroscopic evidence on mode of interaction with DNA. Scientific Reports. 2017 May 31;7(1):2553. https://doi.org/10.1038/s41598-017-02633-z
- 60. Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Montero-Hidalgo AJ, Martín-Colom J, Doval-Rosa C, et al. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. EBioMedicine. 2023;90:103626. https://doi.org/10.1016/j.ebiom.2023.104484