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Abstract  

In this paper, nonlinear dispersive K(m, p. 1)-type equations were approximated 

using the Ado- mian decomposition method. This scheme is used to compute 

the explicit exact solution as a rapidly convergent series with easily computed 

components. Numerical results are obtained by using the calculated components 

of the decomposition series to illustrate the application of the method. It is 

discovered that the obtained results are extremely near to the precise solution.  
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 باستخدام طريقة التحلل أدوميان k (m, p.1)الحلول التقريبية للأنواع غير الخطية لمعادلة التشتت 

 م. د محمود شريف عجيل

 تدريسي جامعة الشطرة  كلية الهندسة  قسم المواد

 الملخص

باستخدام طريقة التحلل  K(m, p. 1ذه الورقة، تم تقريب معادلات تشتت غير خطية من النوع )ه 

أدوميان. يتم استخدام هذا المخطط لحساب الحل الدقيق الصريح كسلسلة متقاربة بسرعة مع مكونات 

يمكن حسابها بسهولة. يتم الحصول على نتائج عددية باستخدام المكونات المحسوبة لسلسلة التحلل 

 . عليها قريبة للغاية من الحل الدقيق لتوضيح تطبيق الطريقة. تم اكتشاف أن النتائج التي تم الحصول

(، حلول سوليتون، طريقة تحلل أدوميان، معادلات m, p. 1)Kمعادلات من نوع  الكلمات المفتاحية:

 تفاضلية جزئية غير خطية

1. Introduction 

 Nonlinear partial differential equations are widely used to describe complex 

phenomena in var- ious fields of sciences, such as physics, chemistry and 

applied mathematics. Various methods have been devised to find the exact and 

approximate solutions of nonlinear partial differential equations in order to 

provide more information for understanding physical phenomena arising in 

numerous scientific and engineering fields. Nonlinear partial differential 

equations are widely used to describe complex phenomena in various fields of 

sciences, such as physics, chemistry and applied mathematics. Yonggui and 

Xiaoshan [1] presented a class of compactons of nonlinear K(m,n) equation as 

follows:  

                                                             𝒖𝒕 + 𝒂 (𝒖𝒎)𝒙 − (𝒖𝒑)𝒙𝒙𝒙 = 𝟎                                                (1.1)    
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If we take a  = 1, then equation (1.1) is known as the focusing (+) branch. This 

(+) branch (1.1) contains compacton solutions [18]. If we take a  = 1, the 

equation is referred to as the defocusing (-) branch. This defocusing (-) branch 

has a single pattern solution. Compactons are soliton solutions with finite 

wavelengths or that lack exponential wings. Unlike solitons, which narrow as 

amplitude increases, the width of a compacton is independent of amplitude. 

Compacton solutions have been used in many scientific applications, including 

super-deformed nuclei, phonon, photon. Various methods have been devised to 

find the exact and approximate solutions for nonlinear types of dispersive K(m, 

p. 1) equation, see [2, 3, 4, 5]. 

 

Over the last four decades, the Adomian decomposition method has been used 

to obtain formal solutions to a wide range of deterministic and stochastic partial 

differential equations. In recent years, the decomposition method has emerged 

as a viable alternative for solving a wide range of problems involving algebraic, 

differential, integral, integro-differential, higher-order ordi- nary differential 

equations, partial differential equations (PDEs), and systems [6, 7, 8]. The 

ADM was used by Adomian et al. [9, 10] to solve mathematical models of the 

dynamic interaction of immune response with a population of bacteria, viruses, 

antigens, or tumor cells as systems of nonlinear differential equations or delay-

differential equations. In [11] authors used the decompo- sition method to 

construct approximate solutions for algebraic equations, time-fractional Riccati 

equations, time-fractional Kawahara equations and modified time-fractional 

Kawahara equation. [12] reviews the Adomian decomposition method (ADM) 

and its developments to handle singular and non-singular initial, boundary value 

problems in ordinary and partial differential equations that arise in the fields of 

science and engineering. The study [13] applies the spacetime generalized finite 

difference scheme to solve nonlinear dispersive shallow water waves described 

by the mod- ified Camassa Holm equation, the modified Degasperis Procesi 

equation, the Fornberg Whitham equation, and its modified form. Abbaoui and 

Cherruault [14] solved the cauchy problem using the decomposition method 

rather than the canonical form of Adomian. They also demonstrated 

convergence by employing a new formulation of the Adomian polynomials and 

comparing the ADM to the Picard method. 

       With only a few iterations, the decomposition method produces rapidly 

convergent series solutions for both linear and nonlinear deterministic and 

stochastic equations. The benefit of this method is that it provides a direct 

solution to the problem, eliminating the need for linearization, perturbation, 

massive computation, and transformation. Cherruault and colleagues 

investigated the convergence of this method. Cherruault proposed a new 

definition of the method in [14], and then insisted that it would be possible to 
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prove the decomposition method's convergence. Cherruault and Adomian 

proposed a new convergence proof of Adomian's method based on convergent 

series properties in [10. 14). In this paper, we apply Adomian decomposition 

method (ADM) to solve nonlinear types of dispersive K(m, p. 1) equation. The 

study show that this methods is very efficient, convenient and can be applied 

effectively to these types of equations. 

2. Construction of the Method  

Adomian Decomposition Method(ADM) is a technique to find solutions for 

differential equations (partial, ordinary), linear and nonlinear, homogeneous and 

nonhomogeneous.  

      The aim of this paper is to extend the Adomian analysis method to derive 

the numerical and exact soliton solutions to the nonlinear dispersive K(m, p. 1) 

equation subject to the initial condition: 

                     𝑢𝑡(𝑥, 𝑡) + (𝑢𝑚(𝑥, 𝑡))𝑥 − (𝑢𝑝(𝑥, 𝑡))𝑥𝑥𝑥 + 𝑢(𝑥, 𝑡)5𝑥 = 0.                
(2.1) 

subject to the initial condition 

                                               𝑢(𝑥, 0) = 𝑓(𝑥).                                                       
(2.2) 

In this paper we consider equation (2.2) in a general nonlinear partial 

differential equations 

                    𝐿𝑢𝑡(𝑥, 𝑡) = 𝐿𝑋𝑢(𝑥, 𝑡) + 𝑅(𝑢(𝑥, 𝑡)) + 𝐹(𝑢(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡)             

(2.3) 

where Lx is the highest order differential in x. Lx is the time operator, R(u(x, t)) 

contains the remaining linear terms of lower derivatives in x, F(u(x,t)) is an 

analytic nonlinear term, and g(x,t) is an inhomogeneous or forcing term. Apply 

the inverse operator 𝐿𝑡
−1to both sides of equation (2.3), we obtain 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝐿𝑡
−1 {𝐿𝑥𝑢(𝑥, 𝑡) + 𝑅(𝑢(𝑥, 𝑡))) + 𝐹(𝑢(𝑥, 𝑡)))

+ 𝑔(𝑥, 𝑡)}               (2.4) 

The ADM expresses the solution u(x,t)) of (2.4) by the decomposition series [9, 

10] 

𝑢(𝑥, 𝑡)) = ∑ 𝑢𝑛 (𝑥, 𝑡)                                                                      (2.5) 

∞

𝑛=0

 

and the nonlinear function F(u(x, t)) by an infinite sum of polynomials 
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𝐹(𝑢(𝑥, 𝑡)) =  ∑ 𝐴𝑛(𝑥, 𝑡)                                                                  (2.6)

∞

𝑛=0

 

where the components un (x, t) of the solution u(x, t) will be determined 

recurrently, and An are the so-called Adomian that can constructed for various 

classes of nonlinearity according to specific algorithms set by Adomian [9]. 

These polynomials can be constructed by using the general formula [15] 

𝐴𝑛

1

𝑛!

𝑑𝑛

𝑑 ⋋𝑛
[ 𝐹 ( ∑⋋𝑖 𝑢𝑖)]⋋=0 , 𝑛 ≥ 0                

𝑛

𝑖=0

 

Substitution of (2.5) and (2.6) into (2.4) yields 

∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 0)

∞

𝑛=0

+                                                     (2.7) 

𝐿𝑡
−1{𝐿𝑥 ∑ 𝑢𝑛(𝑥, 𝑡) + 𝑅(∑ 𝑢𝑛(𝑥, 𝑡)) + (∑ 𝐴𝑛(𝑥, 𝑡)) + 𝑔(𝑥, 𝑥)} 

∞

𝑛=0

∞

𝑛=0

∞

𝑛=0

 

 

To determine the components un(x, t) n ≥ 0 we first identify the zeroth 

component u0 (x, 0) by all terms that arise from the initial condition at t = 0 and 

the source term g(x, t). The remaining components un (x, t), n ≥ 1 are then 

determined recursively using the components, in such a way that (2.7) is 

formally balanced. In other words, the method introduces the recursive relation 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝐿𝑡
−1[𝑔(𝑥, 𝑡)], 

                      𝑢𝑘+1(𝑥, 𝑡) =  𝐿𝑡
−1[𝐿𝑥(𝑢𝑘(𝑥, 𝑡)) + (𝐴𝑘(𝑥, 𝑡))], 𝑘 ≥ 0.              

(2.8) 

Because uk depends heavily on the zeroth component u0. it is computationally 

convenient to choose u0 so as to contain the minimum number of terms. If the 

series converges in a suitable way, then we see that 

𝑢(𝑥, 𝑡) = lim
𝑀→∞

∑ 𝑢𝑛(𝑥, 𝑡)

𝑀

𝑛=0

                                               (2.9) 

where M is the number of terms that we found.  

       Several researchers, including Cherruault and co-workers [14], among 

others (10), have previ ously proven the convergence of the Adomian 

decomposition series and the series of the Adomian polynomials. Cherruault 
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and Adomian demonstrated the convergence of the decomposition se- ries 

without relying on the fixed point theorem, which is too restrictive for many 

physical and engineering applications. The Adomian decomposition series is a 

computationally advantageous rearrangement of the Banach-space analog of the 

Taylor expansion series around the initial soln- tion component function, 

allowing for recursion-based solution. The non-unique decomposition allows 

the analyst to design modified recursion schemes for easier computation in 

realistic sys- tems. 

3. Analysis of ADM 

 Here we will present the method of solving the problem in this project using 

the usual Adomian's method with some details. We notice in the problem that 

there are two non-linear terms, where we need to calculate Adomian 

polynomials, but we will shorten this to finding only one term for the Adomian 

polynomials by inserting the derivative on the calculated term. In order to solve 

equation (2.4) using ADM, we rewrite it in an operator form as 

𝐿𝑡𝑢 = 𝐿𝑥(𝑁(𝑢)) + 𝐿3𝑥(𝑁(𝑢))                                                  (3.1) 

with an initial condition u(x, 0) = f(x), where Lt, Lx L3x are linear operators 

defined as Lt (.)=  
𝜕

𝜕𝑡
 (.) , Lx (.) =

𝜕

𝜕𝑥
 (.) , L3x (.) 

𝜕3

𝜕𝑥3
 (.) While the term N(u) 

represents the non-linear terms either 𝑢𝑚𝑜𝑟 𝑢𝑝. To start . we operate on both 

sides of equation (3.1) by the inverse of Lt , denoted by 𝐿𝑡
−1(. ) =  ∫ . 𝑑𝑡

𝑡

0
  that 

yields to 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) − 𝐿𝑡
−1 (−𝐿𝑥(𝑁(𝑢)) + 𝐿3𝑥(𝑁(𝑢)))                        (3.2)   

The ADM assumes that the unknown function u(x, t) can be expressed as a sum 

of components defined in a series of the form: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡).

∞

𝑛=0

 

And the nonlinear operator N(u) can be written as 

𝑁(𝑢) =  ∑ 𝐴𝑛(𝑢0 , 𝑢1 , … , 𝑢𝑛).

∞

𝑛=0

 

Where  An are called Adomian polynomials. The Adomian polynomials in our 

case can be found by the formula 

𝐴𝑛 =  
1

𝑛!

𝑑𝑛

𝑑 ⋋𝑛
[𝑁 ( ∑⋋𝑖 𝑢𝑖] ⋋=0 , 𝑛 ≥ 0.

𝑛

𝑖=0
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In which the first few Adomian polynomials, where we will consider two cases, 

when N(u) = u2   and N(u)= u3  are: 

     Case N(u) = u2 

𝐴0 = 𝑢0
2, 𝐴1 = 2𝑢0𝑢1, 𝐴2 = 2𝑢0 + 𝑢1

2, 𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢3, 𝐴4

= 2𝑢0𝑢4 + 2𝑢1𝑢3 + 𝑢2
2, 

And ,  

𝐴5 = 2𝑢0𝑢5 + 2𝑢1𝑢4 + 2𝑢2𝑢3. 

Case N (u) = u3 

𝐴0 = 𝑢0
3, 𝐴1 = 3𝑢0

2𝑢1, 𝐴2 = 3𝑢0
2𝑢2 + 3𝑢0𝑢1

2, 𝐴3 = 3𝑢0
2𝑢3 + 6𝑢0𝑢1𝑢2 + 𝑢1

3, 

And 

𝐴4 = 3𝑢0
2𝑢4 + 3𝑢0

2𝑢2 + 3𝑢0𝑢2
2 + 6𝑢0𝑢1𝑢3, 

        and so on. The rest of the polynomials can be constructed in a similar 

manner for the two cases. Now, Equation (3.2) becomes 

∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢(𝑥, 0)

∞

𝑛=0

− 𝐿𝑡
−1(−𝐿𝑥(∑ 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛))

∞

𝑛=0

+ 𝐿3𝑥(∑ 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)))    (3.3) 

∞

𝑛=0

 

and we identify the zeroth component u0 (x, t) = u(x, 0) ] by terms arising from 

initial condi- tions, and we obtain the subsequent components using the 

following recursive relation. 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) 

and the nth iterative term is given by 

𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1(𝐴𝑛)𝑥 + 𝐿𝑡

−1(𝐴𝑛)3𝑥, 𝑛 ≥ 0   

From which, all components of the decomposition are identified and calculated. 

Then we see that  

𝑢𝐴(𝑥, 𝑡) = lim
𝑚→∞

∑ 𝑢𝑛(𝑥, 𝑡)

𝑀

𝑛=0

                                                     (3.4) 

Is our approximate solution, where M is the number of terms that we found. 

However, in many cases the exact solution in a closed form may be obtained. 
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Moreover, the decomposition series solutions are generally converge very 

rapidly. The convergence of the decomposition series have investigated by 

several authors [14], [6]. To give a clear overview of the discussion presented 

above, the following examples will be investigated. 

4. Numerical Results 

 Choosing examples with known solutions allows for a more complete error 

analysis. In order to assess the advantages of the proposed methods, in terms of 

accuracy and efficiency for solving the modified regularized long wave, we 

have apply our schemes to solve equation (2.2) with In this chapter, we will 

discuss the solution method used in this thesis by applying it to four different 

examples. In the first two examples, the numerical results and graphics show 

that the improved method gave excellent results, while the method gave exact 

solutions in the third and fourth examples, and this indicates that the improved 

method is effective and accurate. 

 5 Example 1 

In this example, we solve equation (2.2) for values of m = p = 2, which has the 

form 

𝑢𝑡 + 𝑢𝑥
2 − 𝑢𝑥𝑥𝑥

2 + 𝑢𝑥𝑥𝑥𝑥𝑥 = 0                                                (5.1) 

which has exact solution 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) =
16𝑐 − 1

12
𝑐𝑜𝑠ℎ2 (

𝑥 − 𝑐𝑡

4
) 

    We verify our technique on the above model problem when c = 1 In order to 

be able to apply ADM first, we integrate equation (5.1) with respect to t, we get 

the Volterra integral equation 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) + ∫ [−𝑢2(𝑥, 𝜏) + 𝑢𝑥𝑥𝑥
2 (𝑥, 𝜏) − 𝑢𝑥𝑥𝑥𝑥𝑥(𝑥, 𝜏] 𝑑𝑟            (5.2) 

𝑡

0

 

      Following the same steps in the previous chapter, which refer to substituting 

the Adomian infinite series on the left side of the above equation, and the series 

that represent nonlinear terms inside the kernel of the integral equation, and 

after the comparison, we get the general iterative Adomian solution as follows: 

𝑢𝑘+1(𝑥, 𝑡) = ∫ [−
𝜕

𝜕𝑥
𝐴𝑘(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝐴𝑘(𝑥, 𝜏)] 𝑑𝜏, 𝑘 = 0,1,2, …

𝑡

0

               (5.3) 

 

(𝒙𝒊, 𝒕𝒊) |𝒖𝑬(𝒙, 𝒕)
−  𝒖𝑨(𝒙, 𝒕)| 

(1,0.1) 1.52449E-11 
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(1.0.25) 3.70421E-09 

(1,0.5) 2.35294E-07 

(1,0.75) 2.661-40E-06 

(1,1.0) 1.48563E-05 

(3,0.1) 3.17018E-11 

(3,0.25) 7.66593E-09 

(3,0.5) 4.82967E-07 

(3,0.75) 5.41707E-06 

(1,1.0) 2.99794E-05 

(5,0.1) 8.25926E-11 

(5,0.25) 1.99541E-08 

(5,0.5) 1,25522E-06 

(5,0.75) 1.40566E-05 

(5,1.0) 7.76649E-05 

Table 1: The absolute error at different points (x, t) for Example 1 

Where 

𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) =
5

4
 𝑐𝑜𝑠ℎ2 (

𝑥

4
),  

and the nonlinear terms are represented by Adomian polynomials; 

𝐹(𝑢(𝑥, 𝑡)) =  𝑢2 = ∑ 𝐴𝑛(𝑥, 𝑡).

∞

𝑛=0

 

Using Mathematica, and after some simplifications of the series solution, we 

obtain 

𝑢𝐴(𝑥, 𝑡)

=  
3840 + 10 (394 + 48 𝑡2  +  𝑡2) cosh(𝑥/ 2) − 𝑡 (1920 +   80𝑡2   +  𝑡4) sinh( 𝑥 / 2)

6144
 

Conclusions 

      We describe an approach that uses Adomian’s method to obtain exact and 

numerical solitary pattern solutions to the nonlinear dispersive K(2, 2, 1) and 

K(3, 3, 1) equations with initial conditions. The approximate and exact solutions 

are contrasted in Table 1. The findings demonstrate that the present approach is 

a useful mathematical tool for finding additional solutions with solitary patterns 

to a variety of nonlinear dispersive equations with initial conditions. It is 

important to note that the solution in this case is provided in closed form and 

requires only the use of the initial condition, in contrast to traditional numerical 

techniques. One of the advantages of using the ADM is that it can tackle the 

problem in a straightforward manner without requiring the use of transformation 
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formulae or boundary condition constraints. Ultimately, ADM circumvents the 

challenges and extensive computational work by identifying the analytical 

solutions. The efficiency of the Adomian scheme increases its range of 

applications. 
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