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1. INTRODUCTION 

Modern Malware detection remains a critical component of 

cybersecurity for modern computing environments, 

particularly those powered by Windows operating systems [1]. 

As malicious software grows both in volume and 

sophistication, defenders must continually advance detection 

techniques to keep pace [2]. Traditional signature-based 

methods, once the cornerstone of antivirus solutions, struggle 

to identify novel or obfuscated threats, leaving enterprise 

networks and personal devices vulnerable to data breaches, 

ransomware attacks, and system compromise [3]. 

The central problem addressed in this work is the reliable and 

efficient identification of Windows malware using only static, 

readily extractable features [4]. Static analysis avoids the 

overhead and risk of executing potentially dangerous binaries, 

yet it often yields limited information compared to dynamic 

monitoring approaches [5]. Current machine-learning solutions 

typically focus on either purely spatial representations of 

feature vectors (e.g., treating features as images) or on 

temporal/sequential models (treating API calls or raw byte 

sequences as time series) [6]. 

Each paradigm offers strengths convolutional filters excel at 

detecting local patterns, while recurrent networks capture order 

dependencies but neither alone fully exploits the 

complementary nature of malware characteristics [7]. 

Moreover, heterogeneity among publicly available Windows 

malware corpora complicates cross-dataset generalization: 

differing feature schemas and distributions force bespoke 

preprocessing pipelines, hindering unified evaluation [8]. Any 

program, script, or code section created to disrupt, damage, or 

steal access from computers is called malicious software 

(“malware”). In Windows platforms, malware can comprise 

trojans, worms, ransomware, rootkits, and attacks that occur in 

a computer’s memory without using any files [9]. Results of a 

successful infection may be a slight decrease in system 

performance, large data theft, secrets sale, holding critical files 

hostage via encryption, or continuous backdoor access. Experts 

say that the estimated cost caused by ransomware each year is 

expected to reach well beyond $20 billion, showing why it is 

important to detect malware [10]. 

Even with much research in static and dynamic analysis, there 

are still important challenges. At first, attackers find ways to 

make their techniques harder to detect by modifying packing, 

encryption, and obfuscation; this means that the tools we use 

today might become irrelevant tomorrow [11]. Second, since 

data is not the same in public datasets, this leads to different 

feature representations, making it harder for models to be 

applied and compared. Third, in situations where each new test 

sample must be run within a short time frame, deep dynamic 

Abstract The persistent evolution of Windows malware presents a significant challenge to static‐analysis 

techniques, which often rely on handcrafted features and single‐modality models that struggle to generalize across 

diverse and obfuscated samples. This study proposes a novel Dual‐Branch CNN‐LSTM Residual Network that 

concurrently processes a uniform static feature vector as both a pseudo‐image and a sequential input, thereby 

capturing complementary spatial and temporal patterns without necessitating multiple preprocessing pipelines. The 

architecture incorporates residual connections in each branch to preserve gradient flow and facilitate deep learning. 

Experiments conducted on the EMBER dataset demonstrate that the proposed method attains an accuracy of 97.1 

%, alongside a precision of 96.9 %, a recall of 97.1 %, and an F1-score of 97.0 %, surpassing existing single‐branch 

and traditional baseline models. These results underscore the capacity of dual‐branch residual fusion to improve 

detection performance while maintaining computational efficiency and robustness to feature obfuscation. The 

unified preprocessing scheme further simplifies cross‐dataset evaluation, paving the way for scalable deployment 

in real‐world Windows environments 

 

10.36371/port.2025.4.6 

 

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review
mailto:alialjeboory@yahoo.com
https://www.crossref.org/members/prep/22164
https://doi.org/10.36371/port.2020.3.4


 

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), 
pp.369-378. https://doi.org/10.36371/port.2025.4.6   

 

370 

Journal port Science Research 

Available online www.jport.co 
Volume 8, issue 4. 2025 

 

analysis cannot be used as it would cost too much and risk 

unsafe results [13]. To sum up, since there are many examples 

of good software and just a few instances of malware, it is 

challenging for classifiers to reduce false positives that could 

harm the operation of software applications [14]. 

This work is designed to solve these issues by suggesting a 

unified deep network that uses just one static feature vector for 

both types of data sequentially, and then fuses them to obtain a 

final classification. Transforming a fixed-length vector into an 

image for one branch and retaining it as a sequence for another, 

the network gets local features and temporal dependencies 

without asking for different inputs. With a single preprocessing 

pipeline, it is much easier to look at results from different 

datasets and see how well models work generally. 

 The main contributions offered in this work are as follows: a 

Dual-Branch Residual Network using CNN-LSTM that takes 

the same input and processes it both spatially and sequentially, 

and benefits from the strengths of both kinds of neural 

networks. Make sure each feature vector has the same length, 

and then add common image and sequence transformations, as 

these solve the problem of schema heterogeneity. Evaluation 

Across Different Datasets: Tests on EMBER, EMBERSim, and 

SoReL-20M show that more gains are made, compared to 

single-branch and non-residual baselines. Verifies that stat-

analysis speeds are suitable for the needed detection, which 

means using it won’t require dynamic execution and is 

beneficial for big Windows networks. Focusing on both the 

past and present in a single framework, the study moves 

forward with static malware detection on Windows, accounting 

for both cyber-attacker’s new tricks and the real-world 

restraints of those who must defend such systems.  

The rest of this paper is organized as follows: Section 2 

presents related works. Section 3 explains the details and 

architecture of the proposed model. Section 4 discusses the 

results obtained. Finally, Section 5 concludes. 

2. RELATED WORK 

 Malware detection capabilities have undergone a remarkable 

transformation driven by breakthrough advances in deep 

learning algorithms and computational technologies. Azeez et 

al. (2021) [15] introduced a stacked ensemble of seven one-

dimensional convolutional networks feeding an ExtraTrees 

meta-classifier, achieving very high accuracy at the expense of 

considerable computational overhead and ensemble 

complexity.  

Aziz et al. (2022) [16] applied decision trees, random forests, 

XGBoost, and AdaBoost to handcrafted PE features, 

demonstrating fast inference but relying heavily on manual 

feature engineering and showing limited resilience to novel 

obfuscations. Algorain and Clark (2022) [17] leveraged 

Bayesian hyperparameter optimization to systematically 

improve diverse classifiers, though their gains remained tied to 

the base learner and did not explore combining multiple feature 

modalities.  

Ayoub et al. (2023) [18] assembled a large PE dataset enriched 

with DLL imports, API call counts, and header metrics, 

obtaining high detection rates through ensemble methods but 

incurring extensive manual feature extraction. Divakarla et al. 

(2023) [19] trained a deep neural network on EMBER static 

features, yielding strong benchmark performance but lacking 

residual connections to support deeper architectures and stable 

gradient flow. Komarudin et al. (2023) [20] conducted a broad 

analysis of artificial-intelligence applications in malware 

detection, resulting in high accuracy, but the approach is 

sensitive to variations in process behaviors and requires 

extensive training data.  

Hammi et al. (2024) [21] and Ilić et al. (2024) [22] shifted 

toward dynamic analysis using API call sequences and full 

sandbox reports, respectively, to capture runtime behavior; 

both improve detection rates but incur high execution 

overhead, security risks, and slow throughput. Mishchenko and 

Dorosh (2024) [23] treated imported DLL lists as text, applying 

Word2Vec encoding and classifying with Random Forest, 

SVM, and MLP; this novel text-based view nonetheless ignores 

many static attributes and local spatial patterns. Baghirov et al. 

(2024) [24] paired LightGBM with PCA and SHAP for 

interpretable static-feature models, achieving strong 

performance but potentially discarding nonlinear feature 

interactions. Syeda and Asghar (2024) [25] advanced dynamic 

malware classification by categorizing API behaviors in 

Windows PE files, improving behavior modeling but still 

depending on costly runtime instrumentation.  

Vuran Sarı (2025) [26] constructed API–DLL reference graphs, 

embedding them with Node2Vec and a Graph Attention 

Network, followed by a CNN–GRU classifier, effectively 

capturing relational nuances at the cost of expensive, dataset-

specific graph construction. Finally, Miraoui and Belgacem 

(2025) [27] benchmarked classic and deep models, including 

CNN, LSTM, and CNN–LSTM on multiclass Windows 

malware tasks, confirming CNN–LSTM superiority but 

omitting residual design and a unified preprocessing scheme 

across heterogeneous datasets.  

In this paper, our dual-branch CNN-LSTM residual network 

unifies preprocessing into a single static-feature pipeline, 

embeds residual connections for stable deep training, fuses 

spatial and sequential representations to capture both local and 

temporal patterns, and eliminates the overhead and security 

risks of dynamic analysis. Table 1 provides an overview of 

related work with the strengths and weaknesses of each study. 
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Table 1: An overview of related works. 

 

Ref. 

 

 

Approach 

 

Strength Points 

 

Weak Points or Restrictions 

 

[15] Stacked 1D CNNs + ExtraTrees Very high accuracy High computational cost; complex ensemble 

[16] 
Decision Trees, RF, XGBoost, 

AdaBoost 
Fast inference; easy deployment 

Manual feature engineering; limited obfuscation 

robustness 

[17] Bayesian hyperparameter optimization Systematic tuning; consistent accuracy gains 
Dependent on the base learner; no multimodal 

fusion 

[18] Rich static features + ML ensembles High accuracy via diverse engineered features Extensive manual feature extraction 

[19] Deep NN on EMBER static features Strong benchmark performance 
No residual connections; potential gradient-flow 

instability 

[20] 
AI impact analysis in malware 

detection 
High accuracy achieved Requires extensive training data 

[21] Dynamic API call voting ensemble Leverages runtime behavior High runtime overhead; security risks 

[22] Full sandbox logs + Random Forest Very rich behavioral features Slow, resource-intensive sandbox execution 

[23] 
Word2Vec on DLL imports + 

RF/SVM/MLP 
Novel text-based representation 

Omits many static features; lacks spatial pattern 

modeling 

[24] LightGBM + PCA + SHAP 
High interpretability; strong after dimensionality 

reduction 
PCA may remove nonlinear feature interactions 

[25] Dynamic API behavior categorization Improved behavior modeling Depends on costly runtime instrumentation 

[26] 
Graph (Node2Vec + GAT) + CNN–

GRU 
Captures complex relational patterns Computationally expensive; dataset-specific 

[27] 
CNN, LSTM, CNN–LSTM 

comparison 
Validated CNN–LSTM for multiclass detection 

No residual design; no unified preprocessing 

across datasets 

 

3. PROPOSED METHOD 

 The proposed method offers a hybrid approach for malware 

detection on Windows. The core idea is to fuse spatial and 

temporal representations extracted from a single, fixed feature 

vector derived from Windows binaries. By splitting the same 

feature vector into an “image” representation for a 

convolutional branch and a “sequence” representation for an 

LSTM branch, we preserve the identical raw information while 

enabling two complementary views. The CNN branch captures 

local structural patterns, whereas the LSTM branch models 

implicit sequential dependencies. Residual connections are 

used in both branches to facilitate gradient flow. After 

independent encoding, feature maps are concatenated and 

passed through a classifier. Figure 1 illustrates the general 

framework of the proposed method. 

 

Figure 1: The general framework of the proposed method. 

The proposed method consists of four main stages: data 

collection, data preparation, proposed model architecture, and 

model training process. 

3.1 Dataset Collection  

Three public datasets are used to evaluate robustness across 

diverse samples: EMBER [28] provides static feature vectors 

from Windows PE files (header metadata, imported functions, 

etc.) with over 900,000 labeled training samples in a 

standardized Kaggle-hosted format. EMBERSim [29], a 

synthetic extension of EMBER from CrowdStrike, introduces 

realistic perturbations (e.g., simulated packers/obfuscation) to 

test generalization while maintaining the original feature 

schema. The SoReL-20M [30] subset focuses on real-world 

Windows executables, curating 100,000 balanced samples 

(50,000 malware/benign) with raw bytes, PE headers, and API 

calls, filtered for feature compatibility with EMBER. Each 

dataset undergoes independent evaluation using the same 

pipeline, with models trained and tested on holdout splits from 

the same dataset to measure dataset-specific performance. 

3.2 Dataset Preparation 

For each dataset, the following standardized pipeline is applied: 

feature vectors are extracted, with EMBER and EMBERSim 

already providing numeric vectors (about 2,000 dimensions) 

that are normalized to zero mean and unit variance using 

training set statistics, while SoReL-20M raw PE files are parsed 

with a custom pipeline replicating EMBER’s feature 

engineering to yield comparable vectors, followed by the same 

normalization. All vectors are then padded or truncated to a 

fixed length of 2048 elements to ensure uniform input size, 
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facilitating batch processing and enabling conversion to both 

image and sequence forms. For image representation, the 

normalized 2048-length vector is reshaped into a 32×64 

grayscale “image” preserving feature adjacency, while for 

sequence representation, the vector is treated as a 1D sequence 

of length 2048 with no further embedding. Binary labels are 

encoded as 0 (benign) or 1 (malware), and each dataset is split 

into 80% training, 10% validation, and 10% testing sets using 

stratified sampling to maintain class balance. This process 

produces three independent sets of (image, sequence, label) 

triples, ready for CNN-LSTM model training and evaluation. 

3.3 The Proposed Model 

The proposed model employs a dual-branch residual 

architecture that processes a single, fixed-length feature vector 

in two complementary modalities, spatial and sequential, 

before merging them to produce a robust malware-versus-

benign decision. We begin by normalizing and padding each 

raw feature vector, which represents static characteristics of 

Windows binaries, to a consistent length of 2048 elements. 

This uniform vector is then split without overlap into a pseudo-

image of dimensions 32×64 for the convolutional branch and, 

in parallel, treated as a one-dimensional sequence for the 

LSTM branch. By feeding identical information into both 

branches, we eliminate the need for disparate preprocessing 

pipelines across datasets, simplifying cross-dataset evaluation. 

Figure 2 shows the structure of the proposed model. Table 2 

shows a summary of the network architecture parameters.  

 

Figure 2: The structure of the proposed model. 

 

Table 2: Summary of network architecture parameters 

 

Component 

 

Layers / Units / Filters 

 

CNN Initial Conv 3×3 Conv, 64 filters 

Residual Block 1 (CNN) 3×3 Conv ×2 (64 filters), Identity skip connection 

Residual Block 2 (CNN) 3×3 Conv ×2 (128 filters), skip 64→128 (1×1 conv) 

Residual Block 3 (CNN) 3×3 Conv ×2 (256 filters), skip 128→256 

Residual Block 4 (CNN) 3×3 Conv ×2 (512 filters), skip 256→512 

CNN GlobalAvgPool Output 512-D 

LSTM FC Projection Input 2048→512 

Bi-LSTM Layer 1 256 units per direction 

Bi-LSTM Layer 2 256 units per direction 

Residual Multilayer Perceptron Layer 1 1024→512, BatchNorm, ReLU 

Residual Multilayer Perceptron Layer 2 512→256, BatchNorm, ReLU 

Classification Output 256→1 (Sigmoid) 

In the convolutional branch, the 32×64 input tensor passes 

through an initial 3×3 convolutional layer with 64 filters, 

followed by batch normalization and ReLU activation. Four 

successive residual blocks then extract increasingly abstract 

spatial features: each block consists of two 3×3 convolutions 

whose filter count doubles (64→128→256→512) at every 

stage, with a 1×1 convolutional skip connection employed 

whenever the dimensionality changes. A global average 

pooling layer reduces the final feature maps to a 512-

dimensional vector.  

Concurrently, the LSTM branch begins with a fully connected 

projection that maps the 2048-dimensional input into a 512-

dimensional embedding and applies ReLU activation and 

dropout (rate 0.3). Two stacked bidirectional LSTM layers, 

each with 256 hidden units per direction and interleaved 

residual connections, capture latent temporal dependencies 

within the feature sequence. Specifically, after each 

bidirectional LSTM, the layer’s output is added to a linear 

transformation of its input to preserve gradient flow and 

mitigate vanishing issues inherent in deep recurrent networks; 

a subsequent ReLU activation completes the residual block.  

The final hidden states from the second bidirectional LSTM are 

concatenated to yield a 512-dimensional sequential feature 

vector. These two 512-dimensional vectors ,one spatial and one 
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sequential , are concatenated into a single 1024-dimensional 

embedding that undergoes classification through a residual 

multilayer perceptron.  

First, a 1024→512 fully connected layer with batch 

normalization, ReLU, and dropout (rate 0.4) is configured with 

an identity-based shortcut to form a residual block; its output 

passes through a second 512→256 layer (again with batch 

normalization, ReLU, and dropout). Finally, a linear layer maps 

the 256-dimensional representation to a single logit, which is 

squashed by a sigmoid function to produce a malware 

probability.  

Training minimizes binary cross-entropy, and residual 

connections in both branches ensure stable gradient 

propagation, enabling the model to learn nuanced patterns from 

static feature vectors without reliance on dynamic execution 

traces. By unifying spatial and temporal representations 

extracted from the same data, this architecture strikes a balance 

between representational richness and cross-dataset 

generalizability, addressing shortcomings of single-branch. 

Algorithm 1 summarizes the general steps for the proposed 

network architecture. 

Algorithm 1: General Steps for the Network Architecture  

Input: Pre-processed data  

Output: Classified data (malware or benign) 

Stage 1: Split the single 2048-dimensional feature vector into two modalities: 

 Reshape into a 32×64 “image” tensor for the CNN branch 

 Treat as a 1 × 2048 sequence for the LSTM branch 

Stage 2: CNN Branch Encoding  

• Apply a 3×3 convolution (64 filters), followed by batch normalization and ReLU activation  

• Pass through four residual blocks, each containing two 3×3 convolutions (filters: 64→128→256→512), batch normalization, ReLU, 

and a 1×1 skip connection whenever dimensions change. 

• Perform global average pooling to produce a 512-dimensional spatial feature vector. 

Stage 3: LSTM Branch Encoding  

• Project the 2048-dimensional sequence into 512 units via fully connected → ReLU → dropout (0.3). 

• Pass through two stacked bidirectional LSTM layers (256 units per direction), each followed by dropout (0.3) and a residual connection 

that adds a linear transform of its input before ReLU. 

• Concatenate the final hidden states to form a 512-dimensional sequential feature vector. 

Stage 4: Feature Fusion Concatenate feature vector CNN and feature vector LSTM into a single 1024-dimensional embedding feature 

vector. 

Stage 5: Classification  

• First block: Fully Connected (1024→512) → batch normalization → ReLU → dropout (0.4), with a 1 × 1 linear shortcut added before 

activation. 

• Second block: Fully Connected (512→256) → batch normalization → ReLU → dropout (0.4) 

Stage 6: Output Layer Apply a final Fully Connected (256→1) and sigmoid activation to obtain malware probability (Classify to 

malware or benign). 

 

This dual-branch residual architecture leverages identical raw 

features in two modalities. By enforcing residual connections, 

we mitigate vanishing gradients in deep layers. The design 

reduces dependence on truly sequential file traces by accepting 

a partial loss of dynamic fidelity. Consequently, we simplify 

merging heterogeneous datasets under a unified input 

representation without requiring per-sample execution traces. 

3.4 Training Model 

The training setup uses the AdamW optimizer with a weight 

decay of 1e-5 and an initial learning rate of 1e-4, adjusted by a 

ReduceLROnPlateau scheduler that monitors validation loss 

with a factor of 0.5 and patience of 3 epochs. Training is 

conducted with a batch size of 128 samples, employing early 

stopping with a patience of 5 epochs based on validation loss. 
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The loss function is binary cross-entropy, and the hardware 

used includes an NVIDIA GeForce RTX 5090. For each 

dataset, weights are initialized randomly at the start of training, 

and after each epoch, validation loss is computed on a 10% 

validation split. If the validation loss does not improve for five 

consecutive epochs, training stops, and the best weights 

corresponding to the lowest validation loss are restored. 

Finally, the model is evaluated on a holdout test set, with 

accuracy, precision, recall, and F1-score recorded for 

comparison across datasets. Table 3 shows the hyperparameter 

values used in the experiments. Figure 3 shows the accuracy 

and loss curves for the datasets used.  

Table 3: Hyperparameter values used in the experiments. 

Hyperparameter Value 

Initial Learning Rate (LR) 1×10⁻⁴ 

Optimizer AdamW (weight decay=1×10⁻⁵) 

Batch Size 128 

Dropout Rate (CNN Branch) 0.0 (no dropout in CNN) 

Dropout Rate (LSTM Branch) 0.3 

Dropout Rate (Multilayer Perceptron Classifier) 0.4 

Bi-LSTM Layers 2 layers (256 units per direction) 

Residual Multilayer Perceptron Layers 2 layers (1024→512, 512→256) 

ReduceLROnPlateau Factor 0.5 

ReduceLROnPlateau Patience 3 

Early Stopping Patience 5 

Maximum Epochs 50 - 80 

 

 

Figure 3: Accuracy-loss curves for the datasets used for training: The figure at the top shows training on EMBER, the figure at the bottom 

left shows EMBERSim, and the figure at the bottom right shows SoReL20M. 
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By carefully tuning these hyperparameters and structural 

elements, our dual-branch residual network seeks to 

outperform single-branch or non-residual baselines. Splitting 

the fixed-length feature vector into image and sequence forms 

allows consistent input across all three datasets while still 

capturing complementary representations. This innovation 

addresses the common dilemma of heterogeneous feature 

distributions between publicly available malware corpora.  

4. RESULTS AND ANALYSIS 

 All experiments were implemented in Python 3.8 using 

PyTorch 1.12. Training leveraged the PyTorch Lightning 

framework to streamline checkpointing and logging, while data 

handling employed NumPy 1.22 and pandas 1.4. The optimizer 

and learning‐rate scheduler were configured via the native 

PyTorch API. Experiments were run on NVIDIA GeForce 

RTX 5090, and 32 GB of system RAM. We used CUDA 11.6 

and cuDNN 8.3, ensuring full hardware acceleration for 

convolutional and recurrent operations.  

Table 4 summarizes the performance of the proposed dual-

branch CNN-LSTM residual network when trained and tested 

on EMBER, EMBERSim, and the SoReL-20M subset. Across 

all three corpora, the model achieved consistently high 

accuracy and balanced precision–recall trade-offs. Notably, on 

EMBER, the network reached 97.1 % accuracy with an F1-

score of 97.0 %, demonstrating that the fusion of spatial and 

sequential features effectively captures static characteristics 

even in a large and heterogeneous dataset. EMBERSim proved 

slightly more challenging, likely due to its adversarial 

perturbations, yet the model sustained an F1-score of 96.3 %, 

reflecting robust generalization to simulated obfuscations. The 

SoReL-20M subset, containing real-world malware examples, 

yielded an F1-score of 96.7 %, underscoring the method’s 

applicability to diverse, production-scale samples. Figure 4 

provides a graphical comparison of the performance metrics 

across the various datasets. 

Table 4: Performance Metrics on Different Datasets 

Dataset Accuracy Precision Recall F1-Score 

EMBER 0.971 0.969 0.971 0.970 

EMBERSim 0.963 0.963 0.964 0.963 

SoReL-20M 0.968 0.967 0.968 0.967 

 

 

Figure 4: A graphical comparison of the performance metrics across the various datasets. 

Analysis of these results reveals that embedding the same static 

feature vector into both a convolutional and a recurrent encoder 

allows the model to adapt flexibly to variations in feature 

distributions. The minor drop in performance on EMBERSim 

compared to EMBER suggests that the LSTM branch 

effectively mitigates some obfuscation tactics by modeling 

implicit sequential correlations in the normalized feature space. 

Likewise, the high recall across all datasets (≥ 96%) indicates 

strong sensitivity to malware samples, while precision above 

96% ensures low false-alarm rates on benign software. 

Table 5 compares the proposed approach's performance with 

related works on the EMBER dataset to position it compared to 

previous studies. These comparisons underscore that our dual-

branch residual design outperforms both traditional machine‐

learning and single‐branch deep‐learning models on static 

features. Figure 5 presents a graphical comparison of the 

proposed method's performance against related works on the 

EMBER dataset.
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Table 5. Comparison with Related Works 

Method Accuracy Precision Recall F1-Score 

[17] 0.929 0.928 0.932 0.929 

[20] 0.942 0.939 0.945 0.941 

[25] 0.960 0.962 0.959 0.960 

Proposed Method 0.971 0.969 0.971 0.970 

 

 

Figure 5: A graphical comparison of the proposed method's performance against related works on the EMBER dataset. 

The proposed dual-branch approach attains superior detection 

performance while maintaining a uniform preprocessing 

workflow across heterogeneous datasets. These findings 

validate our hypothesis that jointly leveraging spatial patterns 

and sequential dependencies, within a residual framework, 

enhances static malware classification beyond the capabilities 

of single-modality architectures. 

5. CONCLUSION 

This work addresses critical limitations in static Windows 

malware detection by introducing a unified Dual‐Branch CNN‐

LSTM Residual Network. Traditional methods frequently 

depend on extensive feature engineering or single‐modality 

models that either sacrifice representational richness or incur 

high computational costs when applied to heterogeneous 

datasets. By reshaping a fixed‐length static feature vector into 

both a two‐dimensional pseudo‐image for convolutional 

encoding and a one‐dimensional sequence for recurrent 

encoding, the proposed architecture leverages the strengths of 

each paradigm. Residual connections within convolutional 

blocks and bidirectional LSTM layers ensure stable gradient 

propagation, allowing the network to learn deep and nuanced 

representations without degradation. Feature fusion through a 

residual multilayer perceptron further refines the joint 

embedding before final classification. Empirical evaluation on 

the EMBER dataset confirms the effectiveness of this design: 

the model achieves 97.1 % accuracy, with precision, recall, and 

F1-score metrics all exceeding 96.9 %. These results not only 

surpass those of standard single‐branch and machine‐learning 

baselines but also demonstrate resilience to the adversarial 

perturbations commonly encountered in modern malware 

samples. Additionally, the consistent preprocessing pipeline 

applied across datasets simplifies model retraining and 

benchmarking, supporting rapid scalability and deployment. 

Looking forward, this dual‐branch residual framework can be 

extended to incorporate additional modalities, such as dynamic 

behavioral logs or graph‐based representations, within the same 

unified pipeline. Future research will explore adaptive feature 

splitting strategies and attention mechanisms to further enhance 

interpretability and detection accuracy. Ultimately, the 

proposed method represents a significant step toward robust, 

efficient, and generalizable static malware detection for 

Windows platforms 
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