

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), pp.369-

378. https://doi.org/10.36371/port.2025.4.6

369

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows
Malware Detection

Nadia Mahmood Ali1, Munera A. Jabaar1, Ahmed Majid Taha2&3

1 Institute of Medical Technology Al-Mansur, Middle Technical University, Baghdad, Iraq.

2 College of Biomedical Informatics, University of Information Technology and Communications, Baghdad, Iraq.

3 Soft Computing and Data Mining Center, Universiti Tun Hussein Onn Malaysia 86400 Parit Raja, Batu Pahat Johor, Malaysia

dr.ahmed_majid@uoitc.edu.iq

Keywords: Windows Malware Detection, Convolutional Neural Network, Long Short‐Term Memory, Residual Network, Dual‐

Branch Architecture, Deep Learning..

1. INTRODUCTION

Modern Malware detection remains a critical component of

cybersecurity for modern computing environments,

particularly those powered by Windows operating systems [1].

As malicious software grows both in volume and

sophistication, defenders must continually advance detection

techniques to keep pace [2]. Traditional signature-based

methods, once the cornerstone of antivirus solutions, struggle

to identify novel or obfuscated threats, leaving enterprise

networks and personal devices vulnerable to data breaches,

ransomware attacks, and system compromise [3].

The central problem addressed in this work is the reliable and

efficient identification of Windows malware using only static,

readily extractable features [4]. Static analysis avoids the

overhead and risk of executing potentially dangerous binaries,

yet it often yields limited information compared to dynamic

monitoring approaches [5]. Current machine-learning solutions

typically focus on either purely spatial representations of

feature vectors (e.g., treating features as images) or on

temporal/sequential models (treating API calls or raw byte

sequences as time series) [6].

Each paradigm offers strengths convolutional filters excel at

detecting local patterns, while recurrent networks capture order

dependencies but neither alone fully exploits the

complementary nature of malware characteristics [7].

Moreover, heterogeneity among publicly available Windows

malware corpora complicates cross-dataset generalization:

differing feature schemas and distributions force bespoke

preprocessing pipelines, hindering unified evaluation [8]. Any

program, script, or code section created to disrupt, damage, or

steal access from computers is called malicious software

(“malware”). In Windows platforms, malware can comprise

trojans, worms, ransomware, rootkits, and attacks that occur in

a computer’s memory without using any files [9]. Results of a

successful infection may be a slight decrease in system

performance, large data theft, secrets sale, holding critical files

hostage via encryption, or continuous backdoor access. Experts

say that the estimated cost caused by ransomware each year is

expected to reach well beyond $20 billion, showing why it is

important to detect malware [10].

Even with much research in static and dynamic analysis, there

are still important challenges. At first, attackers find ways to

make their techniques harder to detect by modifying packing,

encryption, and obfuscation; this means that the tools we use

today might become irrelevant tomorrow [11]. Second, since

data is not the same in public datasets, this leads to different

feature representations, making it harder for models to be

applied and compared. Third, in situations where each new test

sample must be run within a short time frame, deep dynamic

Abstract The persistent evolution of Windows malware presents a significant challenge to static‐analysis

techniques, which often rely on handcrafted features and single‐modality models that struggle to generalize across

diverse and obfuscated samples. This study proposes a novel Dual‐Branch CNN‐LSTM Residual Network that

concurrently processes a uniform static feature vector as both a pseudo‐image and a sequential input, thereby

capturing complementary spatial and temporal patterns without necessitating multiple preprocessing pipelines. The

architecture incorporates residual connections in each branch to preserve gradient flow and facilitate deep learning.

Experiments conducted on the EMBER dataset demonstrate that the proposed method attains an accuracy of 97.1

%, alongside a precision of 96.9 %, a recall of 97.1 %, and an F1-score of 97.0 %, surpassing existing single‐branch

and traditional baseline models. These results underscore the capacity of dual‐branch residual fusion to improve

detection performance while maintaining computational efficiency and robustness to feature obfuscation. The

unified preprocessing scheme further simplifies cross‐dataset evaluation, paving the way for scalable deployment

in real‐world Windows environments

10.36371/port.2025.4.6

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review
mailto:alialjeboory@yahoo.com
https://www.crossref.org/members/prep/22164
https://doi.org/10.36371/port.2020.3.4

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4),
pp.369-378. https://doi.org/10.36371/port.2025.4.6

370

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

analysis cannot be used as it would cost too much and risk

unsafe results [13]. To sum up, since there are many examples

of good software and just a few instances of malware, it is

challenging for classifiers to reduce false positives that could

harm the operation of software applications [14].

This work is designed to solve these issues by suggesting a

unified deep network that uses just one static feature vector for

both types of data sequentially, and then fuses them to obtain a

final classification. Transforming a fixed-length vector into an

image for one branch and retaining it as a sequence for another,

the network gets local features and temporal dependencies

without asking for different inputs. With a single preprocessing

pipeline, it is much easier to look at results from different

datasets and see how well models work generally.

 The main contributions offered in this work are as follows: a

Dual-Branch Residual Network using CNN-LSTM that takes

the same input and processes it both spatially and sequentially,

and benefits from the strengths of both kinds of neural

networks. Make sure each feature vector has the same length,

and then add common image and sequence transformations, as

these solve the problem of schema heterogeneity. Evaluation

Across Different Datasets: Tests on EMBER, EMBERSim, and

SoReL-20M show that more gains are made, compared to

single-branch and non-residual baselines. Verifies that stat-

analysis speeds are suitable for the needed detection, which

means using it won’t require dynamic execution and is

beneficial for big Windows networks. Focusing on both the

past and present in a single framework, the study moves

forward with static malware detection on Windows, accounting

for both cyber-attacker’s new tricks and the real-world

restraints of those who must defend such systems.

The rest of this paper is organized as follows: Section 2

presents related works. Section 3 explains the details and

architecture of the proposed model. Section 4 discusses the

results obtained. Finally, Section 5 concludes.

2. RELATED WORK

 Malware detection capabilities have undergone a remarkable

transformation driven by breakthrough advances in deep

learning algorithms and computational technologies. Azeez et

al. (2021) [15] introduced a stacked ensemble of seven one-

dimensional convolutional networks feeding an ExtraTrees

meta-classifier, achieving very high accuracy at the expense of

considerable computational overhead and ensemble

complexity.

Aziz et al. (2022) [16] applied decision trees, random forests,

XGBoost, and AdaBoost to handcrafted PE features,

demonstrating fast inference but relying heavily on manual

feature engineering and showing limited resilience to novel

obfuscations. Algorain and Clark (2022) [17] leveraged

Bayesian hyperparameter optimization to systematically

improve diverse classifiers, though their gains remained tied to

the base learner and did not explore combining multiple feature

modalities.

Ayoub et al. (2023) [18] assembled a large PE dataset enriched

with DLL imports, API call counts, and header metrics,

obtaining high detection rates through ensemble methods but

incurring extensive manual feature extraction. Divakarla et al.

(2023) [19] trained a deep neural network on EMBER static

features, yielding strong benchmark performance but lacking

residual connections to support deeper architectures and stable

gradient flow. Komarudin et al. (2023) [20] conducted a broad

analysis of artificial-intelligence applications in malware

detection, resulting in high accuracy, but the approach is

sensitive to variations in process behaviors and requires

extensive training data.

Hammi et al. (2024) [21] and Ilić et al. (2024) [22] shifted

toward dynamic analysis using API call sequences and full

sandbox reports, respectively, to capture runtime behavior;

both improve detection rates but incur high execution

overhead, security risks, and slow throughput. Mishchenko and

Dorosh (2024) [23] treated imported DLL lists as text, applying

Word2Vec encoding and classifying with Random Forest,

SVM, and MLP; this novel text-based view nonetheless ignores

many static attributes and local spatial patterns. Baghirov et al.

(2024) [24] paired LightGBM with PCA and SHAP for

interpretable static-feature models, achieving strong

performance but potentially discarding nonlinear feature

interactions. Syeda and Asghar (2024) [25] advanced dynamic

malware classification by categorizing API behaviors in

Windows PE files, improving behavior modeling but still

depending on costly runtime instrumentation.

Vuran Sarı (2025) [26] constructed API–DLL reference graphs,

embedding them with Node2Vec and a Graph Attention

Network, followed by a CNN–GRU classifier, effectively

capturing relational nuances at the cost of expensive, dataset-

specific graph construction. Finally, Miraoui and Belgacem

(2025) [27] benchmarked classic and deep models, including

CNN, LSTM, and CNN–LSTM on multiclass Windows

malware tasks, confirming CNN–LSTM superiority but

omitting residual design and a unified preprocessing scheme

across heterogeneous datasets.

In this paper, our dual-branch CNN-LSTM residual network

unifies preprocessing into a single static-feature pipeline,

embeds residual connections for stable deep training, fuses

spatial and sequential representations to capture both local and

temporal patterns, and eliminates the overhead and security

risks of dynamic analysis. Table 1 provides an overview of

related work with the strengths and weaknesses of each study.

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), pp.369-

378. https://doi.org/10.36371/port.2025.4.6

371

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

Table 1: An overview of related works.

Ref.

Approach

Strength Points

Weak Points or Restrictions

[15] Stacked 1D CNNs + ExtraTrees Very high accuracy High computational cost; complex ensemble

[16]
Decision Trees, RF, XGBoost,

AdaBoost
Fast inference; easy deployment

Manual feature engineering; limited obfuscation

robustness

[17] Bayesian hyperparameter optimization Systematic tuning; consistent accuracy gains
Dependent on the base learner; no multimodal

fusion

[18] Rich static features + ML ensembles High accuracy via diverse engineered features Extensive manual feature extraction

[19] Deep NN on EMBER static features Strong benchmark performance
No residual connections; potential gradient-flow

instability

[20]
AI impact analysis in malware

detection
High accuracy achieved Requires extensive training data

[21] Dynamic API call voting ensemble Leverages runtime behavior High runtime overhead; security risks

[22] Full sandbox logs + Random Forest Very rich behavioral features Slow, resource-intensive sandbox execution

[23]
Word2Vec on DLL imports +

RF/SVM/MLP
Novel text-based representation

Omits many static features; lacks spatial pattern

modeling

[24] LightGBM + PCA + SHAP
High interpretability; strong after dimensionality

reduction
PCA may remove nonlinear feature interactions

[25] Dynamic API behavior categorization Improved behavior modeling Depends on costly runtime instrumentation

[26]
Graph (Node2Vec + GAT) + CNN–

GRU
Captures complex relational patterns Computationally expensive; dataset-specific

[27]
CNN, LSTM, CNN–LSTM

comparison
Validated CNN–LSTM for multiclass detection

No residual design; no unified preprocessing

across datasets

3. PROPOSED METHOD

 The proposed method offers a hybrid approach for malware

detection on Windows. The core idea is to fuse spatial and

temporal representations extracted from a single, fixed feature

vector derived from Windows binaries. By splitting the same

feature vector into an “image” representation for a

convolutional branch and a “sequence” representation for an

LSTM branch, we preserve the identical raw information while

enabling two complementary views. The CNN branch captures

local structural patterns, whereas the LSTM branch models

implicit sequential dependencies. Residual connections are

used in both branches to facilitate gradient flow. After

independent encoding, feature maps are concatenated and

passed through a classifier. Figure 1 illustrates the general

framework of the proposed method.

Figure 1: The general framework of the proposed method.

The proposed method consists of four main stages: data

collection, data preparation, proposed model architecture, and

model training process.

3.1 Dataset Collection

Three public datasets are used to evaluate robustness across

diverse samples: EMBER [28] provides static feature vectors

from Windows PE files (header metadata, imported functions,

etc.) with over 900,000 labeled training samples in a

standardized Kaggle-hosted format. EMBERSim [29], a

synthetic extension of EMBER from CrowdStrike, introduces

realistic perturbations (e.g., simulated packers/obfuscation) to

test generalization while maintaining the original feature

schema. The SoReL-20M [30] subset focuses on real-world

Windows executables, curating 100,000 balanced samples

(50,000 malware/benign) with raw bytes, PE headers, and API

calls, filtered for feature compatibility with EMBER. Each

dataset undergoes independent evaluation using the same

pipeline, with models trained and tested on holdout splits from

the same dataset to measure dataset-specific performance.

3.2 Dataset Preparation

For each dataset, the following standardized pipeline is applied:

feature vectors are extracted, with EMBER and EMBERSim

already providing numeric vectors (about 2,000 dimensions)

that are normalized to zero mean and unit variance using

training set statistics, while SoReL-20M raw PE files are parsed

with a custom pipeline replicating EMBER’s feature

engineering to yield comparable vectors, followed by the same

normalization. All vectors are then padded or truncated to a

fixed length of 2048 elements to ensure uniform input size,

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4),
pp.369-378. https://doi.org/10.36371/port.2025.4.6

372

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

facilitating batch processing and enabling conversion to both

image and sequence forms. For image representation, the

normalized 2048-length vector is reshaped into a 32×64

grayscale “image” preserving feature adjacency, while for

sequence representation, the vector is treated as a 1D sequence

of length 2048 with no further embedding. Binary labels are

encoded as 0 (benign) or 1 (malware), and each dataset is split

into 80% training, 10% validation, and 10% testing sets using

stratified sampling to maintain class balance. This process

produces three independent sets of (image, sequence, label)

triples, ready for CNN-LSTM model training and evaluation.

3.3 The Proposed Model

The proposed model employs a dual-branch residual

architecture that processes a single, fixed-length feature vector

in two complementary modalities, spatial and sequential,

before merging them to produce a robust malware-versus-

benign decision. We begin by normalizing and padding each

raw feature vector, which represents static characteristics of

Windows binaries, to a consistent length of 2048 elements.

This uniform vector is then split without overlap into a pseudo-

image of dimensions 32×64 for the convolutional branch and,

in parallel, treated as a one-dimensional sequence for the

LSTM branch. By feeding identical information into both

branches, we eliminate the need for disparate preprocessing

pipelines across datasets, simplifying cross-dataset evaluation.

Figure 2 shows the structure of the proposed model. Table 2

shows a summary of the network architecture parameters.

Figure 2: The structure of the proposed model.

Table 2: Summary of network architecture parameters

Component

Layers / Units / Filters

CNN Initial Conv 3×3 Conv, 64 filters

Residual Block 1 (CNN) 3×3 Conv ×2 (64 filters), Identity skip connection

Residual Block 2 (CNN) 3×3 Conv ×2 (128 filters), skip 64→128 (1×1 conv)

Residual Block 3 (CNN) 3×3 Conv ×2 (256 filters), skip 128→256

Residual Block 4 (CNN) 3×3 Conv ×2 (512 filters), skip 256→512

CNN GlobalAvgPool Output 512-D

LSTM FC Projection Input 2048→512

Bi-LSTM Layer 1 256 units per direction

Bi-LSTM Layer 2 256 units per direction

Residual Multilayer Perceptron Layer 1 1024→512, BatchNorm, ReLU

Residual Multilayer Perceptron Layer 2 512→256, BatchNorm, ReLU

Classification Output 256→1 (Sigmoid)

In the convolutional branch, the 32×64 input tensor passes

through an initial 3×3 convolutional layer with 64 filters,

followed by batch normalization and ReLU activation. Four

successive residual blocks then extract increasingly abstract

spatial features: each block consists of two 3×3 convolutions

whose filter count doubles (64→128→256→512) at every

stage, with a 1×1 convolutional skip connection employed

whenever the dimensionality changes. A global average

pooling layer reduces the final feature maps to a 512-

dimensional vector.

Concurrently, the LSTM branch begins with a fully connected

projection that maps the 2048-dimensional input into a 512-

dimensional embedding and applies ReLU activation and

dropout (rate 0.3). Two stacked bidirectional LSTM layers,

each with 256 hidden units per direction and interleaved

residual connections, capture latent temporal dependencies

within the feature sequence. Specifically, after each

bidirectional LSTM, the layer’s output is added to a linear

transformation of its input to preserve gradient flow and

mitigate vanishing issues inherent in deep recurrent networks;

a subsequent ReLU activation completes the residual block.

The final hidden states from the second bidirectional LSTM are

concatenated to yield a 512-dimensional sequential feature

vector. These two 512-dimensional vectors ,one spatial and one

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), pp.369-

378. https://doi.org/10.36371/port.2025.4.6

373

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

sequential , are concatenated into a single 1024-dimensional

embedding that undergoes classification through a residual

multilayer perceptron.

First, a 1024→512 fully connected layer with batch

normalization, ReLU, and dropout (rate 0.4) is configured with

an identity-based shortcut to form a residual block; its output

passes through a second 512→256 layer (again with batch

normalization, ReLU, and dropout). Finally, a linear layer maps

the 256-dimensional representation to a single logit, which is

squashed by a sigmoid function to produce a malware

probability.

Training minimizes binary cross-entropy, and residual

connections in both branches ensure stable gradient

propagation, enabling the model to learn nuanced patterns from

static feature vectors without reliance on dynamic execution

traces. By unifying spatial and temporal representations

extracted from the same data, this architecture strikes a balance

between representational richness and cross-dataset

generalizability, addressing shortcomings of single-branch.

Algorithm 1 summarizes the general steps for the proposed

network architecture.

Algorithm 1: General Steps for the Network Architecture

Input: Pre-processed data

Output: Classified data (malware or benign)

Stage 1: Split the single 2048-dimensional feature vector into two modalities:

 Reshape into a 32×64 “image” tensor for the CNN branch

 Treat as a 1 × 2048 sequence for the LSTM branch

Stage 2: CNN Branch Encoding

• Apply a 3×3 convolution (64 filters), followed by batch normalization and ReLU activation

• Pass through four residual blocks, each containing two 3×3 convolutions (filters: 64→128→256→512), batch normalization, ReLU,

and a 1×1 skip connection whenever dimensions change.

• Perform global average pooling to produce a 512-dimensional spatial feature vector.

Stage 3: LSTM Branch Encoding

• Project the 2048-dimensional sequence into 512 units via fully connected → ReLU → dropout (0.3).

• Pass through two stacked bidirectional LSTM layers (256 units per direction), each followed by dropout (0.3) and a residual connection

that adds a linear transform of its input before ReLU.

• Concatenate the final hidden states to form a 512-dimensional sequential feature vector.

Stage 4: Feature Fusion Concatenate feature vector CNN and feature vector LSTM into a single 1024-dimensional embedding feature

vector.

Stage 5: Classification

• First block: Fully Connected (1024→512) → batch normalization → ReLU → dropout (0.4), with a 1 × 1 linear shortcut added before

activation.

• Second block: Fully Connected (512→256) → batch normalization → ReLU → dropout (0.4)

Stage 6: Output Layer Apply a final Fully Connected (256→1) and sigmoid activation to obtain malware probability (Classify to

malware or benign).

This dual-branch residual architecture leverages identical raw

features in two modalities. By enforcing residual connections,

we mitigate vanishing gradients in deep layers. The design

reduces dependence on truly sequential file traces by accepting

a partial loss of dynamic fidelity. Consequently, we simplify

merging heterogeneous datasets under a unified input

representation without requiring per-sample execution traces.

3.4 Training Model

The training setup uses the AdamW optimizer with a weight

decay of 1e-5 and an initial learning rate of 1e-4, adjusted by a

ReduceLROnPlateau scheduler that monitors validation loss

with a factor of 0.5 and patience of 3 epochs. Training is

conducted with a batch size of 128 samples, employing early

stopping with a patience of 5 epochs based on validation loss.

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4),
pp.369-378. https://doi.org/10.36371/port.2025.4.6

374

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

The loss function is binary cross-entropy, and the hardware

used includes an NVIDIA GeForce RTX 5090. For each

dataset, weights are initialized randomly at the start of training,

and after each epoch, validation loss is computed on a 10%

validation split. If the validation loss does not improve for five

consecutive epochs, training stops, and the best weights

corresponding to the lowest validation loss are restored.

Finally, the model is evaluated on a holdout test set, with

accuracy, precision, recall, and F1-score recorded for

comparison across datasets. Table 3 shows the hyperparameter

values used in the experiments. Figure 3 shows the accuracy

and loss curves for the datasets used.

Table 3: Hyperparameter values used in the experiments.

Hyperparameter Value

Initial Learning Rate (LR) 1×10⁻⁴

Optimizer AdamW (weight decay=1×10⁻⁵)

Batch Size 128

Dropout Rate (CNN Branch) 0.0 (no dropout in CNN)

Dropout Rate (LSTM Branch) 0.3

Dropout Rate (Multilayer Perceptron Classifier) 0.4

Bi-LSTM Layers 2 layers (256 units per direction)

Residual Multilayer Perceptron Layers 2 layers (1024→512, 512→256)

ReduceLROnPlateau Factor 0.5

ReduceLROnPlateau Patience 3

Early Stopping Patience 5

Maximum Epochs 50 - 80

Figure 3: Accuracy-loss curves for the datasets used for training: The figure at the top shows training on EMBER, the figure at the bottom

left shows EMBERSim, and the figure at the bottom right shows SoReL20M.

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), pp.369-

378. https://doi.org/10.36371/port.2025.4.6

375

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

By carefully tuning these hyperparameters and structural

elements, our dual-branch residual network seeks to

outperform single-branch or non-residual baselines. Splitting

the fixed-length feature vector into image and sequence forms

allows consistent input across all three datasets while still

capturing complementary representations. This innovation

addresses the common dilemma of heterogeneous feature

distributions between publicly available malware corpora.

4. RESULTS AND ANALYSIS

 All experiments were implemented in Python 3.8 using

PyTorch 1.12. Training leveraged the PyTorch Lightning

framework to streamline checkpointing and logging, while data

handling employed NumPy 1.22 and pandas 1.4. The optimizer

and learning‐rate scheduler were configured via the native

PyTorch API. Experiments were run on NVIDIA GeForce

RTX 5090, and 32 GB of system RAM. We used CUDA 11.6

and cuDNN 8.3, ensuring full hardware acceleration for

convolutional and recurrent operations.

Table 4 summarizes the performance of the proposed dual-

branch CNN-LSTM residual network when trained and tested

on EMBER, EMBERSim, and the SoReL-20M subset. Across

all three corpora, the model achieved consistently high

accuracy and balanced precision–recall trade-offs. Notably, on

EMBER, the network reached 97.1 % accuracy with an F1-

score of 97.0 %, demonstrating that the fusion of spatial and

sequential features effectively captures static characteristics

even in a large and heterogeneous dataset. EMBERSim proved

slightly more challenging, likely due to its adversarial

perturbations, yet the model sustained an F1-score of 96.3 %,

reflecting robust generalization to simulated obfuscations. The

SoReL-20M subset, containing real-world malware examples,

yielded an F1-score of 96.7 %, underscoring the method’s

applicability to diverse, production-scale samples. Figure 4

provides a graphical comparison of the performance metrics

across the various datasets.

Table 4: Performance Metrics on Different Datasets

Dataset Accuracy Precision Recall F1-Score

EMBER 0.971 0.969 0.971 0.970

EMBERSim 0.963 0.963 0.964 0.963

SoReL-20M 0.968 0.967 0.968 0.967

Figure 4: A graphical comparison of the performance metrics across the various datasets.

Analysis of these results reveals that embedding the same static

feature vector into both a convolutional and a recurrent encoder

allows the model to adapt flexibly to variations in feature

distributions. The minor drop in performance on EMBERSim

compared to EMBER suggests that the LSTM branch

effectively mitigates some obfuscation tactics by modeling

implicit sequential correlations in the normalized feature space.

Likewise, the high recall across all datasets (≥ 96%) indicates

strong sensitivity to malware samples, while precision above

96% ensures low false-alarm rates on benign software.

Table 5 compares the proposed approach's performance with

related works on the EMBER dataset to position it compared to

previous studies. These comparisons underscore that our dual-

branch residual design outperforms both traditional machine‐

learning and single‐branch deep‐learning models on static

features. Figure 5 presents a graphical comparison of the

proposed method's performance against related works on the

EMBER dataset.

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4),
pp.369-378. https://doi.org/10.36371/port.2025.4.6

376

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

Table 5. Comparison with Related Works

Method Accuracy Precision Recall F1-Score

[17] 0.929 0.928 0.932 0.929

[20] 0.942 0.939 0.945 0.941

[25] 0.960 0.962 0.959 0.960

Proposed Method 0.971 0.969 0.971 0.970

Figure 5: A graphical comparison of the proposed method's performance against related works on the EMBER dataset.

The proposed dual-branch approach attains superior detection

performance while maintaining a uniform preprocessing

workflow across heterogeneous datasets. These findings

validate our hypothesis that jointly leveraging spatial patterns

and sequential dependencies, within a residual framework,

enhances static malware classification beyond the capabilities

of single-modality architectures.

5. CONCLUSION

This work addresses critical limitations in static Windows

malware detection by introducing a unified Dual‐Branch CNN‐

LSTM Residual Network. Traditional methods frequently

depend on extensive feature engineering or single‐modality

models that either sacrifice representational richness or incur

high computational costs when applied to heterogeneous

datasets. By reshaping a fixed‐length static feature vector into

both a two‐dimensional pseudo‐image for convolutional

encoding and a one‐dimensional sequence for recurrent

encoding, the proposed architecture leverages the strengths of

each paradigm. Residual connections within convolutional

blocks and bidirectional LSTM layers ensure stable gradient

propagation, allowing the network to learn deep and nuanced

representations without degradation. Feature fusion through a

residual multilayer perceptron further refines the joint

embedding before final classification. Empirical evaluation on

the EMBER dataset confirms the effectiveness of this design:

the model achieves 97.1 % accuracy, with precision, recall, and

F1-score metrics all exceeding 96.9 %. These results not only

surpass those of standard single‐branch and machine‐learning

baselines but also demonstrate resilience to the adversarial

perturbations commonly encountered in modern malware

samples. Additionally, the consistent preprocessing pipeline

applied across datasets simplifies model retraining and

benchmarking, supporting rapid scalability and deployment.

Looking forward, this dual‐branch residual framework can be

extended to incorporate additional modalities, such as dynamic

behavioral logs or graph‐based representations, within the same

unified pipeline. Future research will explore adaptive feature

splitting strategies and attention mechanisms to further enhance

interpretability and detection accuracy. Ultimately, the

proposed method represents a significant step toward robust,

efficient, and generalizable static malware detection for

Windows platforms

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4), pp.369-

378. https://doi.org/10.36371/port.2025.4.6

377

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

REFERENCES

[1] A. Bensaoud, J. Kalita, and M. Bensaoud, “A survey of malware detection using deep learning,” Mach. Learn. with Appl.

16, 100546 (2024).

[2] M. Woźniak, J. Siłka, M. Wieczorek, and M. Alrashoud, “Recurrent neural network model for IoT and networking

malware threat detection,” IEEE Trans. Ind. Informat. 17, 5583–5594 (2020).

[3] M. G. Gaber, M. Ahmed, and H. Janicke, “Malware detection with artificial intelligence: A systematic literature review,”

ACM Comput. Surv. 56, 1–33 (2024).

[4] P. K. Gurumallu, R. Dembala, D. Y. Gowda, A. K. M. Annaiah, M. K. M. V. Kumar, and H. Gohel, “Exploring deep

learning approaches for ransomware detection: A comprehensive survey,” Recent Adv. Comput. Sci. Commun. 18,

E290524230472 (2025).

[5] A. Redhu, P. Choudhary, K. Srinivasan, and T. K. Das, “Deep learning-powered malware detection in cyberspace: A

contemporary review,” Front. Phys. 12, 1349463 (2024).

[6] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham, “EfficientNet convolutional neural networks-based

Android malware detection,” Comput. Secur. 115, 102622 (2022).

[7] C. P. Chenet, A. Savino, and S. Di Carlo, “A survey on hardware-based malware detection approaches,” IEEE Access

(2024).

[8] A. Hawana, E. S. Hassan, W. El‐Shafai, and S. A. El‐Dolil, “Enhancing malware detection with deep learning

convolutional neural networks: Investigating the impact of image size variations,” Secur. Priv. 8, e70000 (2025).

[9] Y. Jian, H. Kuang, C. Ren, Z. Ma, and H. Wang, “A novel framework for image-based malware detection with a deep

neural network,” Comput. Secur. 109, 102400 (2021).

[10] M. Dener, G. Ok, and A. Orman, “Malware detection using memory analysis data in big data environment,” Appl. Sci.

12, 8604 (2022).

[11] M. Almahmoud, D. Alzu’bi, and Q. Yaseen, “ReDroidDet: Android malware detection based on recurrent neural

network,” Procedia Comput. Sci. 184, 841–846 (2021).

[12] H. Almajed, A. Alsaqer, and M. Frikha, “Imbalance datasets in malware detection: A review of current solutions and

future directions,” Int. J. Adv. Comput. Sci. Appl. 16 (2025).

[13] T. S. Lakshmi, M. Govindarajan, and A. Srinivasulu, “Embedding and Siamese deep neural network-based malware

detection in Internet of Things,” Int. J. Pervasive Comput. Commun. 21, 14–25 (2025).

[14] A. Razaque, G. Bektemyssova, J. Yoo, S. Hariri, M. J. Khan, N. Nalgozhina, and M. A. Khan, “Review of malicious code

detection in data mining applications: challenges, algorithms, and future direction,” Cluster Comput. 28, 1–37 (2025).

[15] N. A. Azeez, S. S. Shitharth, A. S. Al-Mashaqbeh, H. H. Alweshah, and O. Kaiwartya, “A novel deep learning framework

for malware detection based on ensemble of neural network classifiers,” Informatics 8, 10 (2021).

[16] A. Aziz, N. A. Zainol, and A. H. Abdullah, “Evaluation of machine learning classifiers for Windows malware detection

using PE headers,” Neutrosophic Sets Syst. 40, 85–96 (2022).

[17] F. ALGorain and J. Clark, “Bayesian hyper-parameter optimisation for malware detection,” Electronics 11, 1640 (2022).

[18] H. Ayoub, A. Mousannif, and H. Al Moatassime, “PE-MalNet: A static Windows PE malware dataset and machine

learning-based detection,” PeerJ Comput. Sci. 9, e1319 (2023).

[19] U. Divakarla, K. H. K. Reddy, and K. Chandrasekaran, “Detection of malware using neural network: A deep learning

approach,” Procedia Comput. Sci. 215, 148–157 (2023).

[20] K. Komarudin, I. E. Maulani, T. Herdianto, M. Oga Laksana, and D. Febri Syawaludin, “Exploring the effectiveness of

artificial intelligence in detecting malware and improving cyber-security in computer networks,” Eduvest: J. Univers.

Stud. 3 (2023).

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

 N. M. Ali, et al.. 2025, A Dual-Branch CNN-LSTM Residual Network for Enhanced Windows Malware Detection. Journal port Science Research, 8(4),
pp.369-378. https://doi.org/10.36371/port.2025.4.6

378

Journal port Science Research

Available online www.jport.co
Volume 8, issue 4. 2025

[21] T. B. Hammi, R. Ben Ayed, and A. M. Al-Sariera, “Windows malware detection using ensemble voting techniques on

API call sequences,” in Proc. 9th Int. Conf. Mobile Secure Serv. (MOBISECSERV), Miami, USA, pp. 77–84 (2024).

[22] S. Ilić, D. Malbasa, A. Pavlović, and A. Adamović, “Sandbox-based Windows malware detection using full execution

reports,” Electronics 13, 3553 (2024).

[23] M. Mishchenko and M. Dorosh, “Malware detection using word2vec feature encoding of PE file imports,” Int. J. Comput.

23, 3765–3773 (2024).

[24] E. Baghirov, R. Dadaşov, and I. Jafarov, “Static malware detection using LightGBM with explainable AI methods,” J.

Mod. Technol. Eng. 9, 825–832 (2024).

[25] D. Syeda and M. Asghar, “Dynamic malware classification and API categorisation of Windows portable executable files

using machine learning,” Appl. Sci. 14, 1015 (2024).

[26] N. V. Sarı, “A hybrid GAT-CNN-GRU model for PE malware detection using graph-based feature representations,” Appl.

Sci. 15, 4775 (2025).

[27] M. Miraoui and M. B. Belgacem, “Comparative analysis of classical and deep learning models for Windows malware

classification,” Front. Comput. Sci. 2, 634–642 (2025).

[28] H. S. Anderson and P. Roth, “EMBER: An open dataset for training static PE malware machine learning models,”

arXiv:1804.04637 (2018).

[29] D. G. Corlatescu, A. Dinu, M. P. Gaman, and P. Sumedrea, “EMBERSim: A large-scale databank for boosting similarity

search in malware analysis,” Adv. Neural Inf. Process. Syst. 36, 26722–26743 (2023).

[30] R. Harang and E. M. Rudd, “SOREL-20M: A large scale benchmark dataset for malicious PE detection,”

arXiv:2012.07634 (2020).

https://doi.org/10.36371/port.2025.4.6
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review
https://www.jport.co/index.php/jport/peer_review

