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ABSTRACT

Multitudes of Unmanned Aerial Vehicles (UAVs) are generally embraced in military and civilian applications. Yet,
this physical-cyber method is intimidated by cyber-attacks. Recently, Machine Learning (ML) based attacks detection
approaches have been effectively embraced to detect cyber-attacks. This paper presented the Intrusion Detection Security
(IDS) approach. The proposed approach investigates UAVs’ cyber and physical attributes under normal process and
attack circumstances. Two types of cyber-attacks have been classified: Denial-of-service (DoS) and replay. This study
developed IDS approaches established on ML and Deep Learning (DL) prototypes, including Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB), and One Dimensional Convolutional Neural Networks (1DCNN).
The produced approach is trained using physical and cyber attributes individually. The finding results indicate that the
1D-CNN model achieved higher accuracy (99.79%) compared to the machine learning algorithms. The experimental
results show the efficiency of the proposed method’s performance.

Keywords: Cyber attacks, Deep learning, Internet of Things, Intrusion Detection Security, Machine learning, Physical
attacks, Unmanned aerial vehicles

Introduction

The appearance of Internet of Things (IoT) tech-
nology with intelligent Intrusion Detection Security
(IDS) approach has strengthened the Vehicular Ad-
hoc Networks (VANETs) for present an additional
delightful and more effective driving knowledge.1–3

But, because of the extraordinarily dynamical envi-
ronment of community topologies, VANETs regularly
recognize the task of alternating link interruption. To
come upon this challenge, UAVs may be applied as
the maximum recommended contender to decorate

the connectedness of VANETs. For instance, UAV can
offer help to the floor car at some stage in the facts
transmission thru Storage Carry Forward (SCF) ap-
proach that can safely decrease the end-to-end put off
as well as decorate the letter delivery rate.4

UAVs also are named drones which have declared
their hopeful skills in numerous real-time programs
such observation system, health-care system, disaster
management, data collection, rescue system, localiza-
tion, traffic surveillance systems in the smart city,
environmental monitoring. Drones are the current
development because the flying IoT things that faux
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to be detecting devices.5 The remote-control center
manages the drone’s communication with the user.6

The built-in sensors in every drone transmit the col-
lected data from its surrounding environment to the
remote-control server through some form of wire-
less communication. The drones are being supported
all over the world, and it’s largely because they’ve
learned how to reach remote locations with minimal
effort, time, resources, and manpower. Of course,
these features allow the end user, but it’s also ex-
pected to be essential because directly access benefits
can lead to other serious security risks.7

Internet of Drones (IoD) leverages Internet of
Things (IoT) technologies to achieve its acute oper-
ational needs.8 The main requirements of the IoD
network associated with cost-effective operations in-
clude localization, authorization, trajectory planning,
unmanned aerial vehicle (UAV) monitoring, and se-
curity. Even though technology has come a long way
and there are lots of solutions out there, privacy
and security are still a major concern in the open-
source world. IoD designs are resource limited since
a drone has controlled computation, storage sources,
and power.9

Unmanned Aerial Vehicles (UAVs) have gained
significant popularity and widespread adoption in
both military and civilian applications. The in-
creasing need for UAVs also gives about troubles
about their weakness to cyber-attacks. In recent year
researchers have focused on ML based intrusion de-
tection methods as a means to detect and mitigate
these cyber-attacks. This paper proposed an Intru-
sion Detection Security (IDS) approach specifically
designed for UAVs.10,11 The IDS method studies the
cyber and physical attributes of UAVs under nor-
mal operational conditions and through attack states.
There are two types of cyber-attacks as a Denial-
of-Service (DoS) and replay attacks with examining
these attack types, the IDS approach aims to develop
effective methods for detecting threats.12,13

This study utilized several ML and Deep Learn-
ing (DL) techniques as the organization for the IDS
methods. The algorithms are SVM, KNN, NB, and
1D-CNN. The IDS methods are trained utilizing both
physical and cyber attributes independently, allowing
the models to learn and identify differences in UAV
behavior. This highlights the higher performance of
the 1D-CNN model in detecting and classifying cyber
and physical attacks on UAVs. The contribution of
this work to the field of UAV security via proposed
an IDS method utilized ML and DL techniques by
focusing on both the physical and cyber attributes of
UAVs, the proposed method shown a comprehensive
solution to detect cyber-attacks. The experimental re-
sults support the efficiency of the approach, paving

the way for further advancements in securing UAVs
beside evolving cyber threats.

Related works

RFID-based authentication methods are easy to
use, however securing RFID-based techniques is a
difficult project because to the very limited compu-
tational capabilities of RFID identifies.14,15 To solve
this problem of RFID established verification systems,
the theory of physical unclonable function (PUF)
tools was introduced.16 PUF is a purpose obtained
as of a physical property and utilized to gener-
ate a device specific production for several input,
such as an identification. Including PUF and RFID
could ensure hardware security. These approaches
can solve challenges linked to one-to-one verification
but cannot keep answers for large-scale and dynamic
networks.17

Drone safety includes various modes and levels de-
pending on their utilized, control and size methods.
In highest issues, drones use the Wi-Fi (IEEE 802.11)
protocol communication.18 The drone chassis con-
tains a Wi-Fi network and linking field stations, which
are exposed to cybersecurity dangers. The lack of
encoding technique on their chip could advance to
drones of hijacking.19

Thomas Hickling et al.20 proposed an innovative
approach that utilizes the interpretability of DL mod-
els to create an effective detector capable of protect-
ing DL models and the UAVs that utilize them from
attacks. The approach employs a Deep Reinforcement
Learning (DRL) strategy for planning and is trained
using a Deep Deterministic Policy Gradient (DDPG)
with Prioritized Experience Replay (PER) DRL
method. To enhance training duration and obstacle
performance, an Artificial Potential Field (APF) is in-
corporated. A simulated environment is established to
facilitate UAV planning using explainable DRL, which
includes adversarial and obstacle attacks. Adversarial
attacks, generated using the Basic Iterative Method
(BIM), reduce obstacle detection rates from 97% to
35%. To counteract this reduction, two malicious
attack detectors are proposed. The first is a Convo-
lutional Neural Network Adversarial Detector (CNN-
AD) that achieves an 80% accuracy in detection. The
second detector utilizes a Long Short-Term Memory
(LSTM) network and achieves 91% accuracy, with
faster computation times compared to the CNN-AD,
making it suitable for real-time malicious detection.

Jiaping Xiao et al.21 presented an altered sliding
invention series approach established on the compre-
hensive Kalman filter optimal condition estimate for
an involved quadrotor method to predict real-time
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cyber-attacks imposed on its sensors and actuators.
These cyber-attacks contain random attacks, denial-
of-service (DoS) attacks, and false data injection (FDI)
attacks. This approach predicts and calculates the
operative mean of the standardized invention series
inside a sliding period window and initiates the alarm
if the value exceeds the preset edge. The detector
surveys a decreased false alarm rate corresponding to
more condition estimation-based detectors. To man-
age the initial estimate error issue, this approach
implements an iteration strategy to create and cali-
brate the detector. The proposed approach can isolate
cyber-attacks by estimating the model covariance of
the normalized creation series. Finally, results of a
quadrotor in an occasional, complicated trajectory
flying are supplied to confirm the efficacy of the pro-
posed method.

Another attacks, such as man-in-the central attack,
often span up to 2 km and are also responsible for
robberies.22 IoD is developing actual common in the
military industry.23 Small drones have gained public
attention in the past decades due to their small size,
light weight and wingspan. Small drones also pose
a threat to the security of public and government
data.24 By using a probabilistic approach, authors
in25 presented a method for detection and controlling
an actuation attack in a constrained cyber-physical.
In,26 Blockchain is being used to make sure data
is safe when being sent over 5G and using drones
that are connected to the internet of things. This sys-
tem relies on people being able to identify potential
threats. Before, people had to use keys to authenticate
their devices, but that wasn’t good enough for an
IoT-connected drone network.

According to the literature review, many re-
searchers have used machine learning models to

address cyberattacks in cellular networks27 and
sensor-driven wireless networks. The authors in28

exploited a supervised learning method with a self-
learning model through LSTM (autoencoder) and RF
for detection DDoS attacks utilizing two features.
An intelligent intrusion detection system is neces-
sary for drone identification and defense due to the
rise in drone threats. A unique one-class classifier-
based approach for drone intrusion detection was
presented in.29 The model performed well on a va-
riety of UAV platforms, achieving platform-specific
F1 scores for malicious and benign sensor readings
of 99.56% and 99.73%. A methodology for recog-
nizing malevolent assaults on the sensors of tiny
unmanned aerial vehicles was introduced in.30 By
identifying a spoofing attack on the global position-
ing system (GPS), they demonstrate the suggested
paradigm. Using a simulated dataset and this model,
many results were reached. In order to safeguard the
environment of medical delivery drones with active
capability, delivery dependability, and other medi-
cal applications,31 proposed a framework for attack
detection.

Research methodology

In this section, the design an Intrusion Detection
Security (IDS) approach for a swarm of UAVs First,
and after that discuss the UAV dataset description.
Then, discuss PCA feature selection and data prepro-
cessing and review Ml and DL techniques applied
in the proposed approach. As shown in Fig. 1, the
general structure of the proposed ML techniques are
SVM, NB, and KNN, while Fig. 2 shows the DL model
is 1DCNN.

Fig. 1. Proposed ML detection security approach.



BAGHDAD SCIENCE JOURNAL 2025;22(8):2800–2812 2803

Fig. 2. Proposed 1D-CNN detection security approach.

Dataset description

The proposed approach utilized the IEEEData-
Port ‘CYBER-PHYSICAL DATASET FOR UAVS UNDER
NORMAL OPERATIONS AND CYBER-ATTACKS’ it is
a new dataset collected on 2023 by.32 This dataset
is generated by using the following equipment: Two
DJI Tello EDU drones, ALFA AWUS036ACH network
adapter, Sagemcom SAC2V2s WiFi access point, and
two computers. Several flight missions of inconsis-
tent sophistication were instructed to accumulate
the physical and cyber datasets. The data involved
20 attacked flights and 20 where UAV1 was benign,
totaling 40 flights. The dataset contained physical and
cyber attributes for different missions under cyberat-
tacks and normal activities. The total attributes are
40 cyber and 20 physicals.

These flights include square missions, back-and-
forth missions, search missions, rectangle missions,
and spiral missions.

Feature selection

The goal of Feature Selection (FS) procedures in
ML is to discover the most useful subset of fea-
tures that permits one to produce optimized models.
The goal of FS procedures in ML is to discover the
most useful subset of features that permits one to
produce optimized models. This proposed employed
Principal Component Analysis (PCA) as FS. PCA is a
dimensionality reduction that determines meaningful
associations in our data, changes the existent data
according to these associations, and then quantifies
the significance of these associations to maintain the
considerable necessary associations and drop the oth-
ers. Thus, the performance of the proposed approach
increases. The PCA feature selection is employed in
ML techniques only.

Splitting dataset

After the feature selection process, the dataset is
divided into two parts, the first for training and the
second for testing. The split ratio is 70% for training
and 30% for testing.

Preprocessing

Data preprocessing converts the data into a more ef-
ficient format in ML tasks. The methods are typically
utilized at the before phases of the ML product chan-
nel to confirm accurate developments. This research
employed two preprocessing operations: Normal-
ization and Feature encoding. Normalization is an
essential operation due high variant in the utilized
UAV dataset. This operation allows a change of the
data in a pattern, making it more manageable for
algorithms to tease a meaningful association between
variables. It can calculate by using the following for-
mula in Eq. (1)33

XNormalization =
x−mean (x)

Standard deviation
(1)

Feature encoding is the other operation that is em-
ployed in the UAV dataset. This operation is essential
because ML techniques can only function with numer-
ical values. For this cause, it is required to change the
appropriate features’ categorical features into numer-
ical ones. This proposed employed “LabelEncoder”
Python instruction to classes (DoS, Replay, and be-
nign) to (0, 1, and 2) respectively.

Investigated models for IDSs

This study applied several ML and DL models for
each cyber and physical attribute individually to
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produce an efficacious IDS. The ML techniques are
SVM, NB, and KNN, where the DL is the CNN model.
These techniques are summarized next.

Support vector machine
Support vector machine (SVM) is a supervised clas-

sifier. It is widely employed in the classification area,
and its mathematical reason is severe and has a
stable theoretical basis.34 It cannot exclusively deal
with linear classification issues but even deals with
nonlinear classification issues. The SVM can bypass
the drawbacks of under-learning, over-learning, and
emotional optimization that quickly appear in other
intelligent techniques.35 Since IDS is a nonlinear
multi-classification issue, this article assumes SVM
based on kernel function to convert the nonlinear
issue into a linear classification issue.

Naïve bayes
Naive Bayes (NB) technique is the easy Statistical

Bayesian technique. “It is called Naive” as it considers
that all variables contribute towards category and
are mutually correlated. This deduction is anointed
class-dependent independence.36 It can predict class
membership possibilities, such as the likelihood that a
provided data item belongs to a unique class label.37

The NB technique is based on Bayes Theorem, and is
utilized when the dimensionality of the data is high.

K-nearest neighbor
The K-Nearest Neighbor (KNN) technique is the

easiest of all ML techniques.38 It is based on the

regulation that similar samples typically lie in the
nearest environs. KNN is an instance-based learning
approach. Instance-based methods are even called
lazy learners as they keep all of the training models
and only construct a classifier once a unique, un-
labeled sampling is required to be classified. KNN
technique needs less analysis period during the train-
ing step than other ML techniques but more analysis
period during the classification operation.39 The pri-
mary motivations to use KNN are comfortable to
implement and understand, Training is high-speed, it
is robust to clangorous training data, and It serves
agreeably on applications in which a representative
can have multiple class labels.40

One-dimensional convolutional neural network
1D-CNN is a trendy construction of Artificial Neural

Networks (ANN). It has been established to conduct
distinguished time-domain signal analysis and com-
puter vision. Similarly, to other ANN, 1D-CNN has
input, hidden, and output layers.41,42 The individual
layer consists of neurons linked from one layer to
the other with biases and weights matrices. However,
the distinction is that 1D-CNN neurons are organized
convolutionally by kernels and filters in their layers.
The kernels construct a pile of convolutional layers by
transmitting the output of one layer to the subsequent
layer.43

As shown in Fig. 3 the proposed 1D-CNN for phys-
ical and cyber detection.

The proposed 1DCNN model comprises nine con-
volution layers, seven max-pooling layers, and five

Fig. 3. Proposed 1D-CNN architecture.
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batch normalization layers. In addition to dropout,
flatten and dense layers. Each layer can summarize
follow:
Convolutional layer (CL) is named the feature ex-

traction layer. Representations of features extracted
from the earlier layer from regional perspective fields
are transmitted to the following CL. Thus, the local
perspective fields specify the input data size and the
spatial consideration of features extracted in the CL.
The proposed approach employed Kernel-size = 2,
strides-size = 1, padding = ‘Valid’, and activation
function = ‘ReLu’.
Max-Pooling layer is an essential DL concept con-

necting convolution function. Its primary role is to
decrease the dimensionality to progressively decrease
the number of parameters. It decreases or down-
samples a feature map’s vector size without yielding
its meaning. In this study used pool_size = 2 and
strides = 1.
Batch Normalization During the training phase,

the statistical issuance of each layer input modifica-
tions as the parameters of the earlier layers differ.
It delays the training by instructing lower learn-
ing rates, which makes it excessively difficult to
train representatives with saturating nonlinearities.
Batch normalization (BN) has just been presented to
enhance performance, stability, and speed via nor-
malizing the input layer by rescaling.
Full connection layer (FCL) is set up before the

hidden features, and the output layer extracted from
the actual data via the feature map layer are fully con-
nected as inputs of the classification layer. This layer
spatially combines the hidden features to extract
practical data from the feature map layers. Multiple
FCLs can execute multiple nonlinear transformations
theoretically, which contributes to acquiring the tacit
expression of input data.

This study investigated four IDS strategies for each
cyber and physical dataset individually. Three tradi-
tional ML techniques are SVM, NB, and KNN, and
1DCNN as a deep learning model.

Evaluation

The IDS approach working is represented in preci-
sion, accuracy, and recall representations. Accuracy
represents the percentage of instances that have been
organized correctly, which is delivered by Eq. (2)44

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(2)

where FN is a false negative, FP is false positive, TP
is true positive, and TN is true negative.45,46 In the
precision determines the ratio of correctly recognized

Table 1. The result of Cyber attacks.

Cyber Model Accuracy Precision Recall

NB 71.68 71.49 71.68
SVM 91.66 92.16 91.66
KNN 97.90 97.90 97.90
1D-CNN 99.14 99 98.66

positive experiments out of the totality of indicated
positives, which is presented by Eq. (3)47

Precision =
TP

TP+ FP
(3)

Recall displays the ratio of accurately recognized
positive instances out of all actual positive instances,
which is defined as Eq. (4)48,49

Recall =
TP

TP+ FN
(4)

Results and discussion

This section displays the results acquired via the
ML with classifiers including SVM, NB, and KNN,
while 1D-CNN is a deep learning model. The results of
classifiers will be shown based on physical and cyber
attributes individually.

Table 1 shows the results of the evaluation of cy-
ber results using the proposed ML with classifiers
including SVM, NB, and KNN, while 1D-CNN is a
deep learning model. The proposed via the 1D-CNN
showed superior results of accuracy where it achieved
99.14% compared to the accuracy obtained by the
machine learning algorithms where NB, SVM, and
KNN achieved 71.68, 91.66 and 97.90 respectively
for cyber detection.

Fig. 4 displays a confusion matrix for all cyber
results using NB, SVM, KNN and 1D-CNN.

Fig. 5 displays the cyber results curve by the accu-
racy with validation accuracy and the curve via loss
and validation loss for 1D-CNN model.

Table 2 shows the results of the evaluation of
physical results using the proposed ML with classi-
fiers including SVM, NB, and KNN, while 1D-CNN
is a deep learning model. The proposed via the 1D-
CNN showed superior results of accuracy where it
achieved 99.79% compared to the accuracy obtained
by the machine learning algorithms where NB, SVM,
and KNN achieved 83.16%, 93.42%, and 93.16%
respectively.

Fig. 6 displays a confusion matrix for all physical
results using NB, SVM, KNN, 1D- CNN.

Fig. 7 displays the Physical results curve by the
accuracy with validation accuracy and the curve via
loss and validation loss.
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Fig. 4. Confusion matrix of cyber results.

Fig. 5. Curve of accuracy with validation accuracy and loss and validation loss for 1D-CNN cyber results.
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Table 2. The result of physical attacks.

Physical Model Accuracy Precision Recall

NB 83.16 79.35 83.16
SVM 93.42 93.65 91.93
KNN 93.16 93.16 93.16
1D-CNN 99.79 99.79 99.79

Fig. 6. Confusion matrix of physical results.

The exceptional performance of the 1D-CNN model
suggests its superiority over traditional machine
learning algorithms in this evaluation. Several rea-
sons can explain why 1D-CNN is considered the
best choice in this proposed. The deep learning ar-
chitecture of 1D-CNNs allows for automatic feature
extraction. Traditional machine learning algorithms
often require manual feature engineering, where do-
main knowledge and expertise are needed to select
and engineer relevant features. In contrast, 1D-CNNs
can automatically learn and extract relevant features
from the raw input data, alleviating the burden of
manual feature engineering and potentially uncover-
ing more intricate patterns that may be difficult for
human experts to identify.

The superior accuracy achieved by the 1D-CNN
model in this evaluation demonstrates its capability
to effectively learn and generalize from the given
dataset. The high accuracy indicates that the 1D-CNN
model was able to discern and classify patterns within
the physical and cyber data with great precision, out-
performing the other machine learning algorithms in
terms of prediction. Fig. 8 displays a comparison that
will take place between cyber and physical results
with proposed classifiers. The comparison is based on
accuracy. The performance of accuracy using physi-
cal with 1D-CNN got (99.79%) The highest value is
within physical and cyber results.

It is important to compare the proposed approach
with state-of-the-art models as displayed in Table 3.
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Fig. 7. Curve of accuracy with validation accuracy and loss and validation loss for 1D-CNN physical results.

Fig. 8. A comparison between cyber and physical results.

Table 3. A comparison of results
with related studies.

Author’s Accuracy

Hassler et al.12 94.53
Alsulami et al.50 99
Hickling et al.20 91
Aldaej et al.51 98.58
Shafique et al.52 0.99
Proposed model 99.79

Hassler et al.12 proposed SVM, FNN, LSTM-RNN, and
1D-CNN has obtained a high accuracy of 94.53%.
Alsulami et al.50 proposed artificial immune systems
(AIS) and NARX got an accuracy of 99%. Hickling
et al.20 proposed CNN-AD and LSTM with an achieved
accuracy of 91%. In their study, Aldaej et al.51 pro-
posed a hybrid machine learning model utilizing
RF with LR with achieved an accuracy of 98.58%.
Shafique et al.52 proposed SVM with different K-
fold and achieved an accuracy of 0.99%. This study

proposed machine learning algorithms such as SVM,
K-NN, and NB with deep learning algorithms (1D-
CNN) to detect cyber and physical attacks with a high
accuracy of 99.79%. The proposed model utilizing
1D-CNN got good in the domain, dependent on differ-
ences in reported precisions between related works.

Conclusion

This study utilized an IDS approach for detecting
cyber-attacks on UAVs using ML and DL models. The
evaluation results shown the efficiency of the pro-
posed approach, with the 1D-CNN model achieving a
higher accuracy of 99.79% compared to other tested
ML algorithms. This higher performance of the 1D-
CNN model in successfully detection cyber-attacks on
UAVs. While the 1D-CNN model shows high accu-
racy in this work, its scalability to larger datasets
or more complex environments is still an issue of
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this proposed. Future work needs to address dataset
Augmentation and Variety to enhance the robustness
and generalizability of the proposed model. Future
work should focus on augmenting the dataset with
a wider variation of cyber-attacks and physical con-
ditions. This can include generating synthetic data
or collecting additional real-world data to ensure
a more comprehensive representation of possibility
scenarios.
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مقارنة بين الكشف عن الهجمات المادية والسيبرانية على 

 الطائرات بدون طيار باستخدام تقنيات التعلم الآلي والتعلم العميق

خطاب معجل علي الهيتي1، سارة عباس رافع2، مها محمود3، أيثم خيري كريم4، محمد الجنابي5، احمد عادل 
 نافع3

 1 قسم انظمة شبكات الحاسوب، كلية الحاسبات وتكنولوجيا المعلومات، جامعة الانبار، الانبار، العراق.

 2 قسم القانون، كلية القانون والعلوم السياسية، جامعة الأنبار، الرمادي، العراق.

 3 قسم الذكاء الاصطناعي، كلية علوم الحاسوب وتكنولوجيا المعلومات، جامعة الانبار، الرمادي، العراق.

 4 قسم تربية هيت، المديرية العامة لتربية الأنبار، وزارة التربية والتعليم، الأنبار، العراق.

 5 جامعة الامام جعفر الصادق، بغداد، العراق.

 المستخلص

يتم استخدام العديد من الطائرات بدون طيار بشكل عام في التطبيقات العسكرية والمدنية. ومع ذلك، فإن هذه الطريقة المادية 

ن خلال الهجمات السيبرانية. في الآونة الأخيرة، تم تبني أساليب الكشف عن الهجمات القائمة السيبرانية تتعرض للترهيب م

(. IDS( بشكل فعال للكشف عن الهجمات السيبرانية. قدمت هذه الورقة منهج أمن كشف التسلل )MLعلى التعلم الآلي )

ر في ظل العمليات العادية وظروف الهجوم. تم يبحث النهج المقترح في السمات السيبرانية والمادية للطائرات بدون طيا

القائمة  IDS( وإعادة التشغيل. بعد ذلك، نقوم بتطوير مناهج DoSتصنيف نوعين من الهجمات السيبرانية: رفض الخدمة )

، )K-Nearest Neighbor )KNN(، وSVM(، بما في ذلك آلة ناقل الدعم )DLوالتعلم العميق ) MLعلى نماذج 

(. يتم تدريب النهج المنتج باستخدام السمات 1DCNN، والشبكات العصبية التلافيفية أحادية البعد ))Nive Bayes )NBو

٪( مقارنة بخوارزميات 99.79حقق دقة أعلى ) 1D-CNNالمادية والإلكترونية بشكل فردي. تشير النتائج إلى أن نموذج 

 المقترحة.التعلم الآلي. أظهرت النتائج التجريبية كفاءة أداء الطريقة 

الهجمات الالكترونية،  التعلم العميق، إنترنت الأشياء، أنظمة كشف التسلل، التعلم الآلي، الهجمات  الكلمات المفتاحية:

 المادية، طائرات بدون طيار.
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