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ABSTRACT 

Wireless Sensor Networks are critical from the security point of view 

because of their distributed nature and resource constraints. Artificial 

Intelligence techniques have shown promising results in intrusion 

detection, but their performance optimization is paramount. This paper 

proposes a new approach based on combining Multi-Layer Perceptron 

neural networks with the Cuckoo Optimization Algorithm for efficient 

intrusion detection in WSN. Our methodology involves three main steps: 

(1) data preprocessing using the k-nearest neighbor for missing value 

imputation and normalization, (2) reduction of dimensionality through 

Principal Component Analysis, reducing the features from 41 to 38 

dimensions, and (3) neural network optimization using COA for weight and 

bias parameter tuning. Our approach has yielded an accuracy of 99.1% in 

intrusion detection using the NSL-KDD dataset, which shows an 

improvement of about 3% compared to traditional methods. The proposed 

system performs better in terms of detection accuracy, reduction of false 

alarm rate, and computational efficiency. 

1. INTRODUCTION 

Cybersecurity in modern networks has become increasingly challenging, especially in Wireless 

Sensor Networks (WSNs), which are prone to attacks such as Denial of Service (DoS), Remote to 

Local (R2L), and User to Root (U2R). Statistical studies report that these attacks constitute over 

85% of incidents in WSNs, necessitating robust intrusion detection mechanisms. WSNs face unique 

constraints—such as limited computational power and energy—which render traditional IDS 

approaches less effective. Wireless Sensor Networks (WSNs) are particularly vulnerable due to 

their decentralized nature and limited resources. Recent studies [1] report that over 60% of attacks 

in WSNs are DoS-related, while R2L and U2R comprise approximately 25% and 10% respectively. 

The proposed approach addresses such challenges by integrating COA and a multi-layer 

perceptron neural network, offering an innovative solution to intrusion detection in WSNs. The 

integration will improve the detection accuracy and enhance adaptation to emerging threats [2, 3]. 

Contributions of this paper include: Development of a COA-optimized MLP model for WSN 

intrusion detection. Integration of PCA for dimensionality reduction. Evaluation on both NSL-KDD 

and WSN-DS datasets. Comprehensive performance analysis using cross-validation. Paper 

Roadmap: Section 2 reviews the literature. Section 3 describes the methodology. Section 4 presents 

results. Section 5 discusses findings. Section 6 concludes. 

2. LITERATURE REVIEW  

The literature on intrusion detection in WSNs can be grouped into classical machine learning, 

deep learning approaches, and hybrid metaheuristic models. Traditional methods such as SVM, k-

NN, and decision trees offered early insights but often lacked scalability. Deep learning methods 

(e.g., CNN, LSTM) improved detection accuracy but required heavy resources. Recent works have 

explored metaheuristic algorithms (e.g., PSO, WOA, GWO) to optimize models and feature selection, 

leading to more efficient IDS implementations [4]. 
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Researchers have applied many traditional and deep machine learning techniques to intrusion 

detection in Wireless Sensor Networks (WSNs). Early surveys highlighted the promise of rule-based 

and statistical models [5]. At the same time, recent studies have demonstrated that neural 

networks—particularly deep architectures—can learn complex attack patterns but tend to incur 

high computational overhead and require careful feature engineering [6, 7]. 

Metaheuristic optimization algorithms have increasingly addressed these challenges by 

automatically selecting features and tuning hyperparameters. For example, Huang, Xinyu, et al. [8] 

combined a sequence backwards selection wrapper with LightGBM to improve detection rates 

while controlling inference time on WSN-DS data. Liu et al. [9] employed a Particle Swarm 

Optimization–guided gradient descent to train a one-class SVM for secure IoT intrusion detection 

on UNSW-NB15. Whale-based approaches have also proven effective: Vijayanand and Devaraj [10] 

staged genetic operators into the Whale Optimization Algorithm for SVM feature selection, 

outperforming single GA and WOA on CICIDS2017 and ADFA-LD datasets. Similarly, Hussain et al. 

[11] blended WOA with an Artificial Bee Colony optimizer to choose CNN inputs, achieving 98.0% 

accuracy on NSL-KDD. 

Beyond these, other notable work includes the use of hybrid deep learning frameworks that 

combine CNN and LSTM layers to capture both spatial and temporal features of attacks [12, 13]. 

Alshamrani et al. [14] proposed an attention-based GRU model for lightweight and real-time 

intrusion detection in WSNs. Chen et al. [15] explored federated learning approaches to preserve 

data privacy while training intrusion detection models collaboratively across sensor nodes. 

Moreover, ensemble learning techniques such as Random Forest and XGBoost have been 

systematically benchmarked for intrusion detection on NSL-KDD, CICIDS2017, and BoT-IoT 

datasets, often showing superior robustness to class imbalance [16, 17]. 

These recent advances highlight that the field has moved beyond early rule-based methods 

into highly optimized deep learning and metaheuristic-enhanced pipelines that balance detection 

performance with resource constraints inherent in WSN deployments. Recent work has explored 

more sophisticated metaheuristic blends and ensemble classifiers on these bases. Nguyen et al., in 

[1], proposed Genetic Sacrificial Whale Optimization for CatBoost hyperparameter optimization 

and feature reduction on NSL-KDD, CICIDS2017, WSN-DS, and WSN-BFSF with accuracy values 

above 99.7% and substantially less inference time [18].  

Concurrent efforts employed online ensemble learning. Tabbaa et al. in [19] demonstrated that 

an Adaptive Random Forest coupled with Hoeffding Adaptive Trees detects Blackhole, Grayhole, 

Flooding, and Scheduling attacks in streaming WSN traffic with up to 97.2% detection rate, 

considering concept drift. Deep learning structures continue to evolve: a stacked CNN–BiLSTM 

architecture achieved state-of-the-art DoS detection performance without breaking sensor 

constraints, and Salmi & Oughdir's in [20] presented a comparison of DNN, CNN, RNN, and hybrid 

RNN–CNN models on the WSN-DS dataset, proving that CNNs can achieve 98.8% accuracy but need 

to be subjected to lightweight optimizations for real-time deployment. Finally, federated learning 

has also emerged as a privacy-sensitive framework: device-level Deep Belief Networks in a 

federated environment are employed by the FEDDBN-IDS system to achieve classification 

accuracies of 88% to 98% on AWID data, demonstrating scalability and confidentiality of data in 

distributed WSN environments [21]. 

3. METHODS 

Our proposed methodology for intrusion detection in wireless sensor networks is based on a 

multi-layer perceptron neural network integrated with cuckoo optimization for better detection 

accuracy. The system's architecture consists of four major components: data preprocessing, 

dimensionality reduction, neural network classification, and optimization. 

3.1 Data Preprocessing 

In preprocessing, we address the crucial problem of missing data in wireless sensor networks 

using the k-nearest neighbor approach. This method ensures data integrity by calculating 

replacement values based on the three nearest neighbors, thus providing contextually appropriate 
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values that maintain the statistical properties of the dataset. Further preprocessing involves 

normalizing the data, which is necessary for efficient training of neural networks. Normalization is 

implemented by (1), [22]: 

𝑣′ =
(𝑣 − 𝑚𝑖𝑛ₐ) × (𝑛𝑒𝑤𝑚𝑎𝑥 − 𝑛𝑒𝑤𝑚𝑖𝑛)

𝑚𝑎𝑥ₐ − 𝑚𝑖𝑛ₐ
+ 𝑛𝑒𝑤𝑚𝑖𝑛  … (1) 

This transformation ensures that all features are within the same scale, which can facilitate 

better neural network training. After that, the normalized data is split into a training set of 70% and 

a testing set of 30% to ensure vigorous model testing. 

3.2 Feature Selection and Dimensionality Reduction 

Our approach employs PCA to reduce the dimensionality of the feature space while retaining 

most of the salient information. By doing an empirical analysis based on eigenvalues and their 

contribution to variance, we could reduce the feature space from 41 to 38 dimensions without much 

loss of information. This reduction enhances computational efficiency and reduces problems 

associated with the curse of dimensionality in neural network training. A cumulative explained 

variance graph showed that the top 38 components retained over 97% of the total variance. This 

justified the retention threshold and avoided information loss [23]. 

3.3 Neural Network Architecture 

For the development of an IDS in WSNs, the core lies in the multi-layer perceptron neural 

network. The network processes input data in three layers, and each output from a neuron is 

determined by (2):  

𝑂𝑗 =  𝑓(∑𝑤𝑖𝑋𝑖 +  𝑏𝑗)   … (2) 

where Oj is the output of the j-th neuron, wi are the connection weights, Xi are the input values, 

and bj is the bias at the neuron. The hidden layer uses the sigmoid function f as its activation function 

to model nonlinearities within the data. In contrast, the output layer uses a linear activation function 

to make classification decisions. Here, Oj: output, wi: weight, Xi: input, bj: bias. These parameters 

define the transformation at each neural node [24, 25]. 

3.4 Cuckoo Optimization Process 

The significance of our method is that it uses the Cuckoo Optimization Algorithm for neural 

network parameter tuning. Instead of classic backpropagation, the network weights and biases will 

be encoded as positions of cuckoos in the search space. The fitness of every solution is calculated 

through the mean squared error (3), [26]:  

𝑀𝑆𝐸 =  (
1

𝑛
) ∑(𝑌𝑖 −  𝑌′𝑖)2   … (3) 

Yi represents the class label, and Y'i is the network's prediction. The nature-inspired search 

process in the COA updates the weight values iteratively (4), [27]:  

𝑛𝑤𝑛𝑒𝑤 =  𝑤𝑜𝑙𝑑 +  𝑥𝑖 ∗  𝑦    … (4) 

The optimization procedure avoids getting stuck in local optima, which most traditional ways 

of training neural networks go through. The algorithm stops its optimization process by reaching a 

maximum iteration count of 12 or convergence in the classification accuracy. Combining efficient 

preprocessing, dimensionality reduction, and optimization using COA empowers our system to 

achieve superior detection accuracy with computational efficiency suitable for resource-

constrained WSN environments. This methodology is robust in adapting to various attack patterns 

while minimizing false positives, an essential practical aspect for deployment in wireless sensor 

networks [28]. The proposed methodology consists of several interconnected components as 

illustrated in Fig. 1.  
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Figure 1. The proposed method diagram 

3.5 Experimental Setup  

Our experimental evidence uses the standard benchmark in the field, the well-simplified 

version of KDD Cup 99, by NSL-KDD, for analyzing network intrusion detectors. This data set's 

features vary concerning network traffic, regular and connection attacks, DoS probing, R2L, and 

U2R attacks. Every connection in this dataset is described by 41 features, which include basic 

features that outline the connection parameters, traffic features that describe network statistics, 

and content features that analyze payload data. We can perform extensive tests of our detection 

system for various attack scenarios based on this broad feature set [29]. 

We implemented all our experiments in MATLAB 2019 for the main development 

environment, ensuring robust implementation and reproducibility of results. The system 

configuration consisted of a Core i5 processor with 6GB of RAM running Windows 11, providing 

sufficient computational resources for training and evaluation. Our implementation leverages 

MATLAB's Neural Network Toolbox for the base network architecture, while custom modules were 

developed for the Cuckoo Optimization Algorithm and data preprocessing components. The k-

nearest neighbor imputation for missing data was implemented using MATLAB's KNNINPUT 

command, ensuring consistent handling of data anomalies. 

The neural network's architecture was designed based on specific parameters tuned by 

empirical testing. It includes an input layer comprising 38 neurons, which is the dimensionally 

reduced feature set; a hidden layer of 10 neurons, which has been determined by iterative testing 

to be the best compromise between model complexity and performance; and an output layer with 

two neurons for binary classification of normal versus intrusive behavior. The sigmoid activation 

function was used in the hidden layer for nonlinear transformation capabilities. The output layer 

uses a linear activation function. The parameters of the COA were set as follows: population size 50, 

run for 12 iterations. Preliminary experiments led to the choice of this parameter setting due to its 

optimality in terms of convergence characteristics [30]. The training process demonstrated 

consistent convergence over iterations, as shown in Table1 and Fig. 2. 
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Figure 2. The neural network structure 

Table 1.  Cuckoo optimization algorithm parameters 

Algorithm Objective Weight And Bias Value Optimization 

Initial Population 50 

Number Of Iterations 12 

Stop Condition 12 Iterations 

Objective Function 1-Accuracy 

To assess the system's performance comprehensively, we adopted several metrics to measure 

the effectiveness of our system. The major ones are accuracy, precision, recall, and F-score, 

computed as follows:  

• ACC = (TP+TN)/(TP+TN+FP+FN)  

• Precision = TP/(TP + FP)  

• Recall = TP/(FN + TP) F1 = 2*(precision*Recall)/(Precision + Recall) 

TP are true positives, TN true negatives, FP false positives, and FN false negatives. Besides this, 

we will also plot a confusion matrix and ROC curve, which will show further details concerning 

model performance against different classes of attacks. The latter ROC is especially informative in 

displaying the relationship of the detection rate versus false alarm rate and thus offers more details 

of operational characteristics there. These have been chosen because the intrusion detection 

problems in WSN have peculiar challenges regarding these performance metrics: detection 

accuracy and false alarm rates are crucial in any deployed intrusion detection system. This 

experimental setup comprehensively gathers the performance results of our proposed 

methodology when applied to real-world network security applications with varying emphasis on 

applicability in resource-constrained WSN settings [31]. 
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4. RESULTS 

4.1 Performance Analysis 

A comprehensive performance analysis is done based on the results obtained from the 

implemented system. In the preprocessing phase, the proposed system handled the missing values 

and normalized the feature space. Then, it reduced the dimensionality from 41 to 38 features using 

PCA, maintaining the vital information with better computational efficiency. The training process 

for the neural network converged consistently throughout 12 iterations, according to Fig. 3. The 

classification error decreased from about 0.075 to 0.055, demonstrating that the neural network 

parameters were well optimized using the COA algorithm.  

 

Figure 3. The neural network training process for 12 iterations. 

The confusion matrix for the training dataset, shown in Fig. 4, depicts the impressive metrics 

of its classification. 

 

Figure 4. The confusion matrix for the training dataset. 

The ROC curves presented in Figs. (4, 5, 6, and 7) show the remarkable ability of the system to 

discriminate between regular and intrusive traffic. For both classes, the proximity of the ROC curves 

to the optimum point (0,1) assures high detection accuracy with low false alarm rates. 
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Figure 5. The ROC curve for training data 

4.2 Test Results Analysis 

The system's performance on the test dataset demonstrates robust generalization capabilities, 

detecting intrusion reliably. Fig. 6 and Table 2 show Confusion matrix on the test dataset; it is 

observed that the system has kept outstanding classification performance. true positive intrusion 

detection is at 46.6% and true negative, that is, secure connection detection, at 52.4%. The false 

positive and false negative rates remained constant at 0.5% each, meaning there is a well-rounded 

performance on intrusions and false alarms. This further represents an overall test accuracy of 

99.1%, which means that the model did not overfit to this training and would generalize well for 

newer, unseen patterns in network traffic. 

 
Figure 6. Confusion Matrix for Test Dataset. 

Table 2. The confusion matrix results analysis 

Metric Ratio 

True Positive (TP) 46.6% 

True Negative (TN) 52.4% 

False Positive (FP) 0.5% 

False Negative (FN) 0.5% 

Accuracy (Acc) 99.1% 
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For the test dataset, a ROC curve further validates the discrimination ability as in Fig. 7. With 

an excellent performance in classification, this indicates that the curve trajectory is almost closer to 

the point optimum of (0, 1) and thus supports the strong capacity of the system for maximizing true 

positives while minimizing the rate of false alarms over different detection thresholds. The ROC 

AUC for classes-intrusion and regular traffic remains high, confirming its robust performance under 

varying operating conditions. This is quite an important issue for practical WSN deployments, 

where consistent detection accuracy is highly relevant for network security. 

 

Figure 7. ROC curve for the test dataset. 

These test results collectively prove that our COA-optimized neural network approach yields 

high accuracy with balanced performance across different types of network traffic, hence making it 

suitable for practical deployment in WSN environments. The robustness of our approach is further 

validated by the consistent performance between training and test results, which are 99.2% versus 

99.1% accuracy, respectively. Our COA-optimized neural network proves much better when 

compared to different existing approaches present in the literature:  

1. COA-optimized MLP (Our method): 99.1% accuracy. 

2. SVM+GWO [32]: 96% accuracy. 

3. SVM+PSO [33]: 89% accuracy. 

This represents a 3% improvement over the GWO-based approach and a 10.1% improvement 

over PSO-based methods. The improved performance can be attributed to the avoidance of 

overfitting due to a balanced training approach. The performance metrics depicted in Fig. 8 reflect 

balanced performance concerning different measures:  strong recall reflects good detection of 

actual intrusions. 

 

Figure 8. The obtained results for evaluation parameters 
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5. DISCUSSION 

While the system performs much better, several limitations were noticed. Additionally, 

reliance on NSL-KDD, a legacy dataset derived from wired network environments, introduces bias. 

Future work will prioritize datasets like WSN-DS, CIC-IDS-2018-IoT, and live traffic collection for 

WSNs. 

1. Training Overhead: The COA optimization converges in several iterations; this, however, is 
paid off by the enhanced accuracy. 

2. Dependency on Dataset: The present work largely depends on the NSL-KDD dataset for its 
current validation. Additional testing with diversified real-world WSN traffic patterns could 
help further validate the system's performance. 

3. Resource Requirements: The system gives quite high accuracy, but could be 
computationally demanding for resource-constrained WSN nodes. 

The experimental results validate that our approach is indeed robust and effective for 

intrusion detection in WSNs, and it outperforms existing methodologies in terms of both their 

detection accuracy and false alarm rates. The percentage of 99.1% is very remarkable regarding the 

security of WSNs because intrusion detection in such resource-constrained environments is 

challenging. 

6. CONCLUSION 

This paper presents a new intrusion detection in WSN using a multi-layer perceptron neural 

network and the cuckoo optimization algorithm. The methodology confronts the most critical 

challenge in securing resource-constrained WSNs with high detection accuracy. A proper 

methodological experimentation was done, indicating that including COA for optimization in the 

neural network parameters significantly enhances the detection performance. The preprocessing 

step efficiently tackled the missing value problem using the k-nearest neighbor imputation method, 

normalized the feature space, and reduced PCA-based dimensionality, reducing the feature set from 

41 to 38 dimensions with information integrity. This neural network was optimized by using COA 

with a population size of 50 and an iteration of 12, showing the best performance with 99.1% 

detection accuracy for the test dataset, about a 3% improvement in performance compared to other 

state-of-the-art GWO-based approaches. It maintained a low rate of false positives and negatives at 

0.5% each, showing balanced performance in standard and intrusive traffic classification. These 

results prove the efficiency of our approach in enhancing WSN security with the least computational 

overhead. Future research could be directed at real-time adaptation mechanisms and the system's 

performance in various WSN deployments and attack patterns, possibly considering new 

optimization techniques and addressing the challenges of dynamic threat landscapes. 
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