Baghdad Science Journal

Volume 22 | Issue 8 Article 23

8-27-2025

A New Approach for Selecting Optimal Neuron Number in Input
Layer of Generalized Regression Neural Network Model

Muhammad Muhajir
Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia,
Yogyakarta, Indonesia, mmuhajir@uii.ac.id

Hermansah Hermansah
Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Riau
Kepulauan, Kepulauan Riau, Indonesia, hermansah@fkip.unrika.ac.id

Aditya Pandu Wicaksono
Department of Accounting, Faculty of Business and Economics, Universitas Islam Indonesia, Yogyakarta,
Indonesia, aditya.pandu@uii.ac.id

Lathifah Aliya Pratiwi
Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia,
Yogyakarta, Indonesia, 19611180@alumni.uii.ac.id

Follow this and additional works at: https://bsj.uobaghdad.edu.ig/home

How to Cite this Article

Muhajir, Muhammad; Hermansah, Hermansah; Wicaksono, Aditya Pandu; and Pratiwi, Lathifah Aliya
(2025) "A New Approach for Selecting Optimal Neuron Number in Input Layer of Generalized Regression
Neural Network Model," Baghdad Science Journal: Vol. 22: Iss. 8, Article 23.

DOI: https://doi.org/10.21123/2411-7986.5034

This Article is brought to you for free and open access by Baghdad Science Journal. It has been accepted for
inclusion in Baghdad Science Journal by an authorized editor of Baghdad Science Journal.


https://bsj.uobaghdad.edu.iq/home
https://bsj.uobaghdad.edu.iq/home/vol22
https://bsj.uobaghdad.edu.iq/home/vol22/iss8
https://bsj.uobaghdad.edu.iq/home/vol22/iss8/23
https://bsj.uobaghdad.edu.iq/home?utm_source=bsj.uobaghdad.edu.iq%2Fhome%2Fvol22%2Fiss8%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.21123/2411-7986.5034

[=];
Scan the QR to view

the full-text article on i.

the journal website

BAGHDAD SCIENCE JOURNAL 2025;22(8):2738-2751

-J‘E

RESEARCH ARTICLE

A New Approach for Selecting Optimal Neuron
Number in Input Layer of Generalized Regression
Neural Network Model

Muhammad Muhajir® ', Hermansah® ?, Aditya Pandu Wicaksono® 3,

Lathifah Aliya Pratiwi® '

1 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, Indonesia

2 Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Riau Kepulauan, Kepulauan Riau,
Indonesia

3 Department of Accounting, Faculty of Business and Economics, Universitas Islam Indonesia, Yogyakarta, Indonesia

ABSTRACT

This study aimed to determine the input layer neurons for the Generalized Regression Neural Network (GRNN) model
by using various classical methods, namely 1) Partial Autocorrelation Function (PACF), 2) frequency-based method,
3) frequency and Forward Selection (FS), 4) frequency and Backward Elimination (BE), 5) frequency and step-based
methods, and 6) frequency method combined with the Least Absolute Shrinkage and Selection Operator (LASSO). These
classical methods were combined with various parameters within GRNN, including smoothing parameters, forecasting
strategies, and transformations. The most accurate model, with the lowest RMSE, MAE, MAPE, and SMAPE values,
resulted from the combination of frequency and BE, rolling origin, MIMO, and additive transformation parameters.
Additionally, a further approach is proposed by using binary dummy neurons in the input layer. Each best model obtained
from the classical approach is given additional neurons in the input layer in the form of binary dummies. Thus, this
approach combines the autoregressive lag approach to capture stochastic seasonal patterns and binary dummies to
capture deterministic seasonal patterns. The empirical study results show that the GRNN model with the frequency and
stepwise approach, and binary dummies, provides the best results. This is demonstrated by the lowest RMSE, MAE,
MAPE, and SMAPE values. The results of this study also indicate that the forecasting accuracy of the proposed GRNN
model significantly differs from the exponential smoothing, ARIMA, FFNN, and GRNN models. Based on these results,
the approach in this study is an effective way to improve forecasting accuracy.

Keywords: Backward elimination, Binary dummy, Forward selection, Generalized regression neural network, Least absolute
shrinkage, Selection operator

Introduction

Time series forecasting can be classified into linear
and nonlinear methods. According to,' linear fore-
casting methods perform well on linear time series
data but are less effective in modeling nonlinear and
complex time series data. A more flexible approach
for modeling both linear and nonlinear relationships

is the Neural Networks (NN) model.? states that the
NN model is a machine designed to simulate how the
human brain works in performing certain functions or
tasks. The NN model consists of several information-
processing elements called neurons. The neurons in
the NN model are arranged in groups, called layers.
The arrangement of neurons within layers and the
pattern of connections within and between layers is
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referred to as network architecture. This architec-
ture is one of the key characteristics that distinguish
NN models. In general, three layers form the NN
model: input layer, hidden layer, and output layer. >~
Research?® focuses on how NN models are used to
evaluate and improve the efficiency of energy systems
involving solar panels, transformers, and energy con-
sumption. Research” focuses on how NN models can
be used to monitor and predict the performance of
photovoltaic panel systems. Meanwhile, research® fo-
cuses on how NN models are applied in projecting air
pollution levels and can be beneficial for air quality
management.

In practice, NN models contain a limited number
of parameters (weights). How to obtain an appropri-
ate NN model, that is, how to determine the right
combination between the number of neurons in the
input layer and the hidden layer (which has impli-
cations for the number of optimal parameters).®®
Several references related to the description and im-
plementation of NN modeling can be found in. %!
In° focus is on the use of NN models for nonlinear
time series forecasting with applications in cigarette
sales.'? integrates NN models and stochastic pattern
analysis for time series forecasting.'! discusses the
optimization of NN models for time series forecasting.
Additionally, one NN modeling approach available in
the literature is the method introduced by.'? They
introduced the Generalized Regression Neural Net-
works (GRNN) model for time series forecasting. In
their approach, neurons in the input layer are cre-
ated based on the frequency of time series data. The
frequency attribute represents the quantity of time
series data within a certain period. If the frequency
of the time series data is m, then m successive lags
starting from lag 1 are used. According to,'? sea-
sonal patterns can be more easily captured through
the time series data frequency approach. However, in
the work of, '? deterministic seasonal dummy factors
were not considered. According to,'® deterministic
seasonal dummies need to be created as neurons in
the input layer to capture seasonal patterns, not just
based on autoregressive lags. The econometric theory
also suggests that stochastic and deterministic sea-
sonality need to be modeled differently to achieve
accurate forecasting.

The GRNN model has also undergone significant
development in previous studies. Some of them in-
clude'* which discusses recent developments in the
GRNN model with the addition of regularization to
improve forecasting accuracy on time series data;'®
which explores improvements to the GRNN model
used for financial data prediction, demonstrating ad-
vances in forecasting techniques using the GRNN
model;'® which provides a comprehensive review
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of the application of GRNN models for air quality
forecasting, reflecting recent developments in GRNN
applications to environmental issues; and'” which
develops a hybrid GRNN model for multivariate time
series analysis, potentially expanding the application
of GRNN in various domains. However, they intro-
duced GRNN model forecasting with input variables
using external data, without considering autoregres-
sive lags of the time series data to be predicted.

Based on the above studies, this research pro-
poses an extension to the GRNN model for time
series forecasting. In this study, the neurons in the
input layer of the GRNN model will be created
based on the frequency of time series data (autore-
gressive lags) and deterministic seasonal dummies.
The number of neurons in the hidden layer will be
determined as half the number of neurons in the in-
put layer. Additionally, several classical approaches
are proposed for selecting the autoregressive lags
in the GRNN model, including the Partial Auto-
Correlation Function (PACF), Forward Selection (FS),
Backward Elimination (BE), stepwise, and Least Ab-
solute Shrinkage and Selection Operator (LASSO)
methods. Therefore, this research has two main nov-
elties. First, it selects the autoregressive lags in the
GRNN model using several classical approaches. Sec-
ond, it uses deterministic seasonal dummies in the
form of binary dummies as neurons in the input
layer of the GRNN model. Moreover, each classi-
cal approach is combined with various parameters
in the GRNN model, such as smoothing parame-
ters, forecasting strategies, and transformations. The
smoothing parameter determination methods consid-
ered in this study are the rolling origin and fixed
origin methods. The forecasting strategies considered
are the recursive method and Multiple Input Multiple
Output (MIMO). The transformations considered are
the additive and multiplicative methods. The details
of each parameter have been discussed in previous
studies. 1820

Subsequently, the performance of the proposed
method is compared with several methods available
in the literature, namely the Exponential Smoothing
(ETS) model described in,?' the ARIMA model de-
scribed in,?? the FFNN model described in,?® and the
GRNN model described in.'?> Meanwhile, the accu-
racy comparison will be measured using Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percent Error (MAPE), and Symmetric
Mean Absolute Percentage Error (SMAPE). The pro-
posed method is also applied to forecast real data,
namely the monthly data on the number of deaths due
to accidents in the USA and the monthly inflation rate
data in Indonesia. Forecasting the number of deaths
due to accidents in the USA is quite popular because
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of its complex pattern and has been discussed in sev-
eral studies. Meanwhile, forecasting the inflation rate
data in Indonesia can be useful for estimating what
will happen in the future and can contribute ideas to
policymakers in determining future policies.

This research is structured as follows: In Section 1
explain the background and contributions of this re-
search. Section 2 briefly describes GRNN modeling
for time series forecasting. Section 3 presents an em-
pirical study with two real data sets. Conclusions are
provided in Section 4.

Materials and methods
GRNN model

The GRNN represents a variation of the radial basis
neural network, originally introduced by,?* with its
primary application lying in classification and regres-
sion tasks. The GRNN consists of three distinct layers,
namely the input, hidden, and output layers. In the
hidden layer, radial basis neurons reside, and their
centers correspond to the training examples. Typi-
cally, the radial basis function takes the form of the
multivariate Gaussian function:

— .12
G (x, x;) = exp (—M> (D

202

In Eq. (1), x; and o denote the center and the
smoothing parameter, respectively, with x represent-
ing the input vector. The output of a hidden layer
neuron depends on the proximity of the input vector
to the center, adjusted by the smoothing parameter.

To compute the output for an input pattern x
from a training set consisting of n training pat-
terns and their associated targets {x;, X2, ..., X} and
{y1, ¥2,..., Yn}, two primary steps were included.
Firstly, the hidden layer generated weights contin-
gent on the proximity of x to the training patterns:

x—x;?
exp (——H 2(721H )
w; =

= Z’}:l exp (_ ”xz_;é.uz) (2)

These weights are collectively summed to one, rep-
resenting each training pattern’s contribution to the
final result. Secondly, the output layer computes the
output as:

y= ZWi Yi 3)
i=1
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This resulted in a weighted average of the train-
ing targets, with weights reflecting the proximity of
the input to the training patterns, favoring closer
patterns. The smoothing parameter o regulated the
degree of smoothing in the output. A large o led to
small, similar weights for all targets, leading to an
output close to the mean of the targets. However, a
small o assigned significant weights only to targets
with patterns closely matching the input.

GRNN model algorithm

This section describes the procedure of the GRNN
modeling algorithm using some classical approaches,
assuming that y(t) is the time series data to be
predicted. The algorithms used closely follow some
improvements by'? and.'® Furthermore, the steps
contained in the algorithm are explained as follows:
1. Preprocessing
The initial process begins by identifying whether the
data y(t) contains a trend component. If the data
y(t) is identified as having a trend component, first
differencing is performed to remove this trend. Once
the data is free from the trend, the next step is to
identify whether the data has a seasonal component.
If a seasonal component is identified in the data, a
deterministic seasonal dummy variable is created to
be used as input in the model’s input layer. Finally,
the processed data is linearly normalized within the
range [0, 1].

2. Autoregressive lags

Autoregressive lags are determined based on the
frequency of the data y(t). If the frequency of
the data y(t) is equal to m, then consecutive lags
from 1 to m are considered potential autoregres-
sive lags/input variables. For example, for quarterly
and monthly data, lags 1:4 and 1:12 are consid-
ered potential autoregressive lags/input variables,
respectively. Additionally, autoregressive lags as neu-
rons in the input layer are determined using several
classical approaches, namely through the Partial
Auto-Correlation Function (PACF), frequency, fre-
quency and Forward Selection (FS), frequency and
Backward Elimination (BE), frequency and stepwise,
as well as frequency and Least Absolute Shrink-
age and Selection Operator (LASSO). In the latter
four methods, significant autoregressive lags/input
variables are determined using variable selection
methods.

3. Number of neurons

The number of neurons in the hidden layer is de-
termined as half of the number of input variables
(neurons in the input layer).

4. Selecting the smoothing parameter
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The determination of the smoothing parameter value
considers the rolling origin and fixed origin methods.
Strategies discussing the rolling origin and fixed ori-
gin methods can be found in. '

5. Multi-step ahead strategy

Each strategy in step 4 is combined with several pa-
rameters in the GRNN model, namely the smoothing
parameter, forecasting strategy, and transformation.
The considered forecasting strategies are the recur-
sive method and Multiple Input Multiple Output
(MIMO). The considered transformations are the ad-
ditive and multiplicative methods.

Results and discussion

The purpose of this research is to determine the
optimal number of input layer neurons for the Gener-
alized Regression Neural Network (GRNN) model by
using several classical approaches and different pa-
rameter combinations. Firstly, it aims to identify the
most effective classical approach in selecting input
layer neurons for the GRNN model. Secondly, it seeks
to test the effectiveness of parameter combinations
in the GRNN model, including the smoothing pa-
rameter, forecasting strategy, and transformation, to
determine the model with the best accuracy. Thirdly,
it aims to introduce and evaluate a new approach
that utilizes additional binary neurons in the in-
put layer, This approach combines autoregressive
lags and binary dummy variables to capture both
stochastic and deterministic seasonal patterns. Lastly,
it aims to compare the forecasting accuracy of the
proposed GRNN model with existing models such as
exponential smoothing, ARIMA, Feed-Forward Neu-
ral Network (FFNN), and other GRNN models. The
objective is to demonstrate improvements in forecast-
ing accuracy.

Accidental deaths

In this study, the first case study was conducted
using data on the number of deaths due to acci-
dents in the USA. The data used is monthly data
taken from January 1973 to June 1979. This data has
been discussed in several studies and is quite popular
due to its complex pattern. Additionally, this data
is assumed to fit the characteristics of the proposed
method. The data is divided into two parts: training
data and testing data. The training data consists of
data from January 1973 to December 1978, while the
testing data consists of data from January 1979 to
June 1979. This data can be accessed and found on
the official website of the National Highway Traffic
Safety Administration (NHTSA). %°

2741

In this study, several classical approaches are pro-
posed for determining the neurons in the input layer
of the General Regression Neural Network (GRNN)
model. First, the neurons in the input layer are de-
termined using the Partial Auto-Correlation Function
(PACF) approach. Second, the neurons in the input
layer are determined using the frequency approach,
which considers the time and frequency attributes
of the time series data. The time attribute indicates
the time unit of each observation point, while the
frequency attribute indicates the quantity of data
within a certain period, usually defined annually. For
example, monthly data has a frequency of 12, quar-
terly data has a frequency of 4, four-month data has
a frequency of 3, semi-annual data has a frequency
of 2, and annual data has a frequency of 1. Third,
the determination of neurons in the input layer is
selected using the frequency and Forward Selection
(FS) approach. Fourth, the determination of neurons
in the input layer is selected using the frequency
and Backward Elimination (BE) approach. Fifth, the
determination of neurons in the input layer is selected
using the frequency and stepwise approach. Sixth, the
determination of neurons in the input layer is selected
using the frequency and Least Absolute Shrinkage
and Selection Operator (LASSO) approach. Each clas-
sical approach is combined with several parameters
in the GRNN model, including smoothing parame-
ters, forecasting strategies, and transformations. The
smoothing parameter values are determined using the
rolling origin and fixed origin methods. The fore-
casting strategies considered include the recursive
method and Multiple Input Multiple Output (MIMO).
The transformations considered include the additive
and multiplicative methods. The hyperparameter val-
ues used are determined based on the results of. '?

The results of each parameter combination for the
GRNN model using the PACF approach are shown
in Table 1. The results for the GRNN model using
the frequency approach are shown in Table 2. The
results for the GRNN model using the frequency and
FS approach are shown in Table 3. The results for the
GRNN model using the frequency and BE approach
are shown in Table 4. The results for the GRNN
model using the frequency and stepwise approach
are shown in Table 5. The results for the GRNN
model using the frequency and LASSO approach are
shown in Table 6. The best model is selected based
on the smallest RMSE, MAE, MAPE, and SMAPE
values among the various models built.

Based on the modeling results in Table 1, it can
be empirically seen that the GRNN model provides
the smallest error with the parameter combination of
PACF, rolling origin, MIMO, and multiplicative trans-
formation. Meanwhile, in Table 2, the best GRNN
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Table 1. Comparison of the results of combining GRNN model parameters and several models for data on the

number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
PACEF, rolling origin, recursive, no transformation 709.9820 614.7765 6.592633 6.870116
PACF, fixed origin, recursive, no transformation 715.3952 617.0577 6.609311 6.897377
PACEF, rolling origin, MIMO, no transformation 564.5140 482.8702 5.268065 5.453042
PACF, fixed origin, MIMO, no transformation 569.8324 496.1738 5.402179 5.585038
PACEF, rolling origin, recursive, additive transformation 687.7312 573.7833 6.169700 6.435547
PACF, fixed origin, recursive, additive transformation 688.6903 573.5240 6.165028 6.428075
PACF, rolling origin, MIMO, additive transformation 544.3736 416.1514 4.543474 4.715519
PACF, fixed origin, MIMO, additive transformation 574.4101 458.0508 4.978384 5.172186
PACF, rolling origin, recursive, multiplicative transformation = 643.3624  548.5627 5.918375 6.147855
PACF, fixed origin, recursive, multiplicative transformation 727.3667 608.5760 6.549740 6.841279
PACF, rolling origin, MIMO, multiplicative transformation 524.9925 389.0132 4.243316 4.397312
PACF, fixed origin, MIMO, multiplicative transformation 602.9755 494.7956 5.369198 5.575885

Table 2. Comparison of the results of combining GRNN model parameters with input layer neurons using the frequency
method for data on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
Frequency, rolling origin, recursive, no transformation 409.5742  345.5921 3.773155 3.872991
Frequency, fixed origin, recursive, no transformation 410.4594 344.6501 3.755772 3.856906
Frequency, rolling origin, MIMO, no transformation 406.9522  342.1923 3.729924  3.829330
Frequency, fixed origin, MIMO, no transformation 406.9522 342.1923 3.729924 3.829330
Frequency, rolling origin, recursive, additive transformation 307.8812 253.0103 2.756263  2.793664
Frequency, fixed origin, recursive, additive transformation 311.9937 255.2490 2.782325 2.824921
Frequency, rolling origin, MIMO, additive transformation 290.5309 229.4725 2.495509 2.530309
Frequency, fixed origin, MIMO, additive transformation 290.5824 229.4583 2.495264 2.530017
Frequency, rolling origin, recursive, multiplicative transformation =~ 309.7977 253.7515 2.753546 2.787782
Frequency, fixed origin, recursive, multiplicative transformation 315.2464 258.2687 2.807541  2.849007
Frequency, rolling origin, MIMO, multiplicative transformation 293.2696  231.0252 2.502836 2.535675
Frequency, fixed origin, MIMO, multiplicative transformation 293.6085 231.0389 2.502571 2.535302

model is obtained through a parameter combination
of frequency, fixed origin, MIMO, and multiplicative
transformation. In Table 3, the best GRNN model
is obtained through a parameter combination of
frequency and FS, rolling origin, MIMO, and multi-
plicative transformation. In Table 4, the best GRNN
model is obtained through a parameter combination
of frequency and BE, rolling origin, MIMO, and addi-
tive transformation. In Table 5, the best GRNN model
is obtained through a parameter combination of fre-

quency and stepwise, rolling origin, recursive, and
additive transformation. In Table 6, the best GRNN
model is obtained through a parameter combination
of frequency and LASSO, rolling origin, recursive,
and multiplicative transformation. The best model is
selected based on the smallest error metric. Overall,
the GRNN model with the parameter combination of
frequency and BE, rolling origin, MIMO, and additive
transformation is the most accurate model with the
lowest RMSE, MAE, MAPE, and SMAPE values.

Table 3. Comparison of the results of combining GRNN model parameters with neurons in the input layer via
frequency and FS method for data on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
FS, rolling origin, recursive, no transformation 376.1982 338.4367 3.757855 3.817981
FS, fixed origin, recursive, no transformation 467.2387 378.6923 4.141043 4.270128
FS, rolling origin, MIMO, no transformation 397.1495 328.0769 3.569796 3.663670
FS, fixed origin, MIMO, no transformation 1051.306 803.2445 8.840320 9.083745
FS, rolling origin, recursive, additive transformation 392.8880 318.3445 3.435093 3.511580
FS, fixed origin, recursive, additive transformation 299.6357 238.7202 2.583006 2.623696
FS, rolling origin, MIMO, additive transformation 291.9438 231.0427 2.516775 2.546658
FS, fixed origin, MIMO, additive transformation 498.1187 387.0953 4.234266  4.364239
FS, rolling origin, recursive, multiplicative transformation = 316.9674 245.2819 2.718285 2.767718
FS, fixed origin, recursive, multiplicative transformation 321.1058 264.0585 2.868777 2.914808
FS, rolling origin, MIMO, multiplicative transformation 288.0549 231.0068 2.503299 2.527631
FS, fixed origin, MIMO, multiplicative transformation 1208.724 909.6647 9.966224 10.59156
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Table 4. Comparison of the results of combining GRNN model parameters with neurons in the input layer via
frequency and BE method for data on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
BE, rolling origin, recursive, no transformation 370.5660 298.3767 3.274228 3.357548
BE, fixed origin, recursive, no transformation 392.7925 327.5897 3.592025 3.678446
BE, rolling origin, MIMO, no transformation 395.0538 324.3461 3.526581 3.619213
BE, fixed origin, MIMO, no transformation 406.7469 339.9487 3.702804 3.801881
BE, rolling origin, recursive, additive transformation 292.3550 239.7750 2.607317 2.639740
BE, fixed origin, recursive, additive transformation 291.6519 235.3825 2.548808 2.585541
BE, rolling origin, MIMO, additive transformation 282.6505 224.0709 2.429304 2.460385
BE, fixed origin, MIMO, additive transformation 754.1560 550.0543 6.013864 6.287733
BE, rolling origin, recursive, multiplicative transformation = 290.6687 240.8437 2.615176 2.637529
BE, fixed origin, recursive, multiplicative transformation 292.5794 229.7534 2.508365 2.549210
BE, rolling origin, MIMO, multiplicative transformation 287.1174 227.3108 2.455321 2.484268
BE, fixed origin, MIMO, multiplicative transformation 955.9835 714.6564 7.733571 8.120301

Table 5. Comparison of the results of combining GRNN model parameters with input layer neurons using frequency
and stepwise method for data on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
Stepwise, rolling origin, recursive, no transformation 502.8382 444.3461 4.865029 5.005971
Stepwise, fixed origin, recursive, no transformation 504.9673 442.2106 4.849423 4.997548
Stepwise, rolling origin, MIMO, no transformation 406.9533 342.1933 3.729936  3.829343
Stepwise, fixed origin, MIMO, no transformation 407.4665 342.7141 3.735759 3.835449
Stepwise, rolling origin, recursive, additive transformation 327.6593 261.7070 2.834338 2.877329
Stepwise, fixed origin, recursive, additive transformation 329.6950 263.4534 2.853903 2.898082
Stepwise, rolling origin, MIMO, additive transformation 382.1196 293.6514 3.218788  3.297918
Stepwise, fixed origin, MIMO, additive transformation 379.9672 281.0378 3.065087 3.138579
Stepwise, rolling origin, recursive, multiplicative transformation = 349.9429 281.1396 3.045904  3.098482
Stepwise, fixed origin, recursive, multiplicative transformation 349.6249 277.7384 3.006767  3.053012
Stepwise, rolling origin, MIMO, multiplicative transformation 382.3682 296.4796  3.245580 3.323304
Stepwise, fixed origin, MIMO, multiplicative transformation 382.6730 295.1734 3.228731  3.305582
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The empirical results also show that the GRNN
model using the frequency and BE approach is in-
creasingly accurate in determining the neurons in the
input layer. On the other hand, this approach is used
to obtain optimal neurons following the principle of
parsimony. Rolling origin is an optimization method
used to obtain smoothing parameter values that min-
imize forecasting accuracy metrics. The rolling origin
method often provides better smoothing parameter
values compared to the fixed origin method. Mean-

while, the MIMO approach is used for multi-step
ahead forecasting and provides better accuracy in the
first case study of this research. On the other hand, the
additive transformation approach is used to handle
trends and seasonal patterns. This approach prepro-
cesses and transforms time series data to improve
forecasting accuracy. In the first case study of this
research, the additive transformation approach pro-
vides better accuracy compared to the multiplicative
transformation approach.

Table 6. Comparison of the results of combining GRNN model parameters with neurons in the input layer via
frequency and LASSO method for data on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
LASSO, rolling origin, recursive, no transformation 524.5195 467.6025 5.113271 5.261883
LASSO, fixed origin, recursive, no transformation 531.0631 465.0677 5.105445 5.270498
LASSO, rolling origin, MIMO, no transformation 444.3687 378.4995 4.148260 4.261248
LASSO, fixed origin, MIMO, no transformation 584.6139 465.5895 5.033009 5.211662
LASSO, rolling origin, recursive, additive transformation 410.6028 308.4574 3.346757 3.431368
LASSO, fixed origin, recursive, additive transformation 419.0369 310.3657 3.363384  3.450402
LASSO, rolling origin, MIMO, additive transformation 393.2072 289.2256 3.153711 3.232661
LASSO, fixed origin, MIMO, additive transformation 393.6802 289.9694 3.162978  3.242678
LASSO, rolling origin, recursive, multiplicative transformation = 367.7770 287.7060 3.109221 3.163186
LASSO, fixed origin, recursive, multiplicative transformation 367.7776  287.7066  3.109227 3.163192
LASSO, rolling origin, MIMO, multiplicative transformation 394.4957 292.8938 3.185381 3.261408
LASSO, fixed origin, MIMO, multiplicative transformation 403.9807 305.4434 3.334918  3.420445
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Table 7. Comparison of results between the GRNN model and several models for data
on the number of deaths due to accidents in the United States.

RMSE MAE MAPE SMAPE
GRNN-PACF-dummy 67.12593  36.52342 0.420418 0.420479
GRNN-Frequency-dummy 40.59484  22.93888 0.265000 0.264980
GRNN-Frequency-FS-dummy 57.62788  35.19532  0.419549  0.419220
GRNN-Frequency-BE-dummy 42.50247  23.34174 0.277160  0.277243
GRNN-Frequency-Stepwise-dummy  32.47380 17.98457 0.207064 0.207139
GRNN-Frequency-LASSO-dummy 51.33380 30.76869  0.354217  0.354572
ETS 262.6980 202.6369 2.322380  2.320347
ARIMA 285.3613  200.9519 2.348831 2.37539%4
FFNN 68.55017  49.99667 0.580383 0.580134
GRNN 307.8812 253.0103 2.756263  2.793664

Furthermore, an advanced approach is proposed
using binary dummy neurons in the input layer. For
each best model obtained in Tables 1 to 6, addi-
tional neurons are created in the input layer in the
form of binary dummies. Binary dummy neurons (S-1,
where S is the frequency length) have been shown to
capture deterministic seasonal patterns well, based
on previous studies. Here, the neurons in the input
layer apply two approaches: First, the neurons in the
input layer are determined based on autoregressive
lags with several classical approaches. Second, binary
dummy neurons are created as deterministic seasonal
dummies. The econometric theory also suggests that
stochastic seasonality and deterministic seasonality
need to be modeled differently to achieve accurate
forecasting. Therefore, this research combines both
approaches, where the autoregressive lag approach
is used to capture stochastic seasonal patterns, and
binary dummies are used to capture deterministic
seasonal patterns. Additionally, the performance of
the proposed GRNN model is also compared with
several models available in the literature, such as the
Exponential Smoothing (ETS) model described in,'”
the ARIMA model described in,'® the FFNN model
described in, !° and the GRNN model described in. !?
The results of the empirical comparison can be seen
in Table 7 for each GRNN model approach compared
with several models available in the literature. The
best model is selected based on the smallest RMSE,
MAE, MAPE, and SMAPE values.

The empirical study results show that the GRNN
model with the frequency, stepwise, and binary
dummy approach provides the best results. This is
demonstrated by the lowest RMSE, MAE, MAPE, and
SMAPE values. The approach using the frequency of
time series data has proven effective in capturing
stochastic seasonal patterns better. Meanwhile, the
binary dummy approach has proven to capture de-
terministic seasonal patterns very well. On the other
hand, the stepwise approach is one of the standard
methods for variable selection. Here, this stepwise

method is used to obtain optimal neurons in the in-
put layer, and this approach has not been previously
applied by other researchers in GRNN modeling. At
the same time, this method aligns with the principle
of parsimony. The graphical illustration of real data
plots, in-sample fitting, and out of sample forecasts
using each GRNN model approach and several models
available in the literature is shown in Fig. 1.

Indonesian inflation

In this study, the second case study was conducted
on the inflation rate data in Indonesia. The observed
data is monthly data from January 2005 to December
2022. The training data consists of the first 204 data
points (from January 2005 to December 2021), and
the last 12 data points are used as testing data (from
January 2022 to December 2022). This data can be
found and accessed on the official website of the
Indonesian Central Bureau of Statistics (BPS).2°

A similar method to the first case study was ap-
plied in executing the neurons in the input layer
of the GRNN. After comprehensive modeling and
analysis, the GRNN appeared as the most accurate,
showing the lowest RMSE, MAE, MAPE, and SMAPE
values (see Table 8). This exceptional performance
was achieved through a parameter combination in-
cluding frequency and BE, rolling origin, recursive
methods, and additive transformation. The results
also emphasized the effectiveness of the model in
obtaining precise input layer neurons when using fre-
quency and BE methods. This method adhered to the
principle of parsimony, which prioritized simplicity.
Additionally, the rolling origin method was identified
as a robust optimization strategy for determining the
smoothing parameter value that minimized forecast-
ing errors. In comparison to the fixed origin method,
the rolling origin method consistently yielded supe-
rior smoothing parameter values. In this second case
study, the recursive method was used for forecasting
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Fig. 1. Plots of real data, in-sample fitting, and out-sample forecasting using the proposed GRNN model approach and several models
considered for the number of deaths due to accidents in the USA.
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Fig. 1. Continued.

Table 8. Comparison of the outcomes of combining GRNN model parameters with neurons in the input layer via

frequency and BE for Indonesian Inflation data.

RMSE MAE MAPE SMAPE
BE, rolling origin, recursive, no transformation 0.543854 0.541246 9.896515 10.41634
BE, fixed origin, recursive, no transformation 0.742335 0.611862 13.39000 13.80697
BE, rolling origin, MIMO, no transformation 0.686484 0.573046 10.43080 11.16774
BE, fixed origin, MIMO, no transformation 0.778400 0.688283 14.02450 14.64733
BE, rolling origin, recursive, additive transformation 0.013852 0.013852 0.251412 0.251096
BE, fixed origin, recursive, additive transformation 1.251738 1.041282 23.12957 26.89259
BE, rolling origin, MIMO, additive transformation 0.266359 0.213734 3.887281 4.008223
BE, fixed origin, MIMO, additive transformation 0.253993 0.253993 4.609681 4.718433
BE, rolling origin, recursive, multiplicative transformation = 0.818129 0.818129 14.84808 16.03881
BE, fixed origin, recursive, multiplicative transformation 0.839931 0.687184 16.35711 16.53441
BE, rolling origin, MIMO, multiplicative transformation 0.916764 0.720889 16.50967 18.06761
BE, fixed origin, MIMO, multiplicative transformation 1.582075 1.384154 32.45919 39.86472
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Fig. 2. Plots of real data, in-sample fitting, and out-sample forecasting using the proposed GRNN model approach and several models
considered for inflation rate data in Indonesia.
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Fig. 2. Continued.

Table 9. Comparison of the results of the GRNN model and several other models for
Indonesian Inflation data.

RMSE MAE MAPE SMAPE
GRNN-PACF-dummy 0.570993 0.357796 8.257855  8.213663
GRNN-Frequency-dummy 0.337627 0.235763  5.885520 5.808237
GRNN-Frequency-FS-dummy 0.405146 0.305084 7.168880 7.149291
GRNN-Frequency-BE-dummy 0.356746  0.268284  6.379361  6.346651

GRNN-Frequency-Stepwise-dummy  0.458697 0.307158 7.287032  7.242743
GRNN-Frequency-LASSO-dummy 0.930035 0.485018 9.363246  9.286715

ETS 1.033346  0.508369 9.407505 9.028196
ARIMA 0.773869 0.418744 7.997439 7.748047
FFNN 0.465528 0.322660 6.939367 6.911206
GRNN 0.654972  0.562850 13.70966 14.51901

multiple steps, resulting in significantly improved  series data, ultimately enhancing forecasting accu-
accuracy. The additive transformation strategy was  racy. It was observed that the additive transformation
applied to address trend and seasonal patterns. This = method outperformed the multiplicative transforma-
method comprised preprocessing and modifying time  tion method in terms of accuracy.
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In each modeling strategy, additional neurons were
incorporated into the input layer in the form of binary
dummies. Table 9 shows the results of an empirical
investigation, comparing each GRNN with various
models from the literature. The empirical results
show that GRNN using the binary dummy method
does not effectively capture deterministic seasonal
trends. This is supported by the fact that the best
model without a binary dummy yields lower RMSE,
MAE, MAPE, and SMAPE values when compared to
those with the binary dummy. Graphical illustrations
of plots of real data, in-sample fitting, and out-sample
forecasts using each of the proposed GRNN model
approaches and several models available in the lit-
erature are shown in Fig. 2.

Conclusion

This study shows that the GRNN model with the
frequency and Backward Elimination (BE) approach
provides the best accuracy. The combination of fre-
quency and BE with rolling origin, MIMO, and
additive transformation produces a model with the
lowest RMSE, MAE, MAPE, and SMAPE values. The
frequency and BE approach help optimize the neu-
rons in the input layer, following the principle of
parsimony. Rolling origin maximizes the smoothing
parameter, while MIMO improves long-term fore-
casting accuracy. The multiplicative transformation
addresses trends and seasonal patterns. On the other
hand, the addition of binary dummy neurons in the
input layer combines the autoregressive lag approach
and binary dummy to capture stochastic and deter-
ministic seasonal patterns. The GRNN model using
the frequency and stepwise approach along with a
binary dummy shows the best results. The stepwise
method is also effective in variable selection and de-
termining the optimal number of neurons. The binary
dummy approach is very effective in capturing deter-
ministic seasonal patterns. These findings suggest that
this combination of approaches consistently outper-
forms other methods in the literature for data with
seasonal components, such as the data on the num-
ber of deaths due to accidents in the USA. However,
this combination of approaches is not recommended
for data without seasonal components, such as the
inflation rate data in Indonesia, where only the au-
toregressive lag approach is advised. Future research
can explore the combination of autoregressive lags
and external variables to further improve the GRNN
model’s accuracy, developing further optimization
methods, such as more sophisticated parameter tun-
ing techniques, to enhance the performance of the
GRNN model in the context of data with complex
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seasonal and trend patterns. Analyzing how varia-
tions in historical data and data frequency affect the
GRNN model’s performance, integrating the latest
machine learning techniques, such as deep learning
or ensemble methods, to see if they can improve
model accuracy compared to classical approaches
currently used, and conducting case studies with data
from other domains to test the generalizability of
these findings.
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