Baghdad Science Journal

Volume 22 | Issue 8 Article 24

8-27-2025

A Clustering Technique Based on the Hard K-Means (H.KM.) Method to Determine the Governorate That Have More Influence for Spreading COVID-19 in the Kingdom of Saudi Arabia

Rand Muhaned Fawzi

Department of Mathematics, College of Education for pure Science ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

Wurood R. Abd Al-Hussein

Department of Mathematics and Computer Applications, College of Sciences, Al-Nahrain University, Baghdad, Iraq

Iden Hassan Alkanani

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq

Follow this and additional works at: https://bsj.uobaghdad.edu.ig/home

How to Cite this Article

Fawzi, Rand Muhaned; Al-Hussein, Wurood R. Abd; and Alkanani, Iden Hassan (2025) "A Clustering Technique Based on the Hard K-Means (H.KM.) Method to Determine the Governorate That Have More Influence for Spreading COVID-19 in the Kingdom of Saudi Arabia," *Baghdad Science Journal*: Vol. 22: Iss. 8, Article 24.

DOI: https://doi.org/10.21123/2411-7986.5035

This Article is brought to you for free and open access by Baghdad Science Journal. It has been accepted for inclusion in Baghdad Science Journal by an authorized editor of Baghdad Science Journal.

RESEARCH ARTICLE

A Clustering Technique Based on the Hard K-Means (H.KM.) Method to Determine the Governorate That Have More Influence for Spreading COVID-19 in the Kingdom of Saudi Arabia

Rand Muhaned Fawzi¹, Wurood R. Abd Al-Hussein², Iden Hassan Alkanani³

- ¹ Department of Mathematics, College of Education for pure Science ibn Al-Haitham, University of Baghdad, Baghdad, Iraq
- ² Department of Mathematics and Computer Applications, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- ³ Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq

ABSTRACT

The Kingdom of Saudi Arabia is the gathering place of most of the nationalities of the Islamic world. When a certain disease spreads, it will be important to know which governorate has the greatest influence on the spread of the disease and take the necessary precautions to limit its spread, and this is the goal of this study. COVID-19, The SRS-COV-2 coronavirus that caused the most recent pandemic is known as the Corona pandemic. To determine which Saudi governorates had the greatest influence on the epidemics spread, data was gathered for thirteen governorates over two months (July and August). The data was analyzed by using cluster analysis. The Saudi governorates were divided into cluster (groups) and cluster centers, these centers represent the main characteristics of each cluster (group) by using the Hard K-Means (H.KM.) clustering technique, and the optimal number of clusters (groups) was calculated by applying the validity clustering methods to identify the group that has the greatest influence on the epidemic's propagation. We employ variance analysis (ANOVA table) to determine the governorate that has the greatest influence on the spread of the disease by knowing the variances within each cluster (group) and between clusters. The goal of ANOVA is to determine whether there are statistically significant differences between the governorates (clusters) in terms of the spread of the disease. The conclusion of the study suggests that the governorates of (Riyad, Maka and Eastern) have had the most impact on the COVID-19 pandemic spread.

Keywords: ANOVA, Clustering, Covid-19, Hard K-Means, Validity

Introduction

Cluster analysis is one unsupervised machine learning technique; it divides the observations into groups such that the similar ones take the same group and the dissimilar ones into another group. It's an important technique for separating observations. ¹

Clustering plays every vital role in exploring data, creating predictions and overcoming anomalies in the data, to satisfy this goal there are two types of cluster analysis:

1- Fuzzy or (soft) cluster analysis 2- Hard or (crisp) Cluster analysis:

In fuzzy (soft) cluster analysis approach assigns each observation in the dataset X to different clusters

Received 10 March 2024; revised 25 October 2024; accepted 27 October 2024. Available online 27 August 2025

E-mail addresses: rand.M.f@ihcoedu.uobaghdad.edu.iq (R. M. Fawzi), worood.riad@nahrainuniv.edu.iq (W. R. A. Al-Hussein), idedalkanani58@gmail.com (I. H. Alkanani).

^{*} Corresponding author.

with different memberships which vary between 0 and 1. In another type assign each observation to exactly one cluster with membership exactly (either 0 or 1). $^{2-4}$

The analysis of variance (ANOVA) called the fisher analysis of variance this term became well-known in 1925. It is used to compare variances across the means (cluster centers) of different clusters. A range of scenarios is used to determine if there is any difference between the means (cluster centers) of different clusters. ⁵

The outcome of ANOVA is the 'F statistic'. This ratio shows the difference between the within-group variance and the between- group variance, which ultimately produces a figure which allows a conclusion that the null hypothesis is supported or rejected. ⁵

One-way aims to determine the existence of a statistically significant difference among several cluster centres. This test uses the variances to help determine if the centres are equal or not.

The aim of clustering is to find similar clusters of observations in the dataset, but the important question is how to evaluate results without missing the auxiliary information, this is one of the fundamental problems of clustering?, It can be shown that there are no absolute standards for the best clustering, but it depends on the research's problem and researcher thought that he should decide whether the observations are correctly clustered or not. Therefor we can use the validity clustering to evaluate the clustering results from finding the optimal number of clusters which are the best description of the data structure without any loss information.

The rest of this study is organized as follows: section 2 contains the Hard K-Means (H.KM.), section 3 contains the Experiment, section 4 contains the Result and Discussion and finally section 5 contains conclusions.

Materials and methods

The Hard K-Means clustering technique

The H.KM. Technique clustering called (Lloyd Forgy algorit technique) was developed by J. B. Macqueen in 1967 as a simple centroid-based method.⁸

This approach, which divides the dataset into clusters, is the oldest and most widely used partitional technique. Its merits include efficiency, speed, and brevity. The k-means clustering algorithm has been extensively researched and utilized in several fields, including medical, engineering, programming, and image processing. ^{7,9}

This algorithm's goal is to minimize the square error in each cluster and the error measure, which form the foundation of this methodology. This method seeks to identify K partitions that meet a given set of requirements to obtain the best clustering:

- Select a few observations from the dataset to serve as the initial cluster centers
- 2. The remaining observations are gathered at their initial centers based on the minimum distance criterion. After that, we obtain the initial classification.

If the classification is deemed unreasonable, we revise it by recalculating each cluster center. This process is repeated until we obtain a classification that makes sense. ⁹

To compute the minimizing objective function and centroid of H.KM the following formula is used:

$$J_{H.KM.} = J(X; C) = \sum_{i=1}^{n} \sum_{j=1}^{k} ||x_i - c_j||^2$$
 (1)

Where i is the dataset and j is the number of clusters.

$$c_j = \frac{1}{m_j} \sum_{\mathbf{x} \in C_j} X \tag{2}$$

Where c_j the j^{th} cluster, c_j is the centroid of cluster C_j , m_j the number of observations in the j^{th} cluster and X all the observations.

The Steps of Algorithm:

- 1- Assume the number of clusters K and centers C (in this study we choose the centers randomly)
- 2- Compute the distance between cluster center and the observations by using Eq. (1).
- 3- Distributed the observations on the closet centroid cluster based on minimum distance.
- 4- Recomputed the centroids of each cluster by using Eq. (2).
- 5- Repeat stages (1–4) until centroid does not change ¹⁰ as Fig. 1.

Real data

This section provides a real and numerical dataset to illustrate the Hard K-Means method's performance. Table 1 displays the numerical and authentic dataset that was derived during two-months from thirteen governorates in the Kingdom of Saudi Arabia during the COVID-19 pandemic. This procedure is often used to produce varying numbers of clusters with

Table 1. The real data.

7 19 23 6 12 28 46 6 184 23 67 264 222 307 8 19 4 30 18 21 45 26 93 59 94 277 252 318 10 17 48 5 18 14 41 43 96 59 56 178 297 305 11 37 44 3 7 17 29 26 196 51 40 209 260 193 12 12 37 5 10 11 64 47 125 71 64 254 200 345 15 29 45 5 18 23 32 48 122 56 41 158 26 33 16 32 31 13 23 39 77 124 43 82 128 <	abic	. The le	ai data.											
1		hah		πĘ	hre	ᅺ	E	sim		ina ina	5	ELL	es	Ъ
1	NT-	Jba	Iail	lJjoι	Jort	abu	lajra	ılqa	sir	T ad	aza	asr	T ak	iya
2 29 13 2 37 21 16 115 177 109 55 327 208 275 4 39 14 8 40 18 18 18 115 77 90 32 273 222 222 6 18 8 8 10 18 8 110 234 220 22 6 18 8 8 50 18 88 27 134 35 59 264 220 328 8 19 4 30 18 21 45 26 93 59 42 277 252 315 10 17 48 5 18 21 43 29 26 196 59 56 178 297 305 11 37 7 7 29 26 196 51 18 297 303 32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
3 9 13 6 17 19 28 14 137 45 62 314 265 212 222 227 55 34 16 8 8 14 33 23 273 68 110 234 220 200 206 18 88 87 7 134 35 59 264 420 328 7 134 35 59 94 20 26 18 15 5 1 18 14 41 43 26 108 63 76 206 245 328 11 37 44 3 7 17 29 26 196 59 56 178 297 306 11 30 40 8 5 18 13 46 47 125 71 64 24 20 34 14 48 3 24 44 48 32 44 44														
4														
55 34 16 8 8 14 33 23 273 68 110 234 220 200 20 24 320 320 37 134 35 59 264 240 328 7 134 35 59 94 277 222 307 80 18 21 45 26 93 59 94 277 222 31 99 18 15 5 1 18 24 26 108 63 76 206 245 328 17 17 29 26 196 51 40 299 220 193 11 37 44 3 7 17 29 26 196 51 40 294 200 34 11 41 41 41 44 47 93 14 40 254 220 31 31 30 30 31 30 30														
6 18 8 8 50 18 88 27 134 35 59 264 222 30 8 19 4 30 18 21 45 26 93 59 94 277 252 318 10 17 48 5 18 14 41 43 96 59 56 178 297 308 11 37 44 3 7 17 29 26 196 51 40 209 260 194 12 12 37 5 10 11 64 47 125 71 64 254 39 30 31 40 292 189 32 38 41 47 93 140 6 24 185 26 33 31 40 82 23 32 24 18 16 32 33 36 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
7 19 23 6 12 28 46 6 184 23 67 264 222 309 9 18 15 5 1 18 24 26 108 63 76 206 245 328 10 17 48 5 18 14 41 43 96 59 56 178 297 305 11 37 44 3 7 17 29 26 196 51 40 209 260 193 12 12 37 5 10 11 64 47 125 14 4 23 38 4 18 14 47 93 140 56 24 11 18 260 385 16 32 41 4 23 18 45 83 14 18 12 20 218 260 39														328
9	7	19	23	6	12	28	46	6	184	23	67	264	222	307
10					18									319
11 37 44 3 7 17 29 26 196 51 40 209 260 344 12 12 37 5 10 11 64 47 125 71 64 224 200 344 13 26 49 8 23 24 39 55 135 45 92 189 283 327 14 23 38 4 18 14 79 31 140 56 41 158 26 20 26 24 185 265 313 20 31 36 79 77 124 43 82 128 211 256 18 16 32 3 13 26 77 20 32 33 66 114 55 23 170 187 32 31 26 21 29 23 33 66 124														
12 12 37 5 10 11 64 47 125 71 64 294 290 283 322 14 23 38 8 23 22 43 39 140 56 41 158 260 354 15 29 45 5 18 23 32 48 122 56 24 11 18 26 354 16 32 41 4 23 18 45 83 143 69 86 240 240 224 17 50 40 8 15 23 39 77 124 43 82 128 211 25 19 25 64 5 17 20 22 43 66 112 63 45 207 219 262 318 21 25 43 6 17 20 45 59														
13 26 49 8 223 24 39 55 135 45 92 189 283 32 15 29 45 5 18 23 32 48 122 56 24 185 260 354 16 32 41 4 23 18 45 83 143 69 86 240 240 240 274 18 16 32 3 13 20 33 36 1129 62 23 170 187 322 19 25 64 5 17 22 33 36 1129 62 279 219 262 23 11 35 64 207 200 33 36 121 23 11 25 43 6 17 20 45 59 143 49 20 20 133 36 12 43 77 <td></td>														
14 23 38 4 18 14 47 93 140 56 41 158 260 354 15 29 45 5 18 23 32 48 122 56 24 185 265 313 16 32 41 4 23 18 45 83 143 69 86 240 240 274 17 50 40 8 15 23 39 77 124 43 82 128 211 258 18 16 32 17 22 33 60 112 52 316 54 207 200 33 19 25 64 5 7 20 24 18 31 7 174 63 54 207 200 33 21 18 44 4 14 16 56 99 141														
15 29 45 5 18 23 32 48 122 56 24 185 265 312 16 32 41 4 23 18 45 83 143 69 86 240 240 274 17 50 40 8 15 23 39 77 124 43 82 128 211 258 18 16 32 3 36 129 62 79 219 262 31 36 7 20 22 43 77 174 63 54 207 200 33 21 25 43 6 17 20 45 59 143 49 69 176 188 302 22 18 44 4 14 16 56 96 131 57 72 158 211 292 23 14														
16 32 41 4 23 18 45 83 143 69 86 240 240 274 17 50 40 8 15 23 39 77 124 43 82 128 211 255 18 16 32 3 13 20 33 60 119 62 79 219 262 316 20 31 36 7 20 22 43 77 174 63 54 207 200 33 21 25 43 6 17 20 45 59 143 49 69 176 188 30 22 21 35 41 16 56 96 131 57 72 158 211 285 22 18 43 14 19 39 70 122 54 90 211 209 23														
17 50 40 8 15 23 39 77 124 43 82 128 211 258 19 25 64 5 17 22 33 66 114 55 23 170 187 323 19 25 64 5 17 20 22 43 77 174 63 54 207 200 33 21 25 43 6 17 20 45 59 143 49 69 176 188 302 22 18 44 4 14 16 56 96 131 57 72 158 211 285 24 21 47 6 25 23 41 83 150 59 107 170 244 288 25 24 53 5 14 19 39 70 122 54														
18 16 32 3 13 20 33 66 114 55 23 170 187 322 20 31 36 7 20 22 43 77 174 63 54 207 200 338 21 25 43 6 17 20 45 59 143 49 69 176 188 302 21 25 43 6 17 20 45 59 143 49 69 176 188 302 22 18 44 4 14 16 56 96 131 57 72 158 211 208 23 21 25 6 24 19 39 70 122 54 92 226 183 292 26 183 292 26 183 292 26 183 292 26 183 18<														258
201 31 36 7 20 22 43 77 174 63 54 207 20 33 30 32 22 18 44 4 14 16 56 96 131 57 72 158 211 285 23 21 55 6 24 19 51 73 157 68 90 211 209 226 23 41 83 150 59 107 170 244 280 25 24 53 5 14 19 39 70 122 54 92 226 183 292 226 183 3 6 12 43 81 145 62 191 224 242 223 226 183 292 25 41 86 127 67 82 271 239 226 23 33 19 33 41 19 73 66	18	16	32	3	13		33	66	114			170		323
21 25 43 6 17 20 45 59 143 49 69 176 188 312 28 21 155 6 24 19 51 73 157 68 90 211 209 263 24 21 47 6 25 23 41 83 150 59 107 170 244 226 183 293 25 24 53 5 14 19 39 70 122 54 92 226 183 293 26 20 61 3 6 12 43 81 145 62 69 169 316 265 27 21 49 4 40 32 25 41 86 127 67 82 271 239 266 29 23 73 11 30 42 41 97 76	19	25	64	5	17	22	33	60	129	62	79	219	262	316
22 18 44 4 14 16 56 96 131 57 72 158 211 209 263 24 19 51 73 157 68 90 211 209 263 24 21 47 6 25 23 41 83 150 59 107 170 244 280 25 24 33 5 14 19 39 70 122 54 92 226 183 292 26 20 61 3 6 12 43 81 145 62 99 169 316 265 27 21 49 4 40 32 57 104 154 62 117 224 242 273 28 33 15 30 30 36 58 7 31 28 52 92 59 64 118 174 212 256 30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>339</td></t<>														339
23 21 55 6 24 19 51 73 157 68 90 211 29 26 24 21 47 6 25 23 41 83 150 59 107 170 244 280 25 24 53 5 14 19 39 70 122 54 92 226 183 293 26 20 61 3 6 12 43 81 145 62 69 169 316 262 28 33 59 12 32 25 41 86 127 67 82 271 239 202 29 23 73 11 30 42 41 97 76 63 100 20 260 253 31 34 56 8 33 19 53 68 84 64 79 209														
24 21 47 6 25 23 41 83 150 59 107 170 244 286 26 20 61 3 6 12 43 81 145 62 69 169 316 296 27 21 49 4 40 32 57 104 154 62 117 224 242 273 28 33 59 12 32 25 41 86 127 67 82 271 239 260 253 30 36 58 7 31 28 52 92 59 64 118 174 212 256 31 34 56 8 33 17 23 40 170 94 69 64 154 207 233 33 17 44 5 20 18 45 35 108														
25 24 53 5 14 19 39 70 122 54 92 226 183 293 26 20 61 3 6 12 43 81 145 62 69 169 316 265 27 21 49 4 40 32 57 104 154 62 117 224 242 273 28 33 59 12 32 25 41 86 127 67 82 271 239 260 30 36 58 7 31 28 52 92 59 64 118 174 212 256 31 34 56 8 33 19 53 68 84 64 79 209 196 243 31 34 56 8 33 170 88 152 244 217														
26 20 61 3 6 12 43 81 145 62 69 169 316 265 27 21 49 4 40 32 25 71 104 1154 62 117 224 242 273 28 33 59 12 32 25 41 86 127 67 82 271 239 260 29 23 73 11 30 42 41 97 76 63 100 220 260 253 30 36 58 7 31 228 52 92 59 64 118 174 212 256 31 34 56 8 33 19 53 68 84 64 79 209 196 243 32 13 14 45 52 10 170 88 152 244 217														
27 21 49 4 40 32 57 104 154 62 117 224 242 273 28 33 599 12 32 25 41 86 127 62 82 271 239 260 29 23 73 11 30 42 41 97 76 63 100 220 260 253 30 36 58 7 31 28 52 92 59 64 118 174 212 256 31 34 56 8 33 19 53 68 84 64 79 209 196 243 33 17 44 5 20 18 45 35 108 70 88 152 244 217 34 13 46 10 23 55 18 62 89 70 107 <td></td>														
28 33 59 12 32 25 41 86 127 67 82 271 239 260 29 23 73 11 30 42 41 97 76 63 100 220 260 253 31 36 58 7 31 28 52 92 59 64 118 174 212 256 31 34 56 8 33 19 53 68 84 64 79 209 196 243 32 13 58 3 17 23 40 170 94 69 64 154 207 233 34 13 46 10 23 56 18 62 89 70 107 188 209 184 35 16 43 11 18 19 39 39 126 65 92														
29 23 73 11 30 42 41 97 76 63 100 220 260 253 30 36 58 7 31 28 52 92 59 64 118 174 212 253 31 34 56 8 33 19 53 68 84 64 79 209 196 243 32 13 58 3 17 23 40 170 94 69 64 154 207 235 33 17 44 5 20 18 45 35 108 70 88 152 244 217 34 13 46 10 23 56 18 62 89 70 107 188 20 214 192 36 17 41 10 24 35 29 48 98 55														
30 36 58 7 31 28 52 92 59 64 118 174 212 256 31 34 56 8 33 19 53 68 84 64 79 209 196 243 32 13 58 3 17 23 40 170 94 69 64 154 207 233 33 17 44 5 20 18 45 35 108 70 88 152 244 217 34 13 46 10 23 56 18 62 89 70 107 188 209 189 35 16 43 11 18 19 39 39 126 65 92 169 214 192 36 17 41 10 24 35 29 48 98 55 101														253
32 13 58 3 17 23 40 170 94 69 64 154 207 235 33 17 44 5 20 18 45 35 108 70 88 152 244 217 34 13 46 10 23 56 18 62 89 70 107 188 209 184 35 16 43 11 18 19 39 39 126 65 92 169 214 192 36 17 41 10 24 35 29 48 98 55 101 162 189 177 37 16 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67				7										256
33 17 44 5 20 18 45 35 108 70 88 152 244 217 34 13 46 10 23 56 18 62 89 70 107 188 209 184 35 16 43 11 18 19 39 39 126 65 92 169 214 192 36 17 41 10 24 35 29 48 98 55 101 162 189 177 37 16 32 10 17 23 37 55 88 48 81 128 166 38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132														243
34 13 46 10 23 56 18 62 89 70 107 188 209 184 35 16 43 11 18 19 39 39 126 65 92 169 214 192 36 17 41 10 24 35 29 48 98 55 101 162 189 177 37 16 32 10 16 20 28 68 102 66 98 152 182 164 38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 18 10 39 71 74 43 83														
35 16 43 11 18 19 39 39 126 65 92 169 214 192 36 17 41 10 24 35 29 48 98 55 101 162 189 177 37 16 32 10 16 20 28 66 102 66 98 152 182 166 38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 11 18 10 39 71 74 43 83 132 151														
36 17 41 10 24 35 29 48 98 55 101 162 189 177 37 16 32 10 16 20 28 68 102 66 98 152 182 164 38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 18 30 12 19 23 36 71 115 50 85 125 159 121 44 11 14 19 35 54 86 47 72 111 14 17														
37 16 32 10 16 20 28 68 102 66 98 152 182 164 38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 18 30 12 19 23 36 71 115 50 85 125 159 121 42 17 31 11 14 19 35 54 86 47 72 111 147 107 43 18 26 11 14 17 41 72 113 127 133														
38 22 32 10 17 23 37 55 88 48 81 128 166 143 39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 18 30 12 19 23 36 71 115 50 85 125 159 121 42 17 31 11 14 19 35 54 86 47 72 111 147 107 43 18 26 11 14 17 41 73 80 41 72 111 147 107 44 11 22 12 14 15 32 51 58 41 66														
39 7 32 7 7 16 35 49 60 39 67 132 151 129 40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 18 30 12 19 23 36 71 115 50 85 125 159 121 42 17 31 11 14 19 35 54 86 47 72 111 147 107 43 18 26 11 14 17 41 73 80 41 72 113 127 133 44 11 22 12 14 15 32 51 58 41 66 92 119 148 45 15 14 10 14 12 28 42 48 30 55														
40 11 38 11 8 10 39 71 74 43 83 132 142 134 41 18 30 12 19 23 36 71 115 50 85 125 159 121 42 17 31 11 14 19 35 54 86 47 72 111 147 107 43 18 26 11 14 17 41 73 80 41 72 113 127 133 44 11 22 12 14 15 32 51 58 41 66 92 119 148 45 15 14 10 14 12 28 42 48 30 55 74 106 161 46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10														129
42 17 31 11 14 19 35 54 86 47 72 111 147 107 43 18 26 11 14 17 41 73 80 41 72 113 127 133 44 11 22 12 14 15 32 51 58 41 66 92 119 148 45 15 14 10 14 12 28 42 48 30 55 74 106 161 46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 53 41 31 35 61 59 101 132 49 9 16 10 12 14 </td <td>40</td> <td>11</td> <td></td> <td>11</td> <td>8</td> <td>10</td> <td></td> <td></td> <td>74</td> <td>43</td> <td>83</td> <td>132</td> <td>142</td> <td>134</td>	40	11		11	8	10			74	43	83	132	142	134
43 18 26 11 14 17 41 73 80 41 72 113 127 133 44 11 22 12 14 15 32 51 58 41 66 92 119 148 45 15 14 10 14 12 28 42 48 30 55 74 106 161 46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 10 13 25	41	18	30	12	19	23	36	71	115	50	85	125	159	121
44 11 22 12 14 15 32 51 58 41 66 92 119 148 45 15 14 10 14 12 28 42 48 30 55 74 106 161 46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25														107
45 15 14 10 14 12 28 42 48 30 55 74 106 161 46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 <														
46 6 16 3 5 9 26 40 48 28 46 62 85 168 47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30														
47 6 22 9 5 10 34 48 50 27 59 67 97 170 48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32														
48 11 17 14 15 15 25 43 41 35 61 59 101 132 49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23														
49 9 16 10 12 14 24 41 41 30 46 56 88 159 50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 15 29 23														
50 7 14 11 12 9 17 34 43 28 49 46 84 145 51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19														
51 8 14 11 10 13 25 45 30 27 39 42 71 123 52 7 13 5 10 9 16 29 29 20 39 40 66 126 53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 10 16 32 26 20 25 32 57 74 57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>145</td></td<>														145
53 3 12 2 3 5 21 30 23 21 31 37 62 134 54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 10 16 32 26 20 25 32 57 74 57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 69 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15	51	8		11	10	13	25	45		27	39	42	71	123
54 3 12 5 5 4 17 32 30 22 33 39 64 94 55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 10 16 32 26 20 25 32 57 74 57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														126
55 7 10 7 11 10 16 23 30 26 34 41 66 72 56 6 8 7 8 10 16 32 26 20 25 32 57 74 57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														134
56 6 8 7 8 10 16 32 26 20 25 32 57 74 57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														
57 5 6 9 7 8 15 29 23 18 27 30 51 62 58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														
58 2 7 8 8 4 13 16 19 17 23 27 46 54 59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														
59 4 6 6 7 6 10 22 13 14 22 21 36 67 60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														
60 1 5 2 2 5 10 15 14 13 14 22 36 69 61 1 8 3 3 5 9 19 15 15 20 21 36 66														
61 1 8 3 3 5 9 19 15 15 20 21 36 66														

Fig. 1. The HK.M algorithm.

corresponding cluster memberships, after which the clustering outcomes are assessed.

After using the H.KM. Technique to analyze the data and cluster the data into three groups, we will utilize a one-way ANOVA table to identify which governorates are most important in the disease's spread.

Results and discussion

We analyze the dataset X by using the Hard K-Means method in SPSS:

1- We calculate the distance between observations and centers (assign the point to nearest center) after choosing the initial centroid (randomly). as shown in the Table 2 below:

Table 2. The initial value of cluster center.

	Number o	of Cluster	
	1	2	3
Riyad	310	73	206
Maka	377	34	220
Eastern	337	20	234
Jazan	96	15	110
Madina	74	12	68
Asir	156	12	273
Alqasim	62	16	23
Najran	1	13	33
Tabuk	20	5	14
Northern	11	6	8
Aljouf	7	7	8
Hail	19	6	16
Albahah	29	5	34

Table 3. Iteration history of change in cluster center.

	Change in Cluster Centers					
Iteration	1	2	3			
1	162.869	97.805	164.636			
2	9.963	0.000	14.008			
3	4.780	0.000	5.045			
4	0.000	0.000	0.000			

2- We update the cluster center and repeat the procedure of distributing the observations to the new centers (update centroids). We do this until convergence is reached since the cluster center has not changed significantly. Upon reaching the final centers (the centroids approach stapelty), where the maximum absolute coordinate change for each center is 0 as shown in Table 3.

In this table the cluster center was shapely in iteration 4. The minimum distances between initial centers is 4.780.

We can evaluate the best clustering from Table 3 is three clusters where the cluster centers was stable in iterative 4 that mean the choices of initial cluster centers was perfect.

From Table 4 calculated the final cluster centers to 3 clusters.

3- We use ANOVA Table (One-Way) to calculate the F and significance for each governorate:

The null hypothesis is $H_0 = \mu_1 = \mu_2 = \dots = \mu_{25} = 3$ Alternative hypothesis $H_1 \neq \mu_1 \neq \mu_2 \dots \neq \mu_{25} \neq 3$

We must calculate the value of the F=(0.01) and compare it with the significant value for each governorate to ascertain whether or not that governorate has an effect on the spread of the disease in the Kingdom of Saudi Arabia. If the significant value for each governorate is less than the F, then that governorate is considered to have an effect on the spread of the disease. However, this governorate has no impact on the spread of the illness when the value is more than the F=(0.01).

From Table 5, Aljouf has no effect on the disease's spread because its significant value (0.5755026120000) was more than F=(0.01). However, the twelve governorates—Riyad, Maka, Eastern, Jazan, Madina, Asir, Alqasim, Najran, Tabuk, Northern, Hail, and Albahah—had an effect because the significant values of it less than F=(0.01), but with different degree as shown:

Fig. 2(a), (b), and (c) show the distributions of the observations on three governorate clusters that were more important in the disease's spread (Riyad, Maka, and Eastern).

Table 4. The final cluster centers.

	Cluster		
	1	2	3
Riyad	299.32	114.56	240.22
Maka	254.47	87.88	212.56
Eastern	239.79	62.76	181.22
Jazan	68.68	46.56	85.11
Madina	61.58	28.48	60.56
Asir	134.53	43.84	124.78
alqasim	61.47	39.20	69.56
najran	39.53	23.60	39.50
tabuk	20.00	11.04	23.94
northern	21.63	9.44	19.39
Aljouf	7.05	8.12	6.89
Hail	33.47	16.68	45.83
Albahah	23.63	8.40	23.94

Table 5. Analysis of variance (ANOVA) table.

ANOVA							
	Cluster		Error				
	Mean Square	Df	Mean Square	Df	F	Significant	Decision
Riyad	197695.255	2	1649.074	59	119.883	.0000000000000	Reject H ₀
Maka	167569.573	2	1449.760	59	115.584	.0000000000000	Reject H_0
Eastern	180438.045	2	1757.200	59	102.685	.0000000000000	Reject H ₀
Jazan	8012.696	2	541.865	59	14.787	.0000062305572	Reject H ₀
Madina	7933.213	2	179.107	59	44.293	.0000000000018	Reject H ₀
Asir	55538.880	2	1247.410	59	44.523	.0000000000016	Reject H ₀
Alqasim	5424.603	2	783.512	59	6.923	.0019907085400	Reject H ₀
Najran	1889.091	2	179.885	59	10.502	.0001254453920	Reject H ₀
Tabuk	954.766	2	53.185	59	17.952	.0000008133616	Reject H ₀
Northern	942.442	2	74.489	59	12.652	.0000267665508	Reject H ₀
Aljouf	9.938	2	17.820	59	.558	.5755026120000	Accept H ₀
Hail	4586.049	2	196.384	59	23.352	.0000000338327	Reject H ₀
Albahah	1765.866	2	61.413	59	28.754	.0000000019171	Reject H ₀

No.	Governorate	Significant
1-	(Riyad, Maka, Eastern)	0.0000000
2-	Asir	0.0000000000016
3-	Madina	0.0000000000018
4-	Albahah	0.0000000019171
5-	Hail	0.0000000338327
6-	Tabuk	0.0000008133616
7-	Jazan	0.0000062305572
8-	Northern	0.0000267665508
9-	Najran	0.0001254453920
10-	Alqasim	0.0019907085400

Scale 5 • 4 • 3 • 2 • 1 341.50 400.00 354.00 316.00 293.00 314.40 273.00 323.00 300.00 310.00 265.80 254.50 265.00 279.00 169.00 214.00 200.00· 219.00 227.00 147.67 131.50 175.00 137.00 132.00 94.00 100.00 76.40 73.00 1.5 2.0 Cluster Number of Case Case from its Classification (b)

Fig. 2. Governorate observations are distributed over the clusters as shown in pictures (a), (b), and (c).

Fig. 2. Continued.

Conclusion

The optimal number of clusters is three, as shown by creftb2,tb4 that means that the governorates in Saudi Arabia were divided into three groups based on the similarity in data characteristics (and their contribution to the spread of the disease). While Table 3 shows a very excellent result from the clustering process with four iterations, we saw a poor outcome when we tested the data with a different number of clusters; hence, the optimal number of clusters is three. Table 5 shows that we have rejected the H_0 and the results of applying ANOVA to analyze the difference between the means of the clusters and determine whether these differences are statistically significant are shown, since the significance for each governorate was smaller than the F = (0.01) excepted Aljouf governorate, indicating differences between governorates in the spread of the disease. Finally, we have concluded from this study that the more affected governorates (Riyad, Maka, and Eastern) since the significance was = 0 as shown in Table 6 and because of the abundance of trade and the influx of people from all over the world.

Based on this conclusion, we expect that these governorates will be the basis for the spread of any pandemic in the future.

Acknowledgment

We appreciate the efforts of everyone who contributed even a little to this work.

Authors' declaration

- · Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for republication, which is attached to the manuscript.
- No animal studies are present in the manuscript.
- No human studies are present in the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee at University of Baghdad.

Authors' contribution statement

R M, W R. And I H designed the study. I H collected and refined the data, drew the algorithm and tables, R. analyzed the data and obtained the final results, and R and W wrote the research text.

References

- Kalpit GS, Atul P. Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data. International Int J Curr Innov Res. 2017;13(5):899–906.
- Devi YB, Dayang NAJ, Shahliza AH, Fransiskus A. Natural Language Processing For Requirement Elicitation in University Using Kmeans And Maenshift Algorithm. Baghdad Sci J. 2024;21(2 Special Issue):0561–0567. https://doi.org/10. 21123/bsj.2024.9675.
- 3. Shrook ASA, Bahaa ARQ, Ashraf MS. Using the Hierarchical Cluster Analysis and Fuzzy Cluster Analysis Methods for Classification of Some Hospitals in Basra. Baghdad Sci J. 2021;18(4):1212–1217. http://dx.doi.org/10.21123/bsj.2021.18.4.1212.
- Zeynel C, Figen Y. Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster structures. Journal of Agricultural Informatics. 2015;6(3):13–23. https://doi.org/10.17700/jai.2015.6.3.196.

- 5. YanPing Z, XiaoLai Z. K-means Clustering Algorithm and its Improvement Research. J Phys Conf Ser. 2021;1873:1–5. http://dx.doi.org/10.1088/1742-6596/1873/1/012074.
- Yadgar SA. A new approach to the Fuzzy c-means Clustering Algorithm by Automatic Weights and Local Clustering. Passer J Basic Appl Sci. 2021;3(1):95–101. https://doi.org/10.24271/psr.18.
- Kristina PS, Miin-Shen Y. Unsupervised K-Means Clustering Algorithm. IEEE Access. 2020;8:80716–80720. http://dx.doi. org/10.1109/ACCESS.2020.2988796.
- Rand MF, Iden HA. Turbid of Water By Using Fuzzy C- Means and Hard K- Means. Baghdad Sci J. 2020;17(3):988–993. https://doi.org/10.21123/bsj.2020.17.3(Suppl.).0988.
- Youguo L, Haiyan W. A Clustering Method Based on K-Means Algorithm. Phys Procedia. 2012;25:1104–1109. http://dx.doi.org/10.1016/j.phpro.2012.03.206.
- Sonia Y, Sachin S. Study Of Existing Methods & Techniques Of K-Means Clustering. Educ Adm.: Theory Pract. 2024;30(4):1806–1813. https://doi.org/10.53555/kuey. v30i4.1755.

تقنية العنقدة المعتمدة على طريقة متوسطات K الحادة لتحديد المحافظة الأكثر تأثيرا في انتشار كوفيد-19في المملكة العربية السعودية

رند مهند فوزی 1 ، ورود ریاض عبدالحسین 2 ، ایدن حسن الکنانی 3

 1 قسم الرياضيات ، كلية التربية للعلوم الصرفة ابن الهيثم،جامعة بغداد، بغداد، العراق.

المستخلص

تعد المملكة العربية السعودية مكان تجمع اغلب جنسيات العالم الاسلامي فعند انتشار مرض معين سيكون من المهم معرفة اي محافظة ذات التأثير الاكبر في انتشار المرض لاتخاذ الاحتياطات اللازمة للحد من انتشاره و هذا هو الهدف من هذه الدراسة. كوفيد-19، أحدث الجائحة سببها فيروس كورونا SRS-COV-2 يُعرف بجائحة كورونا. ومن أجل تحديد المحافظة السعودية التي كان لها التأثير الأكبر على انتشار الوباء، تم جمع البيانات الفعلية لثلاث عشرة محافظة على مدار شهرين (يوليو وأغسطس). وتم تحليل البيانات باستخدام التحليل العنقودي. تم تقسيم المحافظات السعودية إلى عناقيد (مجموعات) باستخدام تقنية التجميع (Hard K-Means (H.KM) عنقود المجموعات) من خلال تطبيق طريقة صحة العنقدة لتحديد المجموعة التي لها التأثير الأكبر على التأثير الأكبر على انتشار الوباء. نستخدم تحليل التباين (جدول ANOVA) لتحديد المحافظة التي لها التأثير الأكبر على انتشار المرض من خلال معرفة التباين داخل كل عنقود (مجموعة)و بين العناقيد (المجموعات) و الهدف م تحليل انتشار المرض من خلال معرفة التباين داخل كل عنقود (مجموعة)و بين العناقيد) من حيث انتشار المرض من حديد ما اذا كانت هناك فروق ذات دلالة إحصائية بين المحافظات (العناقيد) من حيث انتشار وباء كورونا.

الكلمات المفتاحية: جدول انوفا، العنقدة، كورونا، متوسطات K الحادة، صحة العنقدة.

² قسم الرياضيات و تطبيقات الحاسوب، كلية العلوم ، جامعة النهرين ، بغداد ، العراق.

³ قسم الرياضيات ، كلية العلوم للبنات ، جامعة بغداد، بغداد ، العراق.