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Abstract: Electricity load patterns are inherently volatile, driven by consumer demand 

patterns, seasonal patterns, and consumption behavior. Modeling and forecasting 

volatility in these patterns is critical to landscape planning and electricity system 

stability in areas such as the Sulaimani Governorate. The study uses the HYGARCH 

model on Sulaimani's electricity demand to better capture volatility patterns, improving 

forecast accuracy. It enhances energy planning and lays the groundwork for applying 

advanced GARCH models beyond finance and offers a new approach to support 

sustainability in regions with similar demand patterns. For this reason, the objective of 

the study is to model and assess the volatility of electricity load data using a hyperbolic 

GARCH (HYGARCH) model, a suitable model that provides reliable modeling of long 

memory and volatility clustering in time series data.  

The hyperbolic GARCH (HYGARCH) model is an advanced variant within the 

GARCH family, tailored to more accurately depict volatility clustering and long-term 

dependencies in time series data. Its versatility makes it particularly apt for modeling 

asset return dynamics, as it incorporates both conditional heteroscedasticity and the 

empirically observed stylized facts. The HYGARCH model uses hourly load data to 

measure volatility patterns and provide information to inform decision-making for 

future resource allocation when managing energy. This study adds to the literature by 

applying the HYGARCH model to the energy sector, demonstrating the model is 

valuable and relevant when outside conventional financial applications. The results 

indicated that the model's coefficients indicate a significant long memory in volatility (d 

= 0.885422112), suggesting that shocks might have enduring impacts. The 24-hour-

ahead estimates provide stability after an initial increase, assisting energy planners in 

managing demand unpredictability and enhancing resource allocation. 

Keywords: Hyperbolic GARCH model, Volatility, Long memory, High frequency data. 

 
نمذجة التقلبات في أنماط الحمل الكهربائي في محافظة السليمانية باستخدام نموذج  

HYGARCH  الهايبربوليكي 
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 2آراس جلال محمد  أ.د. ،1 عبداللە نیام ەشاجوان حمالباحث:  

 

 العراق السلیمانیة، ،والاقتصاد كلیة الإدارة ة/جامعة السلیمانی -قسم الإحصاء والمعلوماتیة 2،1

 
الموسمیة    تتسم  المستخلص: والأنماط  المستهلكین  بأنماط طلب  مدفوعة  المتقلبة،  بطبیعتها  الكهربائي  الحمل  أنماط 

النظام  واستقرار  المشهد  لتخطیط  الأهمیة  بالغ  أمر  الأنماط  هذه  في  التقلبات  وتوقع  نمذجة  إن  الاستهلاك.  وسلوك 

نموذج الدراسة  تستخدم  السلیمانیة.  محافظة  مثل  مناطق  في  في  HYGARCH الكهربائي  الكهرباء  طلب  على 

السلیمانیة لالتقاط أنماط التقلب بشكل أفضل، مما يحسن دقة التنبؤ. إنها تعزز تخطیط الطاقة وتضع الأسس لتطبیق  

 .المتقدمة خارج المالیة وتقدم نهجاً جديداً لدعم الاستدامة في المناطق ذات أنماط الطلب المماثلة GARCH نماذج

نموذج باستخدام  الكهربائي  الحمل  بیانات  تقلبات  وتقییم  نمذجة  هو  الدراسة  هدف  فإن  السبب،   GARCH لهذا 

في  (HYGARCH) الهايبربولیكي التقلبات  وتجمیع  الطويلة  للذاكرة  موثوقة  نمذجة  يوفر  مناسب  نموذج  وهو   ،

 .بیانات السلاسل الزمنیة

عائلة (HYGARCH) الهايبربولیكي GARCH نموذج ضمن  متقدم  متغیر  لتصوير GARCH هو  مُصمم   ،

بشكل خاص   تجعلە مرونتە مناسباً  أكبر.  بدقة  الزمنیة  السلاسل  بیانات  في  المدى  والتبعیات طويلة  التقلبات  تجمیع 

المُلاحظة   المُصممة  والحقائق  الشرطي  التجانس  عدم  من  كلاً  يدمج  حیث  الأصول،  عوائد  دينامیكیات  لنمذجة 

 ً  .تجريبیا

نموذج القرار  HYGARCH يستخدم  معلومات لإرشاد صنع  وتوفیر  التقلب  أنماط  لقیاس  بالساعة  الحمل  بیانات 

نموذج تطبیق  خلال  من  الأدبیات  إلى  الدراسة  هذه  تضیف  الطاقة.  إدارة  عند  المستقبلیة  الموارد   لتخصیص 

HYGARCH على قطاع الطاقة، مما يظُهر أن النموذج قیم وذو صلة عند الخروج عن التطبیقات المالیة التقلیدية. 

(، مما يشیر d = 0.885422112أشارت النتائج إلى أن معاملات النموذج تشیر إلى ذاكرة طويلة مهمة في التقلب ) 

الـ   تقديرات  دائمة.  تأثیرات  لها  يكون  قد  الصدمات  أن  مما   24إلى  أولیة،  زيادة  بعد  استقراراً  توفر  القادمة  ساعة 

 يساعد مخططي الطاقة في إدارة عدم القابلیة للتنبؤ بالطلب وتعزيز تخصیص الموارد. 

 . ، التقلب، الذاكرة الطويلة، البیانات عالیة التكرارالهايبربولیكي GARCHنموذج  الكلمات المفتاحية:

Corresponding Author: E-mail: shajwan.h.abdalla@gmail.com    

 

Introduction  

Statistical modeling is beneficial for interpreting complex, temporal data, but especially for 

understanding and predicting how systems evolve over time. Time series analysis has emerged as 

robust tools forecast temporal patterns providing researchers and decision-makers an avenue for 

judgment on future outcomes using historical (past) data. In recent years, volatility modeling in 

time series has garnered considerable interest, as comprehending unpredictability is crucial across 

many applications.  

The GARCH (Generalized Autoregressive Conditional Heteroskedasticity) family and its 

expansions, including HYGARCH (Hyperbolic-GARCH), are among the most prevalent models, 

adeptly capturing both heteroskedasticity and long memory behavior. This framework has 

demonstrated substantial effectiveness for high-frequency data applications (Davidson, 2004). The 

present study is based on hourly power load data. This data reflects energy use via includes energy 

usage data, providing multiple data points of information about demand, periods of peak usage and 

fluctuations in energy use, and associated demand. Statistical models help us with interpreting 

complex time series data and they are valuable in identifying and predicting changes in a temporal 

system. Time series have become the best available means of exploring time-related patterns to 

make forecasts, now allowing academics and decision-makers to understand future conditions based 

on prior analyses. 

Many researchers have worked with the HYGARCH framework. Conrad (2010) focused on the 

conditions required to maintain the conditional variance (that is, to satisfy the non-negativity 

conditions) for HYGARCH, and emphasized these conditions are critical for generating reliable 

multi-step-ahead forecasts (Conrad, 2010). Mohammadi and Rezakhah (2017) presented the 

Smooth Transition HYGARCH (ST-HYGARCH) model that uses the logistic function to model 

time-varying volatility regimes, and showed it improved forecasting accuracy dramatically for 

financial indexes like S&P 500 (Mohammadi and Rezakhah, 2017). Shi and Yang (2018) proposed 

the Adaptive Hyperbolic EGARCH (A-HYEGARCH) model that can appropriately model both 

long memory and structural shifts in high-frequency financial data (Shi and Yang, 2018). Li et al. 
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 (2012) also evaluated the practical limits of HYGARCH using score tests and simulations and 

showed that the practical limitations made HYGARCH difficult to implement in practice, even 

while being very theoretically promising (Li et al., 2011). 

Despite advancements in time series modelling, the application of the Hyperbolic GARCH 

(HYGARCH) model in the energy sector, particularly for modelling electricity load data, remains 

limited. In regions like the Sulaimani Governorate in Iraq, electricity demand is highly variable due 

to seasonality, consumer behaviour, and infrastructure constraints. Traditional models often 

overlook the long memory and volatility clustering that these data exhibit, leading to suboptimal 

forecasting and inefficient energy planning. In contrast, the HYGARCH model, which is better 

suited for capturing these complexities, offers a promising alternative for modelling long-memory 

systems. 

 However, its application to electrical load data in the energy domain remains underexplored. To 

address this gap, the current study poses the question: To what extent can the Hyperbolic GARCH 

(HYGARCH) model accurately capture and predict volatility, long memory, and clustering in 

electrical load patterns in the Sulaimani Governorate-Iraq, and how can it aid in energy planning 

and policy formulation? Therefore, this research aims to fill this gap by examining the efficacy of 

the HYGARCH model can accurately capture and predict volatility, long memory, and clustering in 

electricity load patterns in Sulaimani Governorate, Iraq, and it aims to demonstrate how the model 

can enhance energy planning and policy formulation by providing reliable forecasts.  

Specifically, it focuses on analyzing hourly electrical load data to measure volatility, detect long 

memory characteristics, and generate accurate forecasts that can inform energy management 

strategies. In addition, the current study consists of four sections. The following section presents a 

theoretical overview of the HYGARCH model, while the third section discusses the data and results 

of forecasting volatility in electrical load data. The last part presents conclusions and further 

discussion on the findings. 

1st: Theoretical Part and Model Specification 

1- Hyperbolic GARCH (HYGARCH) Model 

The Hyperbolic GARCH model is a suggested extension of the classic GARCH family suitable for 

describing volatility clustering and longtime characteristics (Conrad, 2010),(Baillie et al., 

1996),(Shi and Yang, 2018). While the classic GARCH model assumes short memory of shocks to 

volatility (Bollerslev, 1986), the HYGARCH model incorporates long memory, much suited for 

financial data, where the volatility persists over a longer duration (Cont, 2007). The model thus 

represents a very good way of valuing returns of assets considering both conditional 

heteroscedasticity and the stylized aspects of volatility in financial settings and has also been 

extended into realized volatility frameworks (Sall et al., 2021), (P et al., 2006), this makes it 

particularly apt for modeling asset return dynamics, as it incorporates both conditional 

heteroscedasticity and the empirically observed stylized facts (Akgül and and Sayyan, 2008). 

HYGARCH Model is expressed as: 

𝒚_𝒕 = 𝝁 + 𝝐_𝒕 

𝝐𝒕 = 𝝈𝒕𝒛𝒕 

𝜎𝑡
2 = 𝑤 + ∑ 𝛼𝑖𝜖𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

+ 𝛾𝜎𝑡−1
2 (∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

)

𝛿

 

where 𝑦𝑡 is the asset return at time 𝑡, 𝜇 is the mean return, 𝜖𝑡 is the innovation(residual), 𝜎𝑡
2 is the 

conditional variance at time 𝑡, 𝛼𝑖, 𝛽𝑗are the GARCH parameters,𝛿 represents the hyperbolic scaling 

factor and 𝑧𝑡 is a white noise process ((Conrad, 2010), (Baillie et al., 1996)). 

2- Stationary Process 

Time series stationary is a core term in time series analysis referring to a process where the 

statistical nature-the mean, variance and autocovariance-are constant over time. Stationarity is 
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 required in a time series model for it to be valid (Manimaran et al., 2006). A constant conditional 

variance with respect to the time process refers to stationarity in volatility models such as GARCH 

and HYGARCH. 

Types of Stationarity: 

- Strict Stationarity: Moment in the distribution does not change when shifted with respect to time. 

- Weak Stationarity: The first two moments (the mean and the variance) are constants, and the 

covariance between values depends only on their time difference, not the points themselves in time. 

Most volatility models assume weak stationarity (Tsay, 2005), which ensures that although the 

underlying time series itself varies, the conditional variance is constant through time. 

A. Stationarity Conditions Specific to Hyperbolic GARCH 

The Hyperbolic GARCH (HYGARCH) model extends the Fractionally Integrated GARCH 

(FIGARCH) model (Baillie et al., 1996)by permitting a convex combination of GARCH and 

FIGARCH conditional variances (Conrad, 2010), (Sall et al., 2021). The stationarity criteria of a 

HYGARCH model are established as follows: 

Define the conditional variance equation of the HYGARCH model as follows: 

𝜎𝑡
2 = 𝑤 + (1 − 𝛽𝐿)−1(1 − 𝜙𝐿)(1 − 𝐿)𝑑𝜖𝑡

2 

When 0 ≤ 𝑑 ≤ 1 long-memory behavior is guaranteed, and stationarity conditions necessitate that  

∑𝜋𝑗 < ∞where 𝜋𝑗are the weights in the infinite ARCH representation(Conrad, 2010), (Baillie et al., 

1996). 

B. Execution and Analysis of Augmented Dickey-Fuller (ADF) Tests  

The ADF test is used to check the stationarity through null hypothesis of unit root (Manimaran et 

al., 2006). 

𝛥𝑦  𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + ∑ 𝛿𝑖 𝛥𝑦𝑡 − 𝑖

𝑝

1=1
+ 𝜖𝑡 

Where: 𝑦𝑡 isthe examined time series,𝛥𝑦𝑡 =  𝑦𝑡 − 𝑦𝑡−1is the first difference of the time series, 𝛼isa 

constant term (also called the drift term),𝛽is the coefficient of the deterministic trend t (if 

included),𝑡isthe time index (used when testing for trend stationarity),𝛾isthe coefficient of𝑦𝑡−1 , 

which determines whether the series has a unit root,𝑝 is the number of lagged differences 

incorporated to adjust for serial correlation,𝛿𝑖is the coefficients of the lagged first differences 

𝛥𝑦𝑡 − 𝑖and 𝜖𝑡is a white noise error term(Manimaran et al., 2006). 

Phillips-Perron Adjustment  

The PP test adjusts the test statistics from the ADF regression to include serial correlation and 

heteroskedasticity in 𝜖𝑡. Instead of augmenting the model through lagged differences, the PP test 

modifies the test statistic using nonparametric estimates the variance in the long term. The adjusted 

t-statistic is expressed as follows (Manimaran et al., 2006), (Tsay, 2005): 

 

𝑧𝑇 = 𝑡𝛾 −
(𝑠2 − 𝜎̂2)

2𝜎̂2
(𝑇 ∑ 𝑦𝑡−1

2

𝑇

𝑡=1

)

−1
2⁄

 

Where𝑡𝛾 is the t-statistic from the ADF test,𝑠2 is a consistent estimator of the long-run variance of 

𝜖𝑡,𝜎̂2is the variance of 𝜖𝑡 and 𝑇 is the sample size(Manimaran et al., 2006). 

 The long-run variance is estimated utilizing the Newey-West estimator: 

𝑠2 = 𝜎̂2 + 2 ∑ (1 −
𝑗̇

𝑚 + 1
) 𝛾𝑗

𝑚

𝑗=1

 

where𝑚 is the truncation lag and 𝛾𝑗 is the sample autocovariance at lag j(Tsay, 2005). 
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 3- Estimation Methods 

A. Maximum Likelihood Estimation 

The estimation of parameters of the ARCH-GARCH model is more complex than that of the CER 

model. The parameters of conditional variance do not have a simple plug-in principal estimator. On 

the other hand, parameters of the ARCH-GARCH models are often estimated using by another 

technique called maximum likelihood (ML) (Engle, 1982), (Bollerslev and and Wooldridge, 1992), 

calibration techniques such as MLE have been applied in many engineering contexts (Singh et al., 

2024).This section summarizes ML estimation and shows how to use it to estimate the parameters 

of the ARCH-GARCH model. 

 

The Likelihood Function 

This constructs a joint density function that serves as a T-dimensional representation based on 

observations 𝑋1, … , 𝑋𝑇, conditioned on parameters contained in basic vector 𝜃. 

𝑓(𝑥1, … , 𝑥𝑇; 𝜃) = 𝑓(𝑥1; 𝜃) ⋯ 𝑓(𝑥𝑇; 𝜃) = ∏ 𝑓(𝑥𝑡; 𝜃)

𝑇

𝑡=1

. 

 

The joint density must satisfy specific conditions: it should remain non-negative i.e., 

𝑓(𝑥1, … , 𝑥𝑇; 𝜃) ≥ 0, and should integrate to one over all its variables:  

∫ ⋯ ∫ 𝑓(𝑥1, … , 𝑥𝑇; 𝜃)𝑑𝑥1 ⋯ 𝑑𝑥𝑇 = 1. 
The probability function itself emerges from interpreting this joint density with respect to the 

parameters encapsulated in 𝜃: 

𝐿(𝜃|𝑥1, … , 𝑥𝑇) = 𝑓(𝑥1, … , 𝑥𝑇; 𝜃) = ∏ 𝑓(𝑥𝑡; 𝜃)

𝑇

𝑡=1

 

observe that the likelihood function is also a 𝑘 dimensional function of 𝜃, which is conditioned on 

data𝑥1, ⋯ , 𝑥𝑇.It should be noted that the likelihood function, in terms of 𝜃 not the data, is not a true 

probability density function. 

∫ ⋯ ∫ 𝐿(𝜃|𝑥1, … , 𝑥𝑇)𝑑𝜃1 ⋯ 𝑑𝜃𝑘 ≠ 1. 
Specifically, ∫ ⋯ ∫ 𝐿(𝜃|𝑥1, … , 𝑥𝑇)𝑑𝜃1 ⋯ 𝑑𝜃𝑘 is positive, but it is not 1. 

For convenience, assume that the vector  𝑥 = (𝑥1, … , 𝑥𝑇)′is the observed sample, and denote the 

joint probability density function as 𝑓(𝑥; 𝜃)  and the likelihood function as 𝐿(𝜃|𝑥), (Engle, 1982, 

Bollerslev and and Wooldridge, 1992, Kim et al., 1998) 

Maximum Likelihood Estimation (MLE) for HYGARCH 

Maximum Likelihood Estimation (MLE) is a popular method in estimating parameters for time-

series models, including HYGARCH. Written into its definition is the probability distribution of the 

residuals 𝒛𝒕, commonly chosen among a normal or t-distribution (Kim et al., 1998). Hence, the 

purpose is to optimize the likelihood function concerning the model parameters 𝜃 =

(𝑤, 𝛼𝑖, 𝛽𝑗 , 𝛾, 𝛿). 

 The general form of the log-likelihood for HYGARCH is: 

𝑙𝑛 𝐿(𝜃) = ∑ 𝑙𝑛 [

𝑇

𝑡=1

𝑓(𝜖𝑡|𝜎𝑡
2, 𝜃) ] 

 where 𝑓(𝜖𝑡|𝜎𝑡
2, 𝜃)indicates the conditional density of 𝝐𝒕, and 𝜎𝑡

2 the conditional variance 

prescribed by the HYGARCH model(Manimaran et al., 2006), (Bollerslev and and Wooldridge, 

1992). 
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 B. Quasi-Maximum Likelihood Estimation (QMLE) 

QMLE finds great use in cases where estimation of the likelihood function proves difficult, or the 

errors are difficult to model with a simple normal distribution. A quasi-likelihood function is used 

to approximate the real likelihood function. The application of the quasi-likelihood maximum-

likelihood estimation method becomes, therefore, central in those kinds of models with non-normal 

errors (Bollerslev and and Wooldridge, 1992), (Kwan et al., 2012), (Nelson, 1991)where the 

likelihood function has no analytical tractability. 

Log-Likelihood Function  

The likelihood function 𝐿(𝜃)for the entire sample (from  𝑡 = 1 to 𝑡 = 𝑇)is the joint probability of 

all residuals: 

𝐿(𝜃) = ∏ 𝑓(𝜖𝑖|ℎ𝑡)

𝑇

𝑡=1

 

Substituting the normal PDF into this product, we get: 

𝐿(𝜃) = ∏
1

√2𝜋ℎ𝑡

exp (−
𝜖𝑡

2

2 ⋅ ℎ𝑡
)

𝑇

𝑡=1

 

Applying the natural logarithm of the likelihood function to get the log-likelihood function: 

𝑙𝑜𝑔𝐿(𝜃) = ∑ [− log(√2𝜋ℎ𝑡) −
𝜖𝑡

2

2ℎ𝑡
]

𝑇

𝑡=1

 

Simplifying the logarithm terms: 

𝑙𝑜𝑔𝐿(𝜃) = ∑ [−
1

2
log(2𝜋ℎ𝑡) −

𝜖𝑡
2

2ℎ𝑡
]

𝑇

𝑡=1

 

This represents the log-likelihood function for a normal distribution with conditional variance ℎ𝑡, 

which is contingent upon the parameters 𝜃 of the HYGARCH model. 

The ultimate log-likelihood function for the HYGARCH model is articulated as: 

 

𝐿(𝜃) =  −
1

2
∑ [log(2𝜋ℎ𝑡) +

𝜖𝑡
2

ℎ𝑡
]

𝑇

𝑡=1

 

 

The initial equation utilized for estimating the model parameters 𝜃 = (𝜔, 𝛼, 𝛽, 𝑑)involves 

maximizing the log-likelihood function(Bollerslev and and Wooldridge, 1992),(Kwan et al., 2012), 

(Nelson, 1991). 

4- Model Selection and Assessment 

A. Goodness-of-Fit of Model 

Goodness-of-fit (GOF) tests are statistical methods employed to evaluate the compatibility of a 

dataset with a designated probability distribution, with various tests exhibiting differing efficacy 

based on the type of divergence from the null hypothesis. The goodness-of-fit of a model quantifies 

its efficacy in representing the observed data. In the case of volatility models, such as HYGARCH, 

evaluating the goodness-of-fit guarantees (Meintanis et al., 2020)that the model represents 

important characteristics of financial time-series-like volatility clustering, persistence, and long 

memory. A variety of statistical tests and diagnostic methods exist for the evaluation of goodness-

of-fit. 
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 (1) Likelihood-Based Criteria (AIC, BIC) 

The AIC and BIC are two perspectives often drawn on when measuring model fit quality. These 

criteria balance model fit with model complexity: the more complex the model, the more 

parameters it has, thus a higher penalty is given to avoid overfitting. 

- AIC: AIC = -2 𝑙𝑛(𝐿)+ 2𝑘 

- BIC: BIC = -2 𝑙𝑛(𝐿)+ 𝑘 𝑙𝑛(𝑇) 

 

where ln(L) represents the log-likelihood, k denotes the total number of parameters examined, and 

T signifies the number of observations in the sample(Manimaran et al., 2006), (Tsay, 2005) 

 

(2) Out-of-Sample Forecasting Performance 

Out-of-sample forecasting refers to fundamental to model assessment. This is because, when 

assessing the model, data which has not been involved in its estimation or fitting is used. This tests 

to see if the model can generalize to never-before-seen data (Tashman, 2000).Standard metrics for 

evaluating out-of-sample forecasting ability include Mean Squared Error, Mean Absolute Error, and 

Theil U-statistic(Tashman, 2000). When creating out-of-sample tests for a single time series, the 

most important question to answer is how to separate the periods for fitting and testing. This 

separation determines how much data we can use to develop and fit a forecasting model, and how 

many forecasts will be available to complete the out-of-sample test of model performance. There 

are many issues to consider when determining the appropriate number of periods N to drop from the 

time series. The most important criterion is the length of the long-term forecast required. Let H be 

this maximum length forecast required. Then, N should be at least equal to H. It may also be 

worthwhile to extend the out-of-sample test period so that we may have M forecasts at lead time H. 

The out-of-sample duration will be defined as H + M - 1 predictions. Considering the minimum is 

M = 3, a rolling-origin assessment should be constructed with a test period of length H + 2 

(Tashman, 2000). For example, if the desired long-term forecast is for five years ahead (H = 5), we 

would choose a test period of seven years so that the assessment of accuracy to forecast five years 

ahead can draw from at least three forecasts. To assess the distribution of forecast errors, a 

significantly higher number of forecasts is needed rather than simply the average error measures. 

Short time series limit the testing period, since truncating the data may not provide enough 

observations to fit the model properly. In this case, we can take full advantage of the rolling-origin 

approach for analyzing one-step ahead forecast errors while retaining enough information to fit the 

model, without letting the fit period become too short. We need to evaluate the model using out of 

sample predictions with accuracy metrics: 

Root Mean Square Error (RMSE) 

Calculates the average of the squared differences between predicted and actual values. A reduced 

RMSE signifies superior performance prediction accuracy (Tashman, 2000). 

𝑅𝑀𝑆𝐸 = √
1

𝑇
𝛴(𝑦𝑡 − 𝑦̂𝑡)2 

Whereyt is actual value, ŷt is predicted value andT is number of observations 

 

Mean Absolute Error (MAE) 

Quantifies the mean absolute discrepancies between predicted and actual values (Tashman, 2000). 

𝑀𝐴𝐸 =
1

𝑇
∑ ∣ 𝑦𝑡 − 𝑦̂𝑡 ∣ 

• Less sensitive to extreme errors than RMSE. 

• A lower MAE indicates better model performance(Tashman, 2000). 
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 Diebold-Mariano (DM) Test 

The Diebold-Mariano (DM) Test measures the forecasting accuracy of HYGARCH model 

forecasting compared with plausible similar models such as GARCH or FIGARCH (Tashman, 

2000). DM Test Statistic: 

𝐷𝑀 =
𝑑̅

√2𝜋𝑓𝑑(0)
𝑇

 

Where 

𝑑̅ is the mean difference between forecasting errors of two models, 𝑓𝑑(0) is the spectral density at frequency 0 and𝑇 is the sample size
(Diebold and Mariano, 1995). 

A notable DM test outcome indicates that one model substantially surpasses the other.  

(3) Likelihood Ratio Test (LRT) 

A Likelihood Ratio Test (LRT) is one of the methods used to evaluate competing models [12], one 

of which is a non-complex (more restricted) form of the other. Here, the likelihood ratio tests 

whether the additional complexity of a more flexible model is justified by a significantly better fit. 

Hypothesis are 𝐻0: The simple model is adequate and 𝐻1: The more complex model has a 

significantly better fit. The likelihood ratio test (LRT) statistic is computed as: 

𝐿𝑅 = −2[𝑙𝑛 𝐿(𝜃𝑟) − 𝑙𝑛 𝐿(𝜃𝑢)] 
Where 𝐿(𝜃𝑟) is the likelihood of the constrained model and 𝐿(𝜃𝑢): is the likelihood of the 

unrestricted (full) model [12]. This statistic follows a chi-square (𝜒²) distribution with its degrees of 

freedom equal to the different numbers of parameters between the models. 

 A significant test result indicates that the unrestricted model fits the data better. 

Other diagnostics, which express whether or not the residuals (errors) obtained from the model 

respect the expected behavior according to certain leads, are used. Some of the most crucial 

residual-based hypothesis tests regarding volatility specifications. 

2nd: Practical Analysis, Discussion and Results 

1- Data description 

This study used a file from the General Directorate of power of Sulaimani, which compiled hourly 

power load data for Sulaimani from April 1, 2023 to December 31, 2023. This dataset contained 

hourly power load data for 275 consecutive days, a total of 6,600 observations (275 days times 24 

hours). The load numbers are in amperes (A) and produce a measure of the instantaneous electric 

consumption in the Sulaimani Governorate. Thus, each observation signifies the electrical load at a 

certain hour of a day, with the data providing a complete observation for each hour of each day in 

the collection. This high-resolution, high-frequency time series reflects the daily, monthly, and 

seasonal nature of power usage - and is well suited for modelling and forecasting volatility. Since 

the data provided multiple seasons, it is ideal for modelling effects such as volatility clustering, long 

memory variables, and seasonal patterns in energy consumption. This complete picture forms a 

good foundation for the Hyperbolic GARCH (HYGARCH) modelling framework in advancing our 

understanding of load dynamics and effective energy management and planning. 

A. Descriptive Statistics and Time Series Properties 

In figureFigure (1, shows the raw time series of electric power load meanwhile the study period. 

There are very spasmodic fluctuations in electricity consumption as the load figures were reported 

to vary from roughly 20,000 up to 60,000 amperes. Electricity load shows variability in time of 

electricity demand as noted in the Sulaimani region's electricity load is based on patterns that 

include daily and seasonable trends, consumer practice, and supply chain demands. 
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Figure (1): Electric Power Load Over Time, April 2023-January 2024 

We initially assessed the stationarity characteristics of the series to prepare the data for volatility 

modelling. In accordance with typical procedures in time series analysis, we converted the raw load 

data into logarithmic returns: 

𝑟𝑡 = 𝑙𝑛(𝑋𝑡) − 𝑙𝑛(𝑋𝑡−1) 

where 𝑋𝑡 represents the load at time 𝑡, and 𝑟𝑡 is the appropriate logarithmic return. This 

transformation seeks to stabilize variance and attain stationarity, a condition for implementing 

GARCH-type models. 

In figure (2) illustrates the logarithmic returns of the power load data. Visual examination reveals 

that the returns seem stable, exhibiting volatility clustering across the series intervals of elevated 

volatility tend to succeed one another, as do intervals of diminished volatility. The clustering 

behavior is a fundamental attribute that GARCH-family models aim to represent. 

 

 
Figure (2): Log Returns of Power Load, April 2023-January 2024 

 

B. Stationary Testing 

We undertook the Augmented Dickey-Fuller (ADF) test to formally determine the stationary of our 

log returns series. The results shown in Table 1 clearly reject the unit-root null hypothesis (Dickey-
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 Fuller =-24.675, p-value = 0.01), thus concluding that the log returns series is stationary. The 

stationary of the log returns is important to allow for confident implementation of our volatility 

modelling choice. 

Table (1): Augmented Dickey-Fuller Test Results 

Test Statistic Lag Order p-value Conclusion 

-24.675 18 0.01 Stationary 

2- Volatility Characteristics Assessment 

A. Volatility Clustering 

In order to determine if volatility clustering exists in the log returns series, we calculate the 

autocorrelation function (ACF) of the squared returns. Figure (3) depicts the ACF of squared 

returns from 0 lag up to 30 lags with significant autocorrelations present over a wide range of lags. 

This evidence of volatility clustering suggests that there is strong persistence in volatility; past 

volatility serves as an effective predictor of future volatility,  which is not accounted for in naive 

time series models. 

 

Figure (3): ACF of Squared Returns 

B. ARCH Effects Testing 

Prior to the estimate of the HYGARCH model, we performed Engle's ARCH Lagrange Multiplier 

(LM) test to explicitly ascertain the existence of ARCH effects in the dataset. In Table 2 The results 

(Chi-squared = 2240.2, df = 12, p-value < 2.2e-16) decisively reject the null hypothesis of the 

absence of ARCH effects, affirming that volatility in the electrical load data demonstrates time-

varying conditional heteroskedasticity. This discovery corroborates our choice to utilize GARCH-

family models for the analysis. 

Table (1): ARCH LM Test Results 

Chi-squared Degrees of Freedom p-value Conclusion 

2240.2 12 < 2.2e-16 ARCH effects present 

 

C. Long Memory Assessment 

There is a significant theoretical advantage for the HYGARCH model, which is that it can capture 

long memory features in volatility processes. In order to determine if our data has long range 
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 dependence, we created a long-memory test. The value we calculated for the fractional differencing 

parameter d was 4.583013e-05 just over zero. This represents some long memory characteristics 

and makes us confident we can fit the HYGARCH model to our data. 

Moreover, we also performed the Ljung-Box test on the squared residuals for residual serial 

autocorrelation. The stunning result (X-squared = 475.33, df = 20, p-value < 2.2e-16) indicates 

there is considerable year-autocorrelation in the squared residuals, thus supporting the need for a 

model that can simultaneously handle volatility clustering and long memory effects. 

3- HYGARCH Model Estimation 

A. Model Specification and Parameter Estimation 

Following the prior work, we defined and estimated a HYGARCH model for the logarithmic 

returns of electrical load. The model was estimated via the maximum likelihood method, with 

optimization executed via a quasi-Newton algorithm. The parameter estimations are displayed in 

Table 3. 

Table (2): HYGARCH Parameter Estimates 

Parameter Estimate Interpretation 

ω (omega) 0.001254639 Baseline volatility level 

α (alpha) 0.227949752 Impact of short-term shocks 

β (beta) 0.305158104 Persistence of volatility 

d 0.885422112 Long memory parameter 

λ (lambda) 0.859831125 Hyperbolic decay rate 

 

Based on the HYGARCH coefficients we calculated, we can infer some meaningful characteristics 

of the volatility process of Sulaimani’s electrical load data: 

 

1. The low ω (0.001254639) value indicates that there is a relatively low level of unconditional 

volatility. 

2. The value of α (0.227949752) reflects the impact of transitory shocks on volatility. 

Its moderate magnitude suggests that recent shocks have a noticeable but not dominant effect on 

current volatility. 

3. The value of β (0.305158104) represents the persistence of volatility. This mid-range 

value implies that while volatility exhibits some degree of persistence, it is not excessively short-

term. 

4. The d parameter (0.885422112) is particularly significant, as it quantifies the degree of long 

memory in the volatility process. Its closeness to 1 signal strong long-memory behaviour, 

indicating that volatility shocks have a lasting influence on the electricity load data. 

5. The λ parameter (0.859831125) controls the hyperbolic decay rate of the autocorrelation 

function. Since the value is below 1, it ensures the stationarity of the process while still allowing 

for substantial persistence. 

The amalgamation of these factors suggests that the HYGARCH model proficiently 

encapsulates both the short-term dynamics and long-memory attributes of volatility 

in the electrical load data from Sulaimani. 

B. Model Diagnostics 

We also ran diagnostic tests of the standardized residuals to assess whether the fitted HYGARCH 

model was appropriate. The ACF for the standardized residuals from the fitted HYGARCH model 

can be found in Figure (4). 
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Figure (4): ACF of HYGARCH Standardized Residuals 

The ACF shows that for most lags, the autocorrelations of the standardized residuals fall within the 

confidence bands. This means that the fitted HYGARCH model has captured serial dependency in 

the volatility process. Thus, we feel that it fits the data sufficiently well. 

We ran Ljung-Box tests for both the residuals and the squared residuals. The test for the residuals 

produced Chi-squared statistic of 109.56 (df = 20, p = 2.365e-14), indicating that there is residual 

serial correlation. Additionally, the test of the squared residuals resulted in a chi-squared statistic of 

0.37071 (df = 20, p = 1), meaning the HYGARCH specification includes the volatility structure. 

The different results for the residuals and squared residuals tests imply that while the model is a 

reasonably good characterization of the volatility structure it is possible there is some unobserved 

pattern that is impacting the mean process. 

4- Volatility Forecasting 

A. Forecast Generation 

The central goal for the research reported here was to forecast variation in electrical load journeys 

to aid in energy planning and policymaking. Using the estimated HYGARCH model, we provided 

24-hour ahead estimates for the conditional standard deviation or the forecasted volatility of 

electrical load next day. 

Table 4 presents the hour-ahead forecasts of standard deviations and depict expected changes in 

volatility during the 24-hour forecast horizon. 

Table (3): Hour-Ahead Forecasted Standard Deviations 

Hour Forecasted SD 

1 0.08249913 

2 0.08379172 

3 0.08412759 

4 0.08421549 

5 0.08423854 

6 0.08424459 

… … 

24 0.08424674 

 

In Figure (5) depicts conditional standard deviation forecasts during the 24-hour horizon. You can 

see that volatility is predicted to slightly increase after the first hour and stabilize, meaning that 

volatility is anticipated to be somewhat stable over the forecast period. 
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Figure (5): HYGARCH Forecast: Conditional Volatility (Next 24 Steps) 

B. Forecast Evaluation 

To assess the precision of the HYGARCH volatility projections, we conducted post-sample 

validation by juxtaposing the predicted volatilities with the actual volatilities during a holdout 

period. The residual analysis demonstrated that the model yields rather precise predictions. The 

summary statistics of the residuals (Minimum: -5.17882, Maximum: 4.68697, Mean: 0.07352, 

Standard Deviation: 0.9973465) indicate that the forecast errors are roughly centered around zero, 

with a standard deviation near 1, implying that the model is well-calibrated. 

5-Implications for Energy Planning 

The findings from the HYGARCH model provide several implications for energy planning in the 

Sulaimani Governorate. 

A. Long memory: The long memory result shows significant long-run effects of electric demand 

using a very high-order long memory value (d = 0.885). Therefore, planning must be long-term. 

B. Volatility is Predictable: Load or demand volatility has some predictability to it so the results can 

help with resource storage and (dis-)patching to manage the grid. 

C. Enhanced Forecasting Accuracy: The HYGARCH model identified and accounted for long 

memory and hyperbolic decay in volatility, which can help improve the accuracy of energy 

demand forecasts.  

D. Consistent Long-Term Perspective: Volatility will continue to decline over time, as the rate of 

development for infrastructure can improve. 

E. Enhanced Risk Management: The ability to produce valid results representing volatility will 

allow planners to anticipate and plan for contingencies and spare capacity. 

3rd: Conclusion  

This research used the Hyperbolic GARCH (HYGARCH) model to examine and predict the 

volatility of electrical load data in the Sulaimani Governorate. The findings demonstrated 

significant volatility clustering and robust long memory in the data, with the parameter d = 0.8854 

suggesting enduring impacts of shocks. With errors clustered around zero, the model generated 

exact 24-hour-ahead estimates suggesting its suitability for modeling and predicting volatility in 

energy demand. 

These findings have important implications for energy planning and policy development. The 

HYGARCH model provides a pathway for being able to make decisions that improve grid 

reliability, resource allocation, and allow for the forecast variability of demand. It also aids long-

term planning, captures a long-run component of diversity due to the impact of volatility shocks, 

and allows better risk management processes in the energy sector. 
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 This study was conducted in one area and time period. Future research could expand the study to 

new areas and/or further time periods, with larger datasets. Use of external factors (e.g. weather, 

economic activity) and/or model extensions (e.g. regime-switching, asymmetries) may improve 

forecasting performance. This framework should also be applicable to related areas, including 

volatility in electricity prices or renewable energy generation. 

Supplementary information Researchers who are interested can get the information that was used 

in this work if they make a good case for it. To get access to the raw or edited data, please get in 

touch with the author who wrote the paper. 
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