
 
IRAQI BULLETIN OF GEOLOGY AND MINING (IBGM)\              

IRAQ GEOLOGICAL SURVEY (GEOSURV-IRAQ) 

IBGM (2025, Vol 21; Issue 1)                                                                                                                            15-38 

  

 

15 
ISSN 1811-4539, EISSN 3005-3714                                                              IBGM: http://ibgm-iq.org/ 

https://doi.org/10.59150/ibgm2101a02                                                                                             Academic Scientific Journals: www.iasj.net 

STRUCTURAL ANALYSIS AND MULTI-CRITERIA GIS-BASED 

LANDSLIDE SUSCEPTIBILITY MAPPING USING ANALYTICAL 

HIERARCHY PROCESS AND FREQUENCY RATIO MODEL, IN 

QAIWAN, GOIZHA, AZMER MOUNTAINS- NE IRAQ 

Fahmy O. Mohammed1, Salim H. Sulaiman Al-Hakari1*, Ashna J. Ahmed1, Sarkhel H. 

Mohammed1,2 

1 Department of Earth Science and Petroleum, College of Science, University of Sulaimani, Iraq  
2 Institute of Water Resources and Environmental Management, University of Miskolc, Hungary 

* Corresponding author e-mail: salim.sulaiman@univsul.edu.iq 

Type of the Paper (Article) 

Received: 27/ 04/ 2024 

Accepted: 09/ 06/ 2024 

Available online:  27/ 06/ 2025 

Abstract 

This study aimed to create a landslide susceptibility map for the Qaiwan, Goizha, and Azmer 

mountains series in northeastern Iraq, especially along the two-lane road network connecting 

the area to the Iranian border. The region holds significance for ecotourism within the 

Sulaimaniyah Governorate. Landslide susceptibility was assessed based on three methods. The 

first structural analysis of discontinuity reveals that the ac and bc set with hk0 > a, hk0 > b, and 

h0l > c systems are the most dominant discontinuity which acts as a back release and lateral 

release surfaces and causes the occurrence of different types of the landslide from more to less 

are wedge sliding, toppling, plane sliding, and rockfall. The second and third are landslide 

frequency ratio and analytical hierarchy process analyses which encompassing layers of slope, 

aspect, lithology, altitude, curvature, road network, and stream attributes were generated using 

remote sensing. These layers were integrated with ArcGIS software to create two maps, the first 

based on the analytical hierarchy process model and the second based on the landslide 

frequency ratio model. Landslide susceptibility maps were created and then classified into five 

zones: very low, low, moderate, high, and very high hazard. The moderate hazard zone covered 

the largest area (34.6 Km²), while the very high hazard zone was the smallest (5.5 Km²). The 

overall accuracy of the susceptibility map, assessed using appropriate methods, was 

approximately 75%, indicating the effectiveness of the employed models. 

Keywords: Joint classification; Landslide hazard map; Susceptibility mapping; Accuracy assessment. 

1. Introduction 

Landslides are a prevalent geological phenomenon that has continuously drawn attention due 

to their destructive potential, causing significant harm to human settlements and infrastructure 

http://ibgm-iq.org/
http://www.iasj.net/
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(Tesfa, 2022). Landslides are complex processes influenced by multifaceted factors, including 

geological, geomorphological, and anthropogenic aspects (Das et al., 2012; Jaafari et al., 2014). 

Among these contributors, environmental factors, such as thawing slope, torrential rainfall, and 

surface topography variations play pivotal roles in triggering landslides (Choi et al., 2012). 

Understanding and predicting landslide susceptibility are imperative steps in mitigating their 

adverse effects and safeguarding vulnerable communities (Arjmandzadeh et al., 2020; F. O. 

Mohammed et al., 2020). Nonetheless, the complication of landslide causation, sometimes 

complex or unknown, causes significant challenges and needs detailed fieldwork and 

observation (Mamlesi, 2010). Geologic features and fractures, structural attributes, landforms, 

and vegetation cover also stand as primary contributors to landslide occurrences  (Choi et al., 

2012). Fractures analysis and landslide susceptibility mapping (LSM) stand as the cornerstone 

for decision-making, assisting citizens, planners, and engineers in minimizing losses caused by 

current and potential landslides through prevention, mitigation, and avoidance (Feizizadeh et 

al., 2014). Among the diverse methodologies available for LSM, the integration of multi-

criteria decision analysis (MCDA) frequency ratio (FR) with geographic information systems 

(GIS) has emerged as a powerful tool (Abedini & Tulabi, 2018; Arjmandzadeh et al., 2020; 

Tesfa, 2022; Wu et al., 2016; Yalcin, 2008). The analytic hierarchy process (AHP), serving as 

an MCDA, systematically evaluates multiple criteria by assigning weights based on their 

relative importance. This approach forms a quantitative foundation for integrating diverse 

datasets, enabling a comprehensive analysis of landslide susceptibility factors (Achour et al., 

2017; Basharat et al., 2016). The integration of AHP with GIS, known as MCDA, based on 

AHP (MCD-AHP), harnesses GIS's spatial capabilities to process and visualize intricate 

geospatial data. 

The Qaiwan, Goizha, and Azmer Mountains region in northeast Iraq, with its rugged terrain 

and geological intricacies, stands as a challenging landscape susceptible to landslides (Al-

Hakary, 2011; Hamasur & Qadir, 2020). Geological and structural conditions, land cover, slope 

steepness, and human activities are pivotal factors contributing to the region's susceptibility. 

Additionally, there are limited numbers of research that have been conducted in Qaiwan, 

Goizha, and Azmer dealing with landslide mapping. 

This research endeavors to apply fracture analysis, and MCDA-AHP methodology alongside 

the FR model in the Qaiwan, Goizha, and Azmer Mountains regions of NE Iraq, aiming to 

elevate the precision and accuracy of LSM. By delving into the region's geological intricacies 

and systematically evaluating contributing factors, this study aims to contribute valuable 

insights to landslide research. Also based on the kinematics principle, which addresses the 

geometric requirements for the rock block to travel along the discontinuity plane different types 

of landslides were identified. 

Finally, this research aims to provide practical tools for local authorities to mitigate landslides 

in the vulnerable Qaiwan, Goizha, and Azmer Mountains region and also offer insights to 

control landslide hazard risks in vulnerable areas this helps to minimize the impact of landslides 

on two-lane road network sides. 
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2. Study Area Description 

The area of the research is located in the Qaiwan, Goizha, and Azmer Mountains in the northern 

and northeastern part of Sulaimani city, it is between coordinates Latitudes (35⁰34'45", 

35⁰45'30") and Longitude (45⁰22'30", 45⁰32'00"; Figure 1). The elevation in the study area 

ranges between 900 – 1600 m with the slope ranges varying between <5° and >50°. 

 

Figure 1. Location map of observed slopes and tectonic division of Iraq includes the location 

of the study area (The tectonic map after Fouad, 2015). 

3. Geological Framework 

The Qaiwan, Goizha, and Azmer Mountains are located at the boundary between high folded 

and imbricated zones of the Iraqi Zagros Fold Thrust Belt (Figure 1) It is characterized by long 

anticlines and narrow synclines. The outcropped rocks are highly fractured because the area is 

located within the high and imbricated tectonic zone of Iraq's tectonic subdivisions (Fouad, 

2015; Mohammad, 2023). The trend of anticlines followed the Zagros Fold Thrust belt in the 

direction (NE – SW) with the SW fore limb  (Alavi, 2007; Fouad, 2015). The main lithological 

units are from carbonate units of the Cretaceous periods which include Sarmord, Balambo, 

Kometan, Shiranish, and Aqra, formations from old to young (Buday, 1980; Jassim & Goff, 

2006). Sarmord and Balambo formations are composed of highly jointed limestone and Marly 

limestone, the Kometan Formation is characterized by heavily jointed and fractured limestone 

with some chert nodules, the Shiranish Formation is composed of limestone, Marly limestone, 

and the Aqra Formation is composed of rudist rich limestone(Al-Hakary, 2011; Mohammad, 

2023) (Figure 2). 
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Figure 2. Geological map of the study area (Al-Hakary, 2011). 

4. Material and Methods 

The first step to compute the landslide susceptibility map was collecting data from the field 

during the winter and spring seasons of 2023 including selecting unstable slopes, discontinuity 

attitude measurements, and structural analysis of discontinuities followed by drawing thematic 

maps using remote sensing data, collecting ground truth data, weighted conventional maps in a 

GIS environment lead to drawing different raster maps such as slope, curvature, aspect, 

elevation, distance to road, distance to stream then the final map was creating use raster 

calculator (map algebra). 
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5. Structural Analysis of Discontinuities 

To assess the structural factors (fractures and joints) affecting slope stability in the area, and 

control the different failure types in the study area, nine stations were chosen for data collecting 

(attitude of bedding plains and joints with inclination of the slops). Joints in the study area were 

classified according to their geometrical relations with the three perpendicular geometrical axes 

(a, b & c). Where (a) is parallel to the dip direction, (b) is parallel to the strike direction, and 

(c) is perpendicular to a & b. This classification is used by Turner & Weiss (1963) and followed 

by Al-Jumaily (2004), Hancock (1985), Hancock & Atiya (1979), and Ramsay et al. (1983) 

(Figure 3). Software DIPS 6.0 was used for constructing the data as pols for geometric 

classification (Figure 4). 

 

Figure 3. Geometrical classification of the joints with respect to three orthogonal geometrical 

axes (Hancock, 1985). 

 

Figure 4. Classification of the joints based on their relations with the geometric axes a, b, and 

c by stereographic projection (Hancock and Atiya, 1979). The right great circle is the bedding 

plane its attitude is 180/30 (RHRL), and the left great circle is the perpendicular plane to the 

bedding plane. The figure shows the poles of all types of joints concerning the geometric axes 

a, b, and c. 
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6. Landslide Inventory Map 

Landslide inventory mapping is the systematic mapping of existing landslides in the study area 

using different techniques, such as field surveys, aerial photographs, satellite image 

interpretation, and literature search for historical landslide records (Basharat et al., 2016; Tesfa, 

2022). The landslide inventory map for our study area was compiled through the interpretation 

of satellite images Digital elevation model (DEM; 12.5 m × 12.5 m), and field-based inspection, 

it includes: 

6.1. Slope (S) 

Slope gradient plays a significant role in determining landslide susceptibility. Steeper slopes 

tend to be more prone to landslides due to gravitational forces. The steeper the slope, the greater 

the potential for instability and failure of the soil or rock mass. Water infiltration and soil 

saturation also increase with steep slopes, further elevating the risk of landslides (Saranaathan 

et al., 2021). The slope is a fundamental factor influencing LSM due to its direct correlation 

with gravitational forces. Steeper slopes are more prone to landslides because they have 

increased gravitational pull on the soil or rock mass. In GIS-based mapping, slope data can be 

derived from DEMs to categorize terrain into different slope classes (Figure 5A). 

6.2. Curvature (C) 

Curvature refers to the change in slope direction. Convex slopes (positive curvature) are more 

prone to landslides as they accumulate more water and materials. These areas often face greater 

erosion, leading to increased instability and higher susceptibility to landslides compared to 

concave slopes (negative curvature) (Lee & Pradhan, 2007). Conversely, negative curvature 

(concave slopes) might be less susceptible as they disperse water and materials, reducing the 

potential for landslide occurrence. Analyzing curvature data aids in identifying areas where 

convex slopes dominate, indicating a higher susceptibility to landslides (Figure 5B). 

6.3. Aspect (A) 

Aspect refers to the compass direction a slope faces. Landslide susceptibility varies based on 

aspect due to differential exposure to solar radiation, precipitation, and temperature changes. 

For instance, slopes facing certain directions might receive more sunlight or rainfall, affecting 

soil moisture content and consequently impacting landslides (Sarkar & Kanungo, 2004). GIS-

based analysis involves categorizing aspects and assigning susceptibility values based on their 

orientation relative to external influences (Figure 5C). 
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Figure 5. Thematic maps for the; (A) Slope, (B) Curvature, (C) Aspect, (D) Major road of the 

study area Thematic maps for the; (E) Stream, (F) Topography, (G) Euclidean distance to 

stream, and (H) Euclidean distance to road. 
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6.4. Distance to Road (DR) 

Proximity to roads can influence landslide susceptibility. Roads can alter the natural drainage 

patterns and stability of slopes due to excavation, increased water runoff, and changes in slope 

angles caused by road construction activities. Moreover, road cuts can weaken adjacent slopes, 

making them more susceptible to landslides (El Jazouli et al., 2019). GIS-based mapping 

considers road proximity as a factor influencing susceptibility by assigning higher values to 

areas closer to roads due to increased human-induced disturbances and altered hydrological 

characteristics (Figure 5H). 

6.5. Distance to Stream (DS) 

Areas closer to streams or rivers are more vulnerable to landslides due to increased water 

content in the soil. The flow of water can erode and weaken slope materials, leading to 

instability and triggering landslides. Additionally, the force of flowing water can exert pressure 

on slopes, further increasing the likelihood of failure (Yalcin, 2008). GIS analysis involves 

delineating buffer zones around streams or rivers and assigning higher susceptibility values to 

areas within these zones (Figure 5G). 

6.6. Topography (T) 

Elevation influences landslide susceptibility by affecting various factors such as precipitation 

and geological characteristics. Higher elevations often receive more rainfall, leading to 

increased soil moisture content and erosion, which can enhance landslide susceptibility 

(Nefeslioglu et al., 2008). GIS-based mapping incorporates elevation data to categorize 

susceptibility zones, with higher elevations often being associated with increased susceptibility 

(Figure 5F). 

6.7. Frequency ratio (FR) model 

FR is a commonly used approach to mapping an LSM. It is a bivariate stochastic statistical 

method to assess the influence of various parameters on the occurrence of particular phenomena 

such as landslides (Lee et al., 2018). The FR model is implemented in a Geographic Information 

System (GIS) environment, making it easily applicable and interpretable. The approach of using 

historical landslide data to understand and predict future events is a widely employed strategy 

in landslide research, contributing valuable insights into the factors influencing slope stability 

by analyzing the correlation between past landslide locations and influencing factors. The FR 

method works to evaluate the relationships between different independent controlling factors 

that trigger the dependent factor which is landslide (Lee et al., 2018). A higher FR is followed 

by an intensive relationship between the occurrence of the possibility of the variables (Park et 

al., 2013).  

The Landslide susceptibility index (LSI) is calculated using Equation 1. 

𝐿𝑆𝐼 = ∑ 𝑃𝐹𝑅, (1) 

Where LSI landslide Susceptibility index, FR is the frequency ratio. 
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The FR of each factor can be calculated using Equation 2. 

𝑃𝐹𝑅 =

𝑃𝑠𝑖

𝑃𝑁𝑖

∑ 𝑃𝐹𝑖
𝑛
𝑖

∑ 𝑃𝑁𝑖
𝑛
𝑖

, (2) 

WWhere PFR: Is the probability frequency ratio, Psi: no. Number of pixels in Sub-Classes, PNi: 

Total Number of pixels in class i, ∑ 𝑃𝐹𝑖
𝑛
𝑖  : Number of pixels in Factors,  ∑ 𝑃𝑁𝑖

𝑛
𝑖  Total number 

of pixels in the area. 

𝐿𝑆𝑍 =  ∑ 𝑃𝐹𝑅

𝑛

𝑖

= 𝑆𝐹𝑅 + 𝐴𝐹𝑅 + 𝐶𝐹𝑅 + 𝐷𝑅𝐹𝑅 + 𝐷𝑆𝐹𝑅 + 𝑇𝑅, (3) 

Where LSZ = Landslide Susceptibility zones, SFR (slope frequency ratio), AFR (aspect 

frequency ratio, CFR (curvature frequency ratio), DRFR (distance to road frequency ratio), 

DSFR (distance to stream frequency ratio), and TRF (topography frequency ratio). 

6.8. Analytical hierarchy process AHP 

The AHP has emerged as a powerful methodology in the realm of LSM, offering a systematic 

and quantitative approach to evaluate and prioritize various influencing factors. Developed by 

Saaty (1980), the AHP methodology enables decision-makers to structure complex decision 

problems, facilitating the comparison and synthesis of diverse criteria. In LSM, AHP begins 

with the establishment of a hierarchy of criteria and sub-criteria relevant to the study area (T. 

L. Saaty et al., 2012), each criterion is then paired with every other criterion to derive pairwise 

comparison matrices. These pairwise comparisons are converted into a matrix, and the 

eigenvector method is employed to calculate the weights. 

The calculated weights are then applied to the criteria, and their respective sub-criteria, to 

generate a comprehensive susceptibility index. AHP provides a robust framework for 

integrating qualitative and quantitative data, allowing for a comprehensive analysis of landslide 

susceptibility factors. 

The consistency of judgments is assessed using the Consistency Ratio (CR), ensuring the 

reliability of the decision matrix where the result should have CR<0.1 to be consistent. 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (4) 

Where CR: is the consistency ratio, CI is the consistency index, and RI is the random Index 

calculated by Saaty (2008) as shown in (Table 1) and ( Table 2). 
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𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (5) 

Where 𝜆max is the maximum eigenvalue of the comparison matrix and n is the number of the 

matrix order. 

𝐿𝑆𝐼 = 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎1 × 𝑊𝑐1 + 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑛 × 𝑊𝑐𝑛, (6) 

Where W: Weightage from AHP, n: number of the criteria. 

Table 1. Saaty’s Score for the relative importance of criteria. 

Scale Relative Importance 

1 Equality importance 

3 Moderate Importance 

5 Strong Importance 

7 Very Strong Importance 

9 Extreme Importance 

2,4,6,8 Intermediate Value 

Table 2. Calculated random index after (Wind & Saaty, 1980). 

N 1 2 3 4 5 6 
RI 0 0 0.58 0.90 1.12 1.2 

7. Landslide Prone Area 

To identify the most dangerous locations, field observations were conducted in the winter and 

spring of 2023. Twenty sites were chosen based on field observations; these sites are more 

likely to experience landslides and will provide a risk to vehicles, particularly in the winter 

when a rock falls and detached blocks may occur near the roadsides (Figure 6). 

 

Figure 6. Some selected sites of Validations of models. 
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8. Results 

8.1. Structural analysis 

A detailed geometrical analysis of eight selected sites was done which reveals different 

lithologies and contains different types of rock failure types including wedge, toppling, plane 

sliding, and rockfalls as shown in (Figures 7, 8, and 9). Based on the geometrical classification 

of joints (Hancock & Atiya, 1979) the most prevalent joints that controlled unstable slope 

failures were ac and bc sets followed by hk0 > b, hk0 > a, h0l > c systems as shown in                        

(Table 3). Also, the most dominant slope failure was wedging sliding, rockfall, toppling, and 

plane sliding, respectively as shown in (Table 4). 

Table 3. discontinuity attitude in the study area. 

 
Geological 

Formation 
Slope /slope direction  

Bedding 

plane 

Dip 

direction 

/Dip 

Joint set 

(J1) Dip 

direction 

/Dip 

Joint set 

(J2) Dip 

direction 

/Dip 

L2 Sarmord Fn. 255/58˚ 035/48˚ 275/61˚ 178/50˚ 

L3 Balambo Fn. 199/60˚ 239/44˚ 133/74˚ 057/74˚ 

L4 Balambo Fn. 191/54˚ 239/44˚ 141/85˚ 047/52˚ 

L5 Balambo Fn. 170/60˚ 
SW limb (Left) 

NE limb (Right) 

237/40˚ 

055/70˚ 

135/78˚ 

325/86˚ 

035/75˚ 

240/15˚ 

L6 Kometan Fn. 320/60˚ 
SW limb (Right) 

NE limb (Left) 

038/54˚ 

270/40˚ 

310/83˚ 

135/55˚ 

235/35˚ 

035/68˚ 

L7 Kometan Fn. 267/52˚ 253/42˚ 130/62˚ 075/46˚ 

L8 Shiranish Fn. 125/70˚ 043/28˚ 135/84˚ 230/57˚ 

L9 Aqra Fn. 125/70˚ 070/40˚ 256/54˚ 165/78˚ 

Table 4. Failure types in the study area. 

Station Joint sets and systems Slope failure types 

L2 hk0 > a system Wedge and rockfall 

L3 hk0 > a and h0l > c systems Wedge, toppling, and rockfall 

L4 ac and bc sets Wedge and rockfall 

L5 left (SW limb) hk0 > a system Wedge and rockfall 

L5 right (NE limb) ac and bc sets Toppling 

L6 left (SW limb) 0kl > b system Wedge and rockfall 

L6 right (NE limb) ac and bc sets Wedge and rockfall 

L7 hk0 > b system and bc set Plane sliding and rockfall 

L8 ac and bc sets Rockfall 

L9 ac and bc sets Plane sliding and rockfall 
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Figure 7. Shows stereographic projection of the joints and field photos of (L2, L3, and L4) 

stations. 
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Figure 8. Shows stereographic projection of the joints and field photos of (L5 and L6). 
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Figure 9. Shows stereographic projection of the joints and field photos of (L7, L8, and L9) 

stations. 

8.2. Landslide Frequency Ratio LFR 

The FR was calculated by dividing the landslide occurrence ratio by the area ratio for each class 

of each landslide conditioning (causative) factor. Table (5) reveals that the total area and pixels 

of an observed landslide that was used as input for creating a landslide frequency ratio 

susceptibility map (LFR) is 110312.5 m2 (706) pixels. The six parameters which are slope, 

curvature, distance to road, distance to stream, aspect, and topography integrated into the 
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ArcGIS tool and classified based on statistical approaches for predicting the hazard zones 

within the study area. Finally, the LSM was created as in Figure (10), and its map shows five 

different classes which are very low, low, moderate, high, and very high as shown in (Table 6). 

The area of each class was determined based on pixel numbers in each class using statistical 

tools in ArcGIS software. The highest frequency is the moderate class which covers 34.6 Km2 

of the total study area while the lowest frequency class is high hazard which covers only 5.5 

percent of the study area as shown in (Table 6). 

Table 5. Calculation of the FR for slope, curvature, distance to road, distance to stream, aspect, 

and topography. 

Parameter classes 
class 

pixels 

%class 

pixels 

Landslide 

pixels 

%Landslide 

pixels 

Frequency 

ratio 
Area 

Rf (relative 

frequency) 
Rf (non)% 

Rf 

(INT) 

Slope 

<10 154386 19.602 67 9.490 0.00043 0.00006 0.096 9.64 9.00 

10.1˚-20˚ 161853 20.550 92 13.031 0.00057 0.00008 0.126 12.63 12 

20.1˚-30˚ 189008 23.998 241 34.136 0.00128 0.00018 0.283 28.33 28 

30.1˚-40˚ 194527 24.699 202 28.612 0.00104 0.00015 0.231 23.08 23 

>40.1˚ 87819 11.150 104 14.731 0.00118 0.00017 0.263 26.32 26 

 Total 787593  706  0.00450     

Curvature 

Convex 377280 47.686 323 45.751 0.00087 0.00086 0.308 30.78 30 

Liner slope 11762 1.487 12 1.700 0.00102 0.00102 0.361 36.12 36 

Concave 402139 50.828 371 52.550 0.00094 0.00092 0.331 33.10 33 

Total 791181  706  0.00282     

Distance 

to road 
>10 4409 6.000 92 13.031 0.02087 0.02087 0.541 54.07 54 

 
10.1-50 34761 47.305 450 63.739 0.01295 0.01295 0.335 33.55 33 

50.1-100 34313 46.695 164 23.229 0.00478 0.00478 0.124 12.38 12 

 Total 73483  706  0.03859 0.00961    

Distance 

to  Stream 

>300 184728 23.660 428 60.623 0.00232 0.00232 0.547 54.73 54.00 

300.1-600 178485 22.860 148 20.963 0.00083 0.00083 0.195 19.59 19 

600.1-900 264320 33.854 64 9.065 0.00024 0.00024 0.0571 5.72 5 

900.1-1200 87081 11.153 42 5.949 0.00048 0.00048 0.113 11.39 11 

>1200 66138 8.471 24 3.399 0.00036 0.00036 0.085 8.57 8 

 Total 780752  706  0.00423     

Aspect 

Flat 5 0.001 0 0.000 0.00000 0.00000 0.000 0.00 0.00 

North 49844 6.329 13 1.841 0.00026 0.00026 0.032 3.21 3.00 

Northeast 126590 16.073 74 10.482 0.00058 0.00058 0.072 7.19 7.00 

East 121120 15.379 117 16.572 0.00097 0.00097 0.119 11.87 11.00 

Southeast 79914 10.147 16 2.266 0.00020 0.00020 0.025 2.46 2.00 

South 74880 9.507 3 0.425 0.00004 0.00004 0.005 0.49 1.00 

Southwest 117456 14.913 31 4.391 0.00026 0.00026 0.032 3.24 3.00 

West 180458 22.913 296 41.926 0.00164 0.00164 0.202 20.16 20.00 

Northwest 37326 4.739 156 22.096 0.00418 0.00418 0.514 51.37 51.00 

 Total 787593  706  0.00814     

Topography 

>1050 49547 6.262 174 24.646 0.00351 0.00351 0.642 64.23 64.00 

1050.1-1250 385034 48.666 282 39.943 0.00073 0.00073 0.134 13.40 13.00 

1250.1-1450 248009 31.347 219 31.020 0.00088 0.00088 0.162 16.15 16.00 

1450.1-1650 91106 11.515 31 4.391 0.00034 0.00034 0.062 6.22 6.00 

1650.1-1850 17485 2.210 0 0.000 0.00000 0.00000 0.000 0.00 0.00 

 Total 791181  706  0.00547     
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Table 6. Coverage area of each class with Landside susceptibility map based on LFR. 

Classes OBJECTID * Value Pixels class Class Area m2 Class area Km2 Class percent 

Very low 1 1 141627 22129220 22.1 18.1 

Low 2 2 204743 31991090 32.0 26.2 

Moderate 3 3 270491 42264220 42.3 34.6 

High 4 4 120990 18904690 18.9 15.5 

Very high 5 5 42903 6703594 6.7 5.5 

   780754  122.0 100 

Total   total Pixels  Class Area  

 

Figure 10. Shows landslide susceptibility zones. 

8.3. Analytical Hierarchy Process 

Using six important parameters in the study area landslide susceptibility map is created, and the 

weights and ranks of the factors and their contribution are represented in (Tables 7 and 8). These 

weights show the importance of each criterion in LSM (Figure 11), Also it demonstrates the 

influence of the selected parameters. It is a clear slope that has a great effect followed by Slope, 

Curvature, Aspect, Elevation, distance to road, and distance to stream, respectively. 

The weighting of criteria was done based on field observation, and which of the parameters will 

be more significant for occurring landslides and cause more risks than others. The LSM model 

is classified into five classes (very low, low, moderate, high, and very high) according to natural 

breaks and intervals (Figure 12). In this regard, the result shows the study area contains five 

different zones including very low, moderate, high, and very high,), respectively (Figure 13), 

and the area of each class was calculated as shown in (Table 9). 
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Table 7. Pair-wise comparison of influencing parameters. 

 1 2 3 4 5 6 

Slope 1 1      

Curvature 2 0.333 1     

D- Road 3 0.25 0.5 1    

D- Stream 4 0.25 0.5 1 1   

Aspect 5 0.5 1 2 2 1  

Elevation 6 0.5 1 2 2 1 1 

Table 8. Calculated weight of the parameters and their class descriptions. 

Parameter classes Rank Description Weight ofParameters 

Slope 

<10 1 No Hazard 

35.4 

10.1˚-20˚ 2 V. Low 

20.1˚-30˚ 3 Moderate 

30.1˚-40˚ 4 High 

>40.1˚ 5 V. High 

Curvature 

Convex 5 V. High 

15.4 Liner slope 2 Low 

Concave 3 Moderate 

Distance to 

road 
<10 5 V. High 

8.2 

 
10.1-50 3 Moderate 

50.1-100 2 Low 

Distance to  

Stream 

<300 5 V. High 

8.2 

300.1-600 3 Moderate 

600.1-900 2 Low 

900.1-1200 1 No hazard 

>1200 1 No Hazard 

Aspect 

Flat 1 No Hazard 

16.4 

North 3 Moderate 

Northeast 5 V. High 

East 2 Low 

Southeast 2 Low 

South 2 Low 

Southwest 5 V. High 

West 3 Moderate 

Northwest 3 Moderate 

Topography 

<1050 2 Low 

16.4 

1050.1-1250 3 Moderate 

1250.1-1450 4 High 

1450.1-1650 5 V. High 

1650.1-1850 3 Moderate 

 

Figure 11. Radar map shows the weight importance of the parameters in the area. 
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Figure 12.  Reclassified maps of the selected parameters A) reclassified slop, B) reclassified 

aspect, C) reclassified curvature, D) reclassified elevation, and E) reclassified distance to road 

Reclassified distance to stream. 

 

A B 

C D 

E F 
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Figure 13. Landslide susceptibility map result of AHP technique. 

Table 9. Coverage area of each class with landslide susceptibility map based on the AHP 

model. 

Classes OBJECTID Value Pixels class Class Area m2 
Class area 

Km2 

Class 

percent 

Very Low 1 1 134682 21,044,062 22.1 17.25 

Low 2 2 213374 33,339,687 32.0 27.3 

Moderate 3 3 266283 41,606,718 42.3 34.1 

High 4 4 122746 19,179,062 18.9 15.7 

Very High 5 5 43669 6,823,281 6.7 5.6 

   780754  122.0 100 

Total   Total Pixels  Class Area  

9. Discussion 

For validation of LSM twenty stations were used for determining map accuracy of the study 

(Figure 14). The LSF and AHP models give 74% accuracy as shown in (Table 10). The resulting 

map was correlated with site data and field photos to check whether this model gave better 

predictions for an accessible area or for surveying large study areas.  The accuracy of some 
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hazard zones gave giving very preferable result because some classes show high accuracy and 

are not mixed with other classes except some low classes, but these classes were mixed with 

other classes because of the pixel size which is (12.5×12.5 m) as shown in (Table 10). 

Table 10. Accuracy assessment matrix for ground truth and model results. 
L

S
D

 S
u

sc
ep

ti
b
il

it
y

  

M
ap

 

 

 Ground truth  

Classes 
Very 

low 
Low Moderate High 

Very 

high 
Total Accuracy 

Very low 0 0 0 0 0 0 0 

Low 0 4 1 0 0 5 %80 

Moderate 0 2 6 2 0 10 %60 

High 0 0 0 4 0 4 %100 

Very High 0 0 0 0 0 0 0 

Total 0 6 7 6 0 19  

 Accuracy 0 50 % 85% 50 % 0   

Overall accuracy (OA; Equation 3) determines the proportion of sites that have been correctly 

mapped. It is obtained by dividing the total number of pixels that are correctly classified by the 

total number of pixels. The OA is 73.8 %. 

𝑂𝐴 =
Total number of correctly classified pixels(14)

Total number of reference pixels(19)
∗ 100 = 73.8% 

 

Figure 14. Landslide susceptibility mapping with field verification sites. 
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5. Conclusions 

This study evaluated the risk of landslides along a network of roads that cross the steep 

mountain series of Qaiwan, Goizha, and Azmer in North Iraq. Previous roadside slope failures 

have demonstrated the serious risk posed by these slopes, especially in the winter and spring. 

Structural analysis of discontinuity reveals that the ac and bc set with  hk0 > a, hk0 > b, and  

h0l > c systems are the most dominant discontinuity which acts as back, lateral, and basal 

release surfaces, also cause the occurrence of different types of landslide from more to less are 

wedge sliding, toppling, plane sliding, and rockfall. Two techniques were used in the paper to 

assess landslip vulnerability and create a hazard map. The first is the Landslide Frequency Ratio 

(LFR), which divides the region into five hazard zones: very low, low, moderate, high, and very 

high by combining six thematic maps (slope, aspect, curvature, topography, stream distance, 

and road distance) with historical landslide occurrences. The moderate hazard zone was the 

most extensive, covering 42 Km². The second one is the Analytical Hierarchy Process 

(AHP): Similar to LFR, AHP assigned weights to various factors (slope, curvature, aspect, 

distances to roads and streams, and topography) and resulted in the same five hazard zones, 

with moderate being the most prevalent. The validation process for AHP and LFR models was 

done using nineteen points and yielded an overall accuracy of 73.8%, with the highest accuracy 

in the moderate hazard class. This suggests that most unstable slopes fall within this zone, 

aligning with the results from both hazard maps and kinematic analysis. Landslide hazard 

assessment is a valuable tool for authorities to manage traffic safety. By identifying high-hazard 

areas (covering 42 Km² in this case), they can implement mitigation strategies such as slope 

stabilization and traffic signs. 
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