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ABSTRACT

Predicting and controlling environmental dynamics requires an understanding of the intricate interaction between
hunting cooperation, fear, and other biological elements in eco-epidemiological models. Studying these models is crucial
for environmental sustainability and conservation, as seen by the rise in infectious diseases caused by population growth
and interactions among organisms. The goal of this study is to create a novel mathematical model that takes into account
contagious diseases that impact both predators and prey, as well as how cooperative hunting behavior on the part of
predators causes anxiety in the prey population. Important features of the model are examined, including the existence,
boundedness, uniqueness, and positivity of solutions, as well as the determination of equilibrium locations and the
local stability criteria that support them. Around the equilibrium points, bifurcation analyses are performed, exposing
a variety of dynamic behaviors, including multi-stability events. The theoretical conclusions are confirmed and control
settings are determined by numerical simulations using MATLAB R2021a’s 4th-order Runge-Kutta method.

Keywords: Eco-epidemiological model, Fear, Hunting cooperation, Stability, Bifurcation

Introduction

The predation process is essential in advancing life evolution and maintaining ecological balance and
biodiversity. Moreover, cooperation between the species’ individuals is a fundamental feature of animal social
life and is important in biological systems. Group hunting has many advantages, such as the rate of hunting
success increasing with the number of adults, chasing distance decreasing and the probability of capturing large
prey increasing.1 Population dynamics are regulated by several factors: availability of resources, predation,
diseases, etc., see for instance articles2–4 which describe the role of additional resources and disease, while
articles5,6 which study the role of fear and reaction-diffusion. Among these factors, the interaction between
prey and predators is probably the most studied in ecology due to its importance, dating back to the works of
Lotka and Volterra in the early 20th century. Since then, several prey-predator models have been proposed and
studied, see the excellent review.7 Thus, the study of prey-predator models plays a crucial role in understanding
the predation relationships between species in ecosystems.8–10 Predators feed on prey to ensure their survival,
so they typically attempt to enhance their ability to capture and kill prey, which is more conducive to their
long-term survival. To enhance their ability to capture and kill prey, some animals commonly employ the
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strategy of hunting cooperation.11 In a mathematical modeling approach, many authors12,13 investigated the
impacts of hunting cooperation and the fear effect, which is a natural behavior that results in feedback of the
intensity of predation, in prey-predator systems, for example.14–16

Epidemiology on the other hand, is one of the hot topics in the study of mathematical biology. The
literature on epidemiology models is rich; see for example17–19 and the references therein. The study of
the eco-epidemiological model, which connects ecology with epidemiology, with the addition of the fear
effect is one of the most fascinating new developments in mathematical modeling research. A Lotka-Volterra
eco-epidemiological model that included fear variables and disease in the prey population was studied by
Sha et al.20 Later on, many researchers developed eco-epidemiological systems including different biological
factors, for example the articles,21–23 while articles24,25 are proposed and studied eco-epidemiological systems
with the impact of fear, refuge, and harvesting on the system dynamics.

It’s also critical to remember that predators find hunting more difficult if their prey is afraid of them.
Moreover, overcrowding makes ecological animals more susceptible to infectious diseases, which has an impact
on the evolution of particular species, such as those engaged in prey-predator relationships. This disease
may make some predators less strong and efficient hunters, which raises the possibility of their extinction.
In the context of infectious diseases, many studies have looked at the prey-predator relationship, including
hunting cooperation or fear.26–28 In actuality, infectious diseases arise when tainted foreign objects enter the
body. Numerous physical symptoms, including discomfort and raised body temperature, can accompany these
infections in addition to other symptoms that differ based on the type, location, and intensity of the infection. It
is possible to have an illness that shows little symptoms; in this scenario, medical intervention is not necessary.
But there are also serious situations that require medical attention since they may be lethal.

In contrast to previous studies, the goal of the current research is to create a prey-predator model that takes
hunting cooperation and the fear that predators impose on their prey into account when there are infectious
diseases in both populations. Additionally, to investigate the combined effects that hunting cooperation and
fear can have on population dynamics in an eco-epidemiological system, we develop and analyze an eco-
epidemiological model in this work that incorporates both of these phenomena.

Materials and methods

In the following, the adopted assumptions to build the mathematical model that describes the eco-
epidemiological system are stated.

1. The prey biomass density at time T is denoted by N(T ) = X (T )+Y (T ), where X (T ) is the susceptible
part while Y (T ) is the infected part of the prey population. The predator biomass density at time T is
denoted by P(T ) = Z(T )+W (T ), where Z(T ) is the susceptible part and W (T ), is the infected part of the
predator population.

2. From a logistical standpoint, prey populations flourish in the absence of predators. Conversely, when food
sources dwindle, predators experience rapid decline.

3. Assume that the illness in the prey community is limited to the prey population and that it is not genetically
inherited. This means that only the vulnerable prey can procreate, with the sick prey fighting for the
resource alone. However, the sickness that affects predators is believed to be of the SIS variety, and
rather than being genetically transmitted, it can only spread between individual predators through contact
between an infected and a healthy predator. The illness is also cured by the medication given to the
diseased predator.

4. Based on the Lotka-Volterra functional response, suppose that the predator works together to hunt the
prey and consumes both populations of the prey.

5. A population of prey experiences fear of predators because of the predator’s cooperative hunting behavior,
which causes it to attack its prey in groups.

6. Many animals have an innate fear of becoming prey because it helps them survive and stay out of harm’s
way. Animals that are vigilant and fearful of predators in the wild have a higher chance of avoiding
capture and death. They take precautions because of this concern, like decreasing playing in open spaces,
staying in smaller groups, finding cover, or decreasing mating there. It is an evolutionary survival strategy
meant to secure the species’ survival. As a result, predation anxiety thereby alters the prey population’s
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hunting habits, lowering the chance of disease transmission among individuals of the same species due to
the reduction of crowding.

7. The capacity of hunting collaboration results in an increase in the attack rate of the predator population,
say α1 > 0, by the cooperation term to become (α1 + α2Y ), where α2 ≥ 0 denotes the level of predator
cooperation during hunting.27

Accordingly, the stated eco-epidemiological system’s dynamic can be represented by the following set of
nonlinear first-order differential equations.

dX
dT
=

r
1+ G1 (Z +W )

X
[
1−

X +Y
k

]
−

β1XY
1+ G2 (Z +W )

− [α1 + α2 (Z +W )] X (Z +W )

dY
dT
=

β1XY
1+ G2 (Z +W )

− [α1 + α2 (Z +W )]Y (Z +W )− d1Y

dZ
dT
= [α1 + α2 (Z +W )] (Z +W ) (c1X + c2Y )− β2ZW +

µW
σ +W

− d2Z

dW
dT
= β2ZW −

µW
σ +W

− d3W .

(1)

To non-dimensionalize the system 1, the following transformation is used.

rT = t,
X
k
= x1,

Y
k
= x2,

α2

α1
Z = x3,

α2

α1
W = x4.

Then, system 1 reduces to the following form

dx1

dt
=

x1 (1− x1 − x2)
1+ w1 (x3 + x4)

−
w2x1x2

1+ w3 (x3 + x4)
− (1+ x3 + x4) w4x1 (x3 + x4)

dx2

dt
=

w2x1x2

1+ w3 (x3 + x4)
− (1+ x3 + x4) w4x2 (x3 + x4)− w5x2

dx3

dt
= w6 (1+ x3 + x4) (x3 + x4) (c1x1 + c2x2)− w7x3x4 +

w8x4

w9 + x4
− w10x3

dx4

dt
= w7x3x4 −

w8x4

w9 + x4
− w11x4,

(2)

where:

w1 = G1
α1

α2
, w2 =

β1k
r
, w3 = G2

α1

α2
, w4 =

α2
1

rα2
, w5 =

d1

r
,

w6 =
α1k
r
, w7 =

β2α1

rα2
, w8 =

µα2

rα1
, w9 =

α2σ

α1
, w10 =

d2

r
, w11 =

d3

r
.

It is clear from system 2 that, the interaction functions xi fi(x1, x2, x3, x4); i = 1,2,3,4 in the right-
hand side of the system 2, are continuous and have continuous partial derivatives on the domain R4

+
=

{(x1, x2, x3, x4) ∈ R4 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}. Hence, they are locally Lipschitz functions in R4
+

. Con-
sequently, due to the fundamental existence and uniqueness theorem, it is obtained that system 2 with any
non-negative initial condition x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, and x4(0) ≥ 0 there exists T > 0 so that system
2 has a unique solution defined in R4

+
.

Properties of the solution

This section shows properties of the solution of system 1, such as positivity and bounded as presented in the
next theorems.

Theorem 1: All system 2’s solutions with the initial conditions belong to int .R4
+

are positively invariant.
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Proof: From the first equation of system 2, it is obtained:

dx1

x1
=

[
(1− x1 − x2)

1+ w1 (x3 + x4)
−

w2x2

1+ w3 (x3 + x4)
− (1+ x3 + x4) w4 (x3 + x4)

]
dt = f1 (x1, x2, x3, x4) dt .

Then integrating the above equation within the limit [0, t], gives that:

x1 (t ) = x1 (0) e
∫ t

0 f1(x1(s),x2(s),x3(s),x4(s))ds > 0; ∀ t > 0.

Similarly, the other equations, gives

x2 (t ) = x2 (0) e
∫ t

0 f2(x1(s),x2(s),x3(s),x4(s))ds > 0; ∀ t > 0,

x3 (t ) = x3 (0) e
∫ t

0 f3(x1(s),x2(s),x3(s),x4(s))ds > 0; ∀ t > 0,

x4 (t ) = x4 (0) e
∫ t

0 f4(x1(s),x2(s),x3(s),x4(s))ds > 0; ∀ t > 0,

where

f2 (x1, x2, x3, x4) =
w2x1

1+ w3 (x3 + x4)
− (1+ x3 + x4) w4 (x3 + x4)− w5.

f3 (x1, x2, x3, x4) =
w6 (1+ x3 + x4) (x3 + x4) (c1x1 + c2x2)

x3
− w7x4 +

w8x4

x3 (w9 + x4)
− w10.

f4 (x1, x2, x3, x4) = w7x3 −
w8

w9 + x4
− w11.

This completes the proof.

Theorem 2: All system 2’s solutions with initial conditions belonging to R4
+

are uniformly bounded

Proof: From system 2, it is easy to verify that

dx1

dt
≤ x1 (1− x1)

Then according to the lemma 2.2,29 it is obtained that

x1 (t ) ≤
[
1+

(
1

x1 (0)
− 1

)
e−t
]−1

Hence for t →∞, it is obtained that x1(t ) ≤ 1.
Let = x1 + x2 + x3 + x4, then using the fact that ci ∈ (0,1]; i = 1,2 system 2 gives that:

dQ
dt
≤ 2x1 −MQ,

where M = min{1,w5,w10,w11}. Hence, simple manipulation yields

dQ
dt
+MQ ≤ 2.

Then according to the lemma 2.1,29 it is obtained that

Q (t ) ≤
2
M
[
1+ (Q (0)− 1) e−Mt ]
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Therefore, for t →∞, it is obtained that:

Q (t ) ≤
2
M
.

That completes the proof.
According to the above theorems, system 2 is a well-post biological system as the population in the

environment is always nonnegative and bounded by the habitat carrying capacity.

Equilibria and stability analysis

This section determines the stability analysis of each probable equilibrium point. The following equilibrium
points (EPs) exist in System 2:

1) The vanishing equilibrium point (VEP), E0 = (0,0,0,0) always exists.
2) The axial equilibrium point (AEP), E1 = (1,0,0,0) always exists.
3) The predator-free equilibrium point (PFEP), E2 = ( w5

w2
, w2−w5

w2(1+w2) ,0,0) exists provided the following condi-
tion holds

w5 < w2. (3)

4) The disease-free equilibrium point (DFEP), E3 = (x̂1,0, x̂3,0) = ( w10
c1w6(1+x̂3) ,0, x̂3,0), where x̂3 is a positive

root for

c1w1w4w6x4
3 + (c1w4w6 + 2c1w1w4w6) x3

3 + (2c1w4w6 + c1w1w4w6) x2
3

+ (−c1w6 + c1w4w6) x3 − c1w6 + w10 = 0.
(4)

Note that, Eq. (4) has a unique positive root x̂3 if the following condition is met:

w10 < c1w6. (5)

5) The predator-disease-free equilibrium point (PDFEP), E4 = (x̌1, x̌2, x̌3,0), is determined as:

x̌1 =
(1+ w3x̌3)

(
w5 + w4x̌3 + w4x̌2

3
)

w2
, x̌2 =

w2w10 − c1w6 (1+ x̌3) (1+ w3x̌3)
(
w5 + w4x̌3 + w4x̌2

3
)

c2w2w6 (1+ x̌3)
,

which are positive if the following condition holds:

c1w6 (1+ x̌3) (1+ w3x̌3)
(
w5 + w4x̌3 + w4x̌2

3
)
< w2w10. (6)

While x̌3 is a positive root of the following equation:

ρ1x5
3 + ρ2x4

3 + ρ3x3
3 + ρ4x2

3 + ρ5x3 + ρ6 = 0, (7)

where

ρ1 = (c2 − c1) w3w4w6 (w1w2 + w3) ,

ρ2 = (c2 − c1) w4w6
[
w1w2 + 2w3 + w2w3 + 2w1w2w3 + 2w2

3
]
,

ρ3 = (c2 − c1) w4w6d1+ w2 + 2w1w2 + 4w3 + 2w2w3 + w1w2w3 + w2
3e

− c1w1w2w3w5w6 + (c2 − c1) w2
3w5w6,

ρ4 = −c2w2w3w6 + (c2 − c1) w4w6 [2+ 2w2 + w1w2 + 2w3 + w2w3]

− c1w1w2w5w6 + (c2 − c1) w3w5w6 [2+ w3]− c1 (1+ w1) w2w3w5w6,
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ρ5 = −c2w2w6 (1+ w3)+ (c2 − c1) w6 [w4 (1+ w2)+ w5 (1+ 2w3)]

− c1 (1+ w1) w2w5w6 − (2+ w2) w3w5w6 + (w1w2 + w3) w2w10,

ρ6 = − (c2w2 + c1w5) w6 + (c2 − c1w2) w5w6 + (w2 + 1) w2w10.

Following the Descartes rule of sign, Eq. (6) may have at least one positive root for different cases as displayed
in Table 1.

Table 1. Number of positive roots of Eq. (6) regarding sign changes.

Cases ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 No. of sign changes No. of Positive roots

1 + + + + + – 1 1
2 + + + + – – 1 1
3 + + + – + – 3 1, 3
4 + + + – – – 1 1
5 + + – + + – 2 0, 2
6 + + – + – – 3 1, 3
7 + + – – + – 2 0, 2
8 + + – – – – 1 1
9 – – + + + + 1 1
10 – – + + – + 3 1, 3
11 – – + – + + 3 1, 3
12 – – + – – + 3 1, 3
13 – – – + + + 1 1
14 – – – + – + 3 1, 3
15 – – – – + + 1 1
16 – – – – – + 1 1

Clearly, according to the cases 1, 2, 4, 8, 9, 13, 15, and 16 given in Table 1 with condition 6, the PDFEP can
exist uniquely.

6) The healthy prey equilibrium point (HPEP), E5 = (x̃1,0, x̃3, x̃4) is computed by:

x̃3 =
w8+w9w11+w11x̃4

w7(w9+x̃4)

x̃1 =
w7(w9+x̃4)[w10(w8+w9w11+w11x̃4)+w7x̃4(w9w11+w11x̃4)]

c1w6[x̃4w7(w9+x̃4)+w8+w9w11+w11x̃4][w7(1+x4)(w9+x̃4)+w8+w9w11+w11x̃4]

}
. (8)

While x̃4 is a positive root of the following equation.

σ1x10
4 + σ2x9

4 + σ3x8
4 + σ4x7

4 + σ5x6
4 + σ6x5

4 + σ7x4
4 + σ8x3

4 + σ9x2
4 + σ10x4 + σ11 = 0. (9)

Where the coefficients σi; i = 1,2, . . . ,11 are computed using the Mathematica. However, their large and
intricate forms are not included here. It is well known that, the existence and uniqueness of the HPEP depend
on the number of positive roots of Eq. (9), which may have at least one positive root when the coefficients
σ1 = c1w1w4w6w5

7 > 0 and σ11 of opposite signs.

7) Calculating the coexistence equilibrium point (CEP), E6 = (x∗1, x∗2, x∗3, x∗4), is done by

x∗3 =
w8+w9w11+w11x∗4

w7(w9+x∗4) =
M
N

x∗1 =
[N+w3(x∗4N+M)][w5N2

+w4(x4N+M)((1+x∗4)N+M)]
w2N3

x∗2 =
(w7x∗4+w10)x∗3(w9+x∗4)−w8x∗4−c1w6(1+x∗3+x∗4)(x∗3+x∗4)x∗1(w9+x∗4)

c2w6(1+x∗3+x∗4)(x∗3+x∗4)(w9+x∗4)

 . (10)

While x∗4 is a positive root of the higher-order equation obtained from the first equation of system 2 after
substituting the values of x∗1, x∗2, and x∗3, which are given in Eq. (10). Therefore, the number of CEP depends
on the number of positive roots x∗4 and the following condition.

w8x∗4 + c1w6
(
1+ x∗3 + x∗4

) (
x∗3 + x∗4

)
x∗1
(
w9 + x∗4

)
<
(
w7x∗4 + w10

)
x∗3
(
w9 + x∗4

)
. (11)
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The local stability analysis of the previously described EPs can be studied using the computed Jacobian matrix
(JM) that follows.

J =
[
si j
]
4×4, (12)

Where

s11 = −w4 (x3 + x4) (1+ x3 + x4)−
−1+ 2x1 + x2

1+ w1 (x3 + x4)
−

w2x2

1+ w3 (x3 + x4)
.

s12 = −x1

(
1

1+ w1 (x3 + x4)
+

w2

1+ w3 (x3 + x4)

)
,

s13 = x1

(
−w4 (1+ 2x3 + 2x4)+

w1 (−1+ x1 + x2)
(1+ w1 (x3 + x4))2 +

w2w3x2

(1+ w3 (x3 + x4))2

)
,

s14 = x1

(
−w4 (1+ 2x3 + 2x4)+

w1 (−1+ x1 + x2)
(1+ w1 (x3 + x4))2 +

w2w3x2

(1+ w3 (x3 + x4))2

)
,

s21 =
w2x2

1+ w3 (x3 + x4)
,

s22 = −w5 − w4 (x3 + x4) (1+ x3 + x4)+
w2x1

1+ w3 (x3 + x4)
,

s23 = x2

(
−w4 (1+ 2x3 + 2x4)−

w2w3x1

(1+ w3 (x3 + x4))2

)
,

s24 = x2

(
−w4 (1+ 2x3 + 2x4)−

w2w3x1

(1+ w3 (x3 + x4))2

)
,

s31 = c1w6 (x3 + x4) (1+ x3 + x4) ,

s32 = c2w6 (x3 + x4) (1+ x3 + x4) ,

s33 = −w10 − w7x4 + w6 (c1x1 + c2x2) (1+ 2x3 + 2x4) ,

s34 = −w7x3 +
w8w9

(w9 + x4)2 + w6 (c1x1 + c2x2) (1+ 2x3 + 2x4) ,

s41 = 0, s42 = 0, s43 = w7x4, s44 = −w11 + w7x3 −
w8w9

(w9 + x4)2 .

Accordingly, the JM given by 12 at E0 becomes

JE0 =


1 0 0 0
0 −w5 0 0
0 0 −w10

w8
w9

0 0 0 −
w8
w9
− w11

 . (13)

Therefore, the eigenvalues of JE0 are given by

λ01 = 1 > 0, λ02 = −w5 < 0, λ03 = −w10 < 0, λ04 = −

(
w8

w9
+ w11

)
< 0. (14)

As one of the eigenvalues is positive and the others are negative, hence, E0 is a saddle point.
The JM that is determined by Eq. (12) at E1 becomes

JE1 =


−1 −1− w2 −w4 −w4
0 w2 − w5 0 0
0 0 c1w6 − w10 c1w6 +

w8
w9

0 0 0 −
w8
w9
− w11

 . (15)
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Therefore, the eigenvalues of JE1 are given by

λ11 = −1 < 0, λ12 = w2 − w5, λ13 = c1w6 − w10, λ14 = −

(
w8

w9
+ w11

)
< 0. (16)

Hence, the AEP is locally asymptotically stable (LAS), provided that the following conditions are met.

w2 < w5. (17)

c1w6 < w10. (18)

Otherwise, it will be a non-hyperbolic point if at least one of the above two inequality becomes equality.
Moreover, it is a saddle point if at least one of the above inequality is reflected.

Now, the JM that is given by Eq. (12) at E2 becomes

JE2 =


−

w5
w2

−
(1+w2)w5

w2
−

w5[w4(1+w2)+(w2−w5)(w1−w3)]
w2(1+w2) −

w5[w4(1+w2)+(w2−w5)(w1−w3)]
w2(1+w2)

w2−w5
1+w2

0 −
(w2−w5)(w4+w3w5)

w2(1+w2) −
(w2−w5)(w4+w3w5)

w2(1+w2)

0 0 w6[c2(w2−w5)+c1(1+w2)w5]
w2(1+w2) − w10

w6[c2(w2−w5)+c1(1+w2)w5]
w2(1+w2) +

w8
w9

0 0 0 −
w8
w9
− w11

 . (19)

Hence, the characteristic equation of JE2 = [ai j]4×4 can be written as:[
λ2
− a11λ− a12a21

]
[a33 − λ] [a44 − λ] = 0. (20)

Direct computation gives the following roots

λ21 =
a11
2 +

1
2

√
(a11)2

− 4 (a12a21)

λ22 =
a11
2 −

1
2

√
(a11)2

− 4(a12a21)

λ23 =
(c2(w2−w5)+c1(1+w2)w5)w6

w2(1+w2) − w10

λ24 = −
w8
w9
− w11 < 0


. (21)

Direct computation shows that the eigenvalues λ21 and λ22 have always negative real parts, while λ23 will
be negative if the following condition holds.

(c2 (w2 − w5)+ c1 (1+ w2) w5) w6

w2 (1+ w2)
< w10. (22)

Therefore, the PFEP is a LAS if condition 22 is satisfied. Otherwise, it will be a non-hyperbolic point if
inequality in condition 22 becomes equality, and it is a saddle point if the inequality in condition 22 is reflected.

The JM that is given by Eq. (12) at E3 becomes

JE3 =
[
ŝi j
]
4×4, (23)

Where

ŝ11 = −
w10

c1w6 (1+ x̂3) (1+ w1x̂3)
,

ŝ12 = −
w10 [1+ w3x̂3 + w2 (1+ w1x̂3)]

c1w6 (1+ x̂3) (1+ w3x̂3) (1+ w1x̂3)
,

ŝ13 = −
w10

(
w4x̂3 + w4 (1+ x̂3)+ w1(c1w6(1+x̂3)−w10)

c1w6(1+x̂3)(1+w1x̂3)2

)
c1w6 (1+ x̂3)

,
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ŝ14 = −
w10

(
w4x̂3 + w4 (1+ x̂3)+ w1(c1w6(1+x̂3)−w10)

c1w6(1+x̂3)(1+w1x̂3)2

)
c1w6 (1+ x̂3)

,

ŝ21 = 0, ŝ22 = −w5 − w4x̂3 (1+ x̂3)+
w2w10

c1w6 (1+ x̂3) (1+ w3x̂3)
, ŝ23 = 0, ŝ24 = 0,

ŝ31 = c1w6x̂3 (1+ x̂3) , ŝ32 = c2w6x̂3 (1+ x̂3) ,

ŝ33 =
w10x̂3

1+ x̂3
, ŝ34 =

w8

w9
− w7x̂3 + w10

(
2−

1
1+ x̂3

)
,

ŝ41 = 0, ŝ42 = 0, ŝ43 = 0, ŝ44 = −
w8

w9
− w11 + w7x̂3.

Hence, the characteristic equation of JE3 can be written as:[
λ2
− (ŝ11 + ŝ33) λ+ (ŝ11ŝ33 − ŝ13ŝ31)

]
[ŝ22 − λ] [ŝ44 − λ] = 0. (24)

Direct computation gives the following roots

λ31 =
(ŝ11+ŝ33)

2 +
1
2

√
(ŝ11 + ŝ33)2

− 4(ŝ11ŝ33 − ŝ13ŝ31)

λ33 =
(ŝ11+ŝ33)

2 −
1
2

√
(ŝ11 + ŝ33)2

− 4(ŝ11ŝ33 − ŝ13ŝ31)

λ32 = −w5 − w4x̂3 (1+ x̂3)+ w2w10
c1w6(1+x̂3)(1+w3x̂3)

λ34 = −
w8
w9
− w11 + w7x̂3


. (25)

Direct computation shows that the eigenvalues λ31 and λ33 have negative real parts, and λ32 with λ34 are
negative if the following conditions hold.

x̂3 <
1

c1w6 (1+ w1x̂3)
. (26)

w10

c1w6(1+ x̂3)2 (1+ w1x̂3)
<

(
w4x̂3 + w4 (1+ x̂3)+

w1 (c1w6 (1+ x̂3)− w10)
c1w6 (1+ x̂3) (1+ w1x̂3)2

)
. (27)

w2w10

c1w6 (1+ x̂3) (1+ w3x̂3)
< w5 + w4x̂3 (1+ x̂3) . (28)

w7x̂3 <
w8

w9
+ w11. (29)

Therefore, the DFEP is a LAS if conditions 26–29 are satisfied. It becomes a non-hyperbolic point when any
of the inequalities 26, 28, or 29 becomes equality. Moreover, it is a saddle point in case any of the inequalities
26, 28, or 29 are reflected.

Moreover, the JM that is given by Eq. (12) at PDFEP that is represented by E4 can be written as:

JE4 =
[
ši j
]
4×4, (30)

Where

š11 = −
x̌1

1+ w1x̌3
, š12 = −x̌1

(
1

1+ w1x̌3
+

w2

1+ w3x̌3

)
,

š13 = x̌1

(
−w4 (1+ 2x̌3)+

w1 (−1+ x̌1 + x̌2)
(1+ w1x̌3)2 +

w2w3x̌2

(1+ w3x̌3)2

)
,

š14 = x̌1

(
−w4 (1+ 2x̌3)+

w1 (−1+ x̌1 + x̌2)
(1+ w1x̌3)2 +

w2w3x̌2

(1+ w3x̌3)2

)
,

š21 =
w2x̌2

1+ w3x̌3
, š22 = 0, š23 = −x̌2

(
w4 (1+ 2x̌3)+

w2w3x̌1

(1+ w3x̌3)2

)
,
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š24 = −x̌2

(
w4 (1+ 2x̌3)+

w2w3x̌1

(1+ w3x̌3)2

)
,

š31 = c1w6x̌3 (1+ x̌3) , š32 = c2w6x̌3 (1+ x̌3) ,

š33 = −w10 + w6 (c1x̌1 + c2x̌2) (1+ 2x̌3) ,

š34 =
w8

w9
− w7x̌3 + w6 (c1x̌1 + c2x̌2) (1+ 2x̌3) ,

š41 = 0, š42 = 0, š43 = 0, š44 = −
w8

w9
− w11 + w7x̌3.

Hence, the characteristic equation of JE4 can be written as:[
λ3
− A41λ

2
+ A42λ+ A43

]
[š44 − λ] = 0, (31)

Where

A41 = − (š11 + š33) ,

A42 = −š12š21 + š11š33 − š13š31 − š23š32,

A43 = − [š23 (š12š31 − š11š32)+ š21 (š13š32 − š12š33)] ,

1 = A41A42 − A43 = − (š11 + š33) [š11š33 − š13š31]+ š12 (š11š21 + š23š31)+ š32 (š23š33 + š13š21) .

According to the Routh-Hurwitz criterion,1 the characteristic Eq. (31) has eigenvalues with negative real
parts if the following conditions are satisfied:

w1 (−1+ x̌1 + x̌2)
(1+ w1x̌3)2 +

w2w3x̌2

(1+ w3x̌3)2 < w4 (1+ 2x̌3) . (32)

w6 (c1x̌1 + c2x̌2) (1+ 2x̌3) < w10. (33)

w7x̌3 <
w8

w9
+ w11. (34)(

1
1+ w1x̌3

+
w2

1+ w3x̌3

)
c1 <

c2

1+ w1x̌3
. (35)

x̌1

(
w4 (1+ 2x̌3)−

w1 (−1+ x̌1 + x̌2)
(1+ w1x̌3)2 −

w2w3x̌2

(1+ w3x̌3)2

)
w2x̌2

1+ w3x̌3

<

[
x̌2

(
w4 (1+ 2x̌3)+

w2w3x̌1

(1+ w3x̌3)2

)]
[w10 − w6 (c1x̌1 + c2x̌2) (1+ 2x̌3)] . (36)

The JM that is given by Eq. (12) at the HPEP that is represented by E5 can be written as:

JE5 =
[
s̃i j
]
4×4, (37)

Where

s̃11 = −
x̃1

1+ w1 (x̃3 + x̃4)
, s̃12 = −x̃1

(
1

1+ w1 (x̃3 + x̃4)
+

w2

1+ w3 (x̃3 + x̃4)

)
,

s̃13 = −x̃1

(
w4 (1+ 2x̃3 + 2x̃4)+

w1 (1− x̃1)
(1+ w1 (x̃3 + x̃4))2

)
,

s̃14 = −x̃1

(
w4 (1+ 2x̃3 + 2x̃4)+

w1 (1− x̃1)
(1+ w1 (x̃3 + x̃4))2

)
,
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s̃21 = 0, s̃22 = −w5 − w4 (x̃3 + x̃4) (1+ x̃3 + x̃4)+
w2x̃1

1+ w3 (x̃3 + x̃4)
, s̃23 = 0, s̃24 = 0,

s̃31 = c1w6 (x̃3 + x̃4) (1+ x̃3 + x̃4) , s̃32 = c2w6 (x̃3 + x̃4) (1+ x̃3 + x̃4) ,

s̃33 = −w10 − w7x̃4 + c1w6x̃1 (1+ 2x̃3 + 2x̃4) ,

s̃34 = w7x̃3 +
w8w9

(w9 + x̃4)2 + c1w6x̃1 (1+ 2x̃3 + 2x̃4) ,

s̃41 = 0, s̃42 = 0, s̃43 = w7x̃4, s̃44 =
w8x̃4

(w9 + x̃4)2 .

Hence, the characteristic equation of JE5 can be written as:[
λ3
− A51λ

2
+ A52λ+ A53

]
[s̃22 − λ] = 0, (38)

Where

A51 = − (s̃11 + s̃33 + s̃44) ,

A52 = s̃11s̃33 − s̃13s̃31 + s̃33s̃44 − s̃34s̃43 + s̃11s̃44,

A53 = − [s̃11 (s̃33s̃44 − s̃34s̃43)+ s̃31 (s̃14s̃43 − s̃13s̃44)] ,

With

1 = A51A52 − A53 = − (s̃11 + s̃33) [s̃11s̃33 − s̃13s̃31]− s̃11s̃44 (s̃11 + s̃44)

− (s̃33 + s̃44) [s̃33s̃44 − s̃34s̃43]− 2s̃11s̃33s̃44 + s̃14s̃31s̃43.

With the following sufficient conditions that satisfy A51 > 0; A53 > 0, and1 = A51A52 − A53 > 0, it is simple
to confirm that the characteristic Eq. (38) has either λ52 = s̃22, which is negative provided that condition 39
holds, or three eigenvalues, namely λ51, λ53, and λ54, with negative real parts, due to Routh-Hurwitz criterion.

w2x̃1

1+ w3 (x̃3 + x̃4)
< w5 + w4 (x̃3 + x̃4) (1+ x̃3 + x̃4) , (39)

c1w6x̃1 (1+ 2x̃3 + 2x̃4) < w10 + w7x̃4, (40)

s̃11 + s̃33 + s̃44 < 0, (41)

0 < s̃11 (s̃33s̃44 − s̃34s̃43) < s̃31 (s̃13s̃44 − s̃14s̃43) , (42)

max. {−s̃11,−s̃33} < s̃44, (43)

0 < 2s̃11s̃33s̃44 − s̃14s̃31s̃43 < −s̃11s̃44 (s̃11 + s̃44)− (s̃33 + s̃44) [s̃33s̃44 − s̃34s̃43] . (44)

Finally, the JM that is given by Eq. (12) at E6 becomes:

JE6 =

[
s∗i j
]

4×4
, (45)

Where

s∗11 = −
x∗1

1+ w1
(
x∗3 + x∗4

) , s∗12 = −x∗1

(
1

1+ w1
(
x∗3 + x∗4

) + w2

1+ w3
(
x∗3 + x∗4

)) ,
s∗13 = x∗1

(
−w4

(
1+ 2x∗3 + 2x∗4

)
+

w1
(
−1+ x∗1 + x∗2

)(
1+ w1

(
x∗3 + x∗4

))2 + w2w3x∗2(
1+ w3

(
x∗3 + x∗4

))2
)
,

s∗14 = x∗1

(
−w4

(
1+ 2x∗3 + 2x∗4

)
+

w1
(
−1+ x∗1 + x∗2

)(
1+ w1

(
x∗3 + x∗4

))2 + w2w3x∗2(
1+ w3

(
x∗3 + x∗4

))2
)
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s∗21 =
w2x∗2

1+ w3
(
x∗3 + x∗4

) , s∗22 = 0, s∗23 = −x∗2

(
w4
(
1+ 2x∗3 + 2x∗4

)
+

w2w3x∗1(
1+ w3

(
x∗3 + x∗4

))2
)
,

s∗24 = −x∗2

(
w4
(
1+ 2x∗3 + 2x∗4

)
+

w2w3x∗1(
1+ w3

(
x∗3 + x∗4

))2
)
,

s∗31 = c1w6
(
x∗3 + x∗4

) (
1+ x∗3 + x∗4

)
, s∗32 = c2w6

(
x∗3 + x∗4

) (
1+ x∗3 + x∗4

)
,

s∗33 = −w10 − w7x∗4 + w6
(
c1x∗1 + c2x∗2

) (
1+ 2x∗3 + 2x∗4

)
,

s∗34 = −w7x∗3 +
w8w9(

w9 + x∗4
)2 + w6

(
c1x∗1 + c2x∗2

) (
1+ 2x∗3 + 2x∗4

)
,

s∗41 = 0, s∗42 = 0, s∗43 = w7x∗4, s∗44 =
w8x∗4(

w9 + x∗4
)2 .

Hence, the characteristic equation of J(E6) can be written as:[
λ4
+ A1λ

3
+ A2λ

2
+ A3λ+ A4

]
= 0, (46)

Where

A1 = −
(
s∗11 + s∗33 + s∗44

)
,

A2 = −s∗12s∗21 + s∗11s∗33 − s∗13s∗31 + s∗11s∗44 − s∗23s∗32 + s∗33s∗44 − s∗34s∗43,

A3 = −
(
s∗12
[
s∗23s∗31 − s∗21s∗33

]
+ s∗13s∗21s∗32 − s∗11

(
s∗23s∗32 + s∗34s∗43

)
+ s∗24s∗32s∗43

+
[(

s∗11s∗33 − s∗13s∗31
)
−
(
s∗23s∗32 + s∗12s∗21

)]
s∗44 + s∗14s∗31s∗43

)
,

A4 = −s∗43
(
s∗12s∗24s∗31 + s∗14s∗21s∗32 − s∗11s∗24s∗32 − s∗12s∗21s∗34

)
+ s∗44

(
s∗12s∗23s∗31 + s∗13s∗21s∗32 − s∗11s∗23s∗32 − s∗12s∗21s∗33

)
.

According to the Routh-Hurwitz criterion,1 the characteristic Eq. (46) has four eigenvalues with negative
real parts if the following conditions are satisfied.

w1
(
−1+ x∗1 + x∗2

)(
1+ w1

(
x∗3 + x∗4

))2 + w2w3x∗2(
1+ w3

(
x∗3 + x∗4

))2 < w4
(
1+ 2x∗3 + 2x∗4

)
, (47)

w6
(
c1x∗1 + c2x∗2

) (
1+ 2x∗3 + 2x∗4

)
< w10 + w7x∗4, (48)

w8w9(
w9 + x∗4

)2 + w6
(
c1x∗1 + c2x∗2

) (
1+ 2x∗3 + 2x∗4

)
< w7x∗3, (49)

s∗11 + s∗33 + s∗44 < 0, (50)

s∗21s∗33 < s∗23s∗31, (51)[(
s∗11s∗33 − s∗13s∗31

)
−
(
s∗23s∗32 + s∗12s∗21

)]
s∗44 < s∗11

(
s∗23s∗32 + s∗34s∗43

)
, (52)

s∗12s∗24s∗31 + s∗14s∗21s∗32 − s∗11s∗24s∗32 − s∗12s∗21s∗34 < 0, (53)

s∗12s∗23s∗31 + s∗13s∗21s∗32 − s∗11s∗23s∗32 − s∗12s∗21s∗33 > 0, (54)

(A1A2 − A3) A3 > A2
1A4. (55)

Local bifurcation

To ascertain whether local bifurcation may occur close to the system’s 2 equilibrium points when the
parameter crosses a particular value that turns the equilibrium point into a non-hyperbolic point, Sotomayor’s
bifurcation theorem30 was utilized. For a known local bifurcation to occur, it is essential but not sufficient that
the equilibrium point be non-hyperbolic. Because the parameters are dynamic and always changing based on
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the conditions of the environment in which the system’s organisms exist, the study of the bifurcation of system
2 is essential. Now, rewrite system 2 in vector form as follows:

dX
dt
= F (X, β) ;X = (x1, x2, x3, x4)T

;F = (F1 (X, β) , F2 (X, β) , F3 (X, β) , F4 (X, β))T, (56)

Where β ∈ R represents a bifurcation parameter. Hence the second and third directional derivatives for
system 56 can be written respectively:

D2F (X, β) (V,V) =
[
bi1
]
4×1, (57)

Where V = (v1, v2, v3, v4)T be any vector and bi1 was determined by:

b11 = −2w4 (v3 + v4) [(v3 + v4) x1 + v1 (1+ 2x3)]− 4v1 (v3 + v4) w4x4

−
2(v3 + v4)2w2

1x1 (−1+ x1 + x2)
(1+ w1 (x3 + x4))3 +

2 (v3 + v4) w1 (v2x1 + v1 (−1+ 2x1 + x2))
(1+ w1 (x3 + x4))2 −

2v1 (v1 + v2)
1+ w1 (x3 + x4)

−
2(v3 + v4)2w2w2

3x1x2

(1+ w3 (x3 + x4))3 +
2 (v3 + v4) w2w3 (v2x1 + v1x2)

(1+ w3 (x3 + x4))2 −
2v1v2w2

1+ w3 (x3 + x4)
,

b21 = −2w4 (v3 + v4) [(v3 + v4) x2 + v2 (1+ 2x3)]− 4v2 (v3 + v4) w4x4

+
2(v3 + v4)2w2w2

3x1x2

(1+ w3 (x3 + x4))3 −
2 (v3 + v4) w2w3 (v2x1 + v1x2)

(1+ w3 (x3 + x4))2 +
2v1v2w2

1+ w3 (x3 + x4)
,

b31 = 2v4

(
−v3w7 −

v4w8w9

(w9 + x4)3

)
+ 2c1w6 (v3 + v4) [(v3 + v4) x1 + v1 (1+ 2x3 + 2x4)]

+ 2c2w6 (v3 + v4) [(v3 + v4) x2 + v2 (1+ 2x3 + 2x4)] ,

b41 = 2v4

(
v3w7 +

v4w8w9

(w9 + x4)3

)
.

While:

D3F (X, β) (V,V,V ) = [ci2]4×1, (58)

Where

c12 = 6 (v3 + v4)

[
−v1 (v3 + v4) w4 +

(v3 + v4)2w3
1x1 (−1+ x1 + x2)

(1+ w1 (x3 + x4))4

−
(v3 + v4) w2

1 (v2x1 + v1 (−1+ 2x1 + x2))
(1+ w1 (x3 + x4))3 +

v1 (v1 + v2) w1

(1+ w1 (x3 + x4))2 +
(v3 + v4)2w2w3

3x1x2

(1+ w3 (x3 + x4))4

−
(v3 + v4) w2w2

3 (v2x1 + v1x2)
(1+ w3 (x3 + x4))3 +

v1v2w2w3

(1+ w3 (x3 + x4))2

]
,

c22 =
6(v3 + v4)2w2w2

3x2 [− (v3 + v4) w3x1 + v1 (1+ w3 (x3 + x4))]
(1+ w3 (x3 + x4))4 −

6 (v3 + v4) v2v1w2w3(1+ w3 (x3 + x4))2

(1+ w3 (x3 + x4))4

−
6(v3 + v4)2v2 (1+ w3 (x3 + x4))

(
−w2w2

3x1 + w4(1+ w3 (x3 + x4))3)
(1+ w3 (x3 + x4))4 ,

c32 = 6w6 (c1v1 + c2v2) (v3 + v4)2
+

6v3
4w8w9

(w9 + x4)4 ,

c42 = −
6v3

4w8w9

(w9 + x4)4 .
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With the help of the above findings, the following theorem can investigate the occurrence of local bifurcation
near the equilibrium points.

Theorem 3: Assume that condition 17 is met, then system 2 undergoes a Transcritical bifurcation (TB) near AEP
when the parameter w10 passes through the value w∗10 = c1w6 provided that the following condition holds:

w4 6= 1. (59)

Otherwise, pitchfork bifurcation (PB) takes place.

Proof: From the Eq. (15) with w∗10 = c1w6 the JM becomes

J∗1 = J
(
E1,w∗10

)
=


−1 −1− w2 −w4 −w4

0 w2 − w5 0 0

0 0 0 c1w6 +
w8
w9

0 0 0 −
w8
w9
− w11

 .

Therefore, the eigenvalues of J∗1 are given by:

λ11
(
w∗10

)
= −1 < 0, λ12

(
w∗10

)
= w2 − w5, λ13

(
w∗10

)
= 0, andλ14

(
w∗10

)
= −

w8

w9
− w11 < 0.

Note that the eigenvalue λ12(w∗10) is negative under the condition 17. Thus AEP is a non-hyperbolic point at
w∗10 = c1w6.

Let V1 = (v11, v12, v13, v14)T and U1 = (u11, u12, u13, u14)T are the eigenvectors conjugate with the eigenvalue
λ13(w∗10) of J∗1 and J∗1

T respectively. It is obtained after direct computation that:

V1 = (−w4,0,1,0)T and U1 = (0,0,1, δ)T , with δ =
c1w6w9 + w8

w8 + w9w11
> 0.

Following Sotomayor’s theorem, gives that:

∂

∂w10
F (X,w10) =


0
0
−x3

0

 ;V ∂

∂w10
F
(
E1,w∗10

)
=


0
0
0
0

 .
Therefore, U1

TFw10 (E1,w∗10) = 0, as a result, the first condition for the occurrence of transcritical bifurcation
is met. Moreover, since

DFw10 (X,w10) =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

V DFw10

(
E1,w∗10

)
V1 =


0
0
−1
0

 .
Therefore

U1
TDFw10

(
E1,w∗10

)
V1 = −1 6= 0.

Also, by using Eq. (57), it is obtained that

D2Fw10 (X,w10) (V1,V1) =


−2w1w4 − 2 (1− w4) w4 − 2w2

4

0
2c1 (1− w4) w6

0

 .
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Therefore, depending on the condition 59, the following is reached:

U1
TD2Fw10

(
E1,w∗10

)
(V1,V1) = 2c1w6 (1− w4) 6= 0.

Hence a TB takes place near AEP under condition 59. Otherwise, by using Eq. (58), it is obtained that

D3F
(
E1,w∗10

)
(V1,V1,V1,V1) =


6
(
w2

1w4 + w2
4 + w1w2

4
)

0
−6c1w4w6

0

 .
Accordingly, it is obtained that

U1
T D3 (E1,w∗10

)
(V1,V1,V1,V1) = −6c1w4w6 6= 0.

Therefore, PB takes place near AEP, and the proof is complete.
Due to the above theorem, a Transcritical bifurcation happens when a parameter passes a critical value,

trading stability with an unstable equilibrium point. Transcritical bifurcation in biological systems can signify
a qualitative shift in the system’s dynamics. It might signify a transition from one stable equilibrium state to
another in which there is a notable change in the species composition or population. It can also depict a situation
in which a species or population is in danger of going extinct or being invaded. However, as a parameter crosses
a critical value, pitchfork bifurcation happens when one stable equilibrium point gives rise to two additional
stable equilibrium points. Pitchfork bifurcation is a common indicator of population or species splitting or
diversification in biological systems. It may signify the coexistence of several species inside the system or the
emergence of several stable states.

Theorem 4: System 2 undergoes a TB near PFEP when the parameter w10 passes through the value w∗∗10 =
w6[c2(w2−w5)+c1(1+w2)w5]

w2(1+w2) provided that the following condition holds:

c2

(
n2 +

w2 − w5

w2 (1+ w2)

)
+ c1

(
n1 +

w5

w2

)
6= 0, (60)

Where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes place.

Proof: From Eq. (19) with w10 = w∗∗10 the JM becomes

J∗2 = J
(
E2,w∗10

)
=
[
ai j
]
,

Where ai j for all i, j = 1,2,3,4, are given in Eq. (19) with a33 = 0. Thus, J∗2 has the negative real parts
eigenvalues given in Eq. (21), with λ23(w∗∗10) = 0. Hence, PFEP is a non-hyperbolic point at w10 = w∗∗10.

Let V2 = (v21, v22, v23, v24)T, and U2 = (u21, u22, u23, u24)T are the eigenvectors conjugate with the eigenvalue
λ33(w∗∗10) of J∗2 and J∗2

T respectively. Direct computation shows that:

V2 = (n1, n2,1,0)T, n1 = −
a23

a21
> 0, n2 =

a11a23 − a13a21

a12a21
.

U2 = (0,0,1, n3)T , n3 = −
a34

a44
> 0.

Note that the sign of n2 can be positive or negative depending on the value of a13. Now, applying Sotomayor’s
theorem gives that:

∂

∂w10
F (X,w10) =


0
0
−x3

0

 ;V ∂

∂w10
F
(
E2,w∗∗10

)
=


0
0
0
0


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Therefore, U2
TFw10 (E2,w∗∗10) = 0, as a result, the first condition for the occurrence of transcritical bifurcation

is met. Moreover, since

DFw10 (X,w10) =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

V DFw10

(
E2,w∗∗10

)
V2 =


0
0
−1
0

 .
Therefore

U2
TDFw10

(
E2,w∗∗10

)
V2 = −1 6= 0.

Also, by using Eq. (57), it is obtained that

D2F
(
E2,w∗∗10

)
(V2,V2) = [σi1]4×1,

where

σ11 = −2n1 (n1 + n2)− 2n1n2w2 −
2w2

3 (w2 − w5) w5

w2 (1+ w2)
− 2w4

(
n1 +

w5

w2

)

−

2w2
1w5

(
−1+ w2−w5

w2(1+w2) +
w5
w2

)
w2

+ 2w2w3

(
n1 (w2 − w5)
w2 (1+ w2)

+
n2w5

w2

)
+ 2w1

[
n2w5

w2
+ n1

(
−1+

w2 − w5

w2 (1+ w2)
+

2w5

w2

)]
.

σ21 = 2n1n2w2 − 2w4

(
n2 +

w2 − w5

w2 (1+ w2)

)
+

2w2
3 (w2 − w5) w5

w2 (1+ w2)
− 2w2w3

(
n1 (w2 − w5)
w2 (1+ w2)

+
n2w5

w2

)
.

σ31 = 2w6

[
c2

(
n2 +

w2 − w5

w2 (1+ w2)

)
+ c1

(
n1 +

w5

w2

)]
.

σ41 = 0.

Then, when condition 60 is met, it is obtained that

U2
T D2F

(
E2,w∗∗10

)
(V2,V2) = 2w6

[
c2

(
n2 +

w2 − w5

w2 (1+ w2)

)
+ c1

(
n1 +

w5

w2

)]
6= 0.

Thus a TB near PFEP takes place. Otherwise, by using Eq. (58), it is obtained that

D3F
(
E2,w∗∗10

)
(V2,V2,V2) = [ρi1]4×1,

Where

ρ11 = 6
[
n1 (n1 + n2) w1 + n1n2w2w3 − n1w4 +

w3
3 (w2 − w5) w5

w2 (1+ w2)

+

w3
1w5

(
−1+ w2−w5

w2(1+w2) +
w5
w2

)
w2

− w2w2
3

(
n1 (w2 − w5)
w2 (1+ w2)

+
n2w5

w2

)
−w2

1

(
n2w5

w2
+ n1

(
−1+

w2 − w5

w2 (1+ w2)
+

2w5

w2

))]
.

ρ21 = 6

w2
3 (w2 − w5)

(
n1 −

w3w5
w2

)
1+ w2

− n2
(
n1w2w3 + w4 − w2

3w5
) .
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ρ31 = 6 (c1n1 + c2n2) w6.

ρ41 = 0.

Hence direct computation yields that U2
T D3F(E2,w∗∗10)(V2,V2,V2) = 6(c1n1 + c2n2)w6 6= 0 due to condition

60.
Thus, PB takes place, and then the proof is complete.
Note that, according to the form of n2 in the above theorem, it is simply to specify that for n2 > 0, then

system 2 has a TB only. However, for n2 < 0, system 2, under condition 60, undergoes a TB or otherwise it has
a PB.

Theorem 8: Assume that conditions 26, 27, and 29 are met, then system 2 undergoes a TB near DFEP when the
parameter w5 passes through the value w∗5 = −w4x̂3(1+ x̂3)+ w2w10

c1w6(1+x̂3)(1+w3x̂3) provided that the following condition
holds

−2n5w4 (1+ 2x̂3)−
2n5w2w3w10

c1w6 (1+ x̂3) (1+ w3x̂3)2 +
2n4w2

1+ w3x̂3
6= 0. (61)

Where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes place provided
that the following condition holds.

n4w2w3 (1+ w3x̂3)+ n5

(
−

w2w2
3w10

c1w6 (1+ x̂3)
+ w4(1+ w3x̂3)3

)
6= 0. (62)

Proof: From Eq. (23) with w5 = w∗5 the JM becomes

J∗3 = J
(
E3,w∗5

)
=
(
ŝi j
)
4×4,

Where ŝi j for all i, j = 1,2,3,4, are given in Eq. (23) with ŝ22(w∗5) = 0. Thus, due to the above-mentioned
conditions, J∗3 has the negative real parts eigenvalues given in Eq. (25), with λ32(w∗5) = 0. Hence, DFEP is a
non-hyperbolic point at w5 = w∗5.

Let V3 = (v31, v32, v33, v34)T and U3 = (u31, u32, u33, u34)T are the eigenvectors conjugate with the eigenvalue
λ32(w∗5) of J∗3 and J∗3

T respectively. Now, direct computation determined that

V3 = (n4,1, n5,0)T, n4 =
ŝ13ŝ32 − ŝ12ŝ33

ŝ11ŝ33 − ŝ13ŝ31
, n5 =

ŝ12ŝ31 − ŝ11ŝ32

ŝ11ŝ33 − ŝ13ŝ31
.

U3 = (0,1,0,0)T .

Now, applying Sotomayor’s theorem gives that:

∂

∂w5
F (X,w5) =


0
−x2

0
0

V
∂

∂w5
F
(
E3,w∗5

)
=


0
0
0
0

 .
Therefore, U3

TFw5 (E3,w∗5) = 0, as a result, the first condition for the occurrence of transcritical bifurcation
is met. Moreover, since

DFw5 (X,w5) =


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

V DFw5

(
E3,w∗5

)
V3 =


0
−1
0
0

 .
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Therefore

U3
TDFw5

(
E3,w∗5

)
V3 = −1 6= 0.

Also, by using Eq. (57), it is obtained that

D2F
(
E3,w∗5

)
(V3,V3) = [ϑi1]4×1,

Where

ϑ11 = −
2n4 (1+ n4)

1+ w1x̂3
+

2n5w2w3w10

c1w6 (1+ x̂3) (1+ w3x̂3)2 −
2n4w2

1+ w3x̂3
−

2n2
5w2

1w10

(
−1+ w10

c1w6(1+x̂3)

)
c1w6 (1+ x̂3) (1+ w1x̂3)3

− 2n5w4

(
n5w10

c1w6 (1+ x̂3)
+ n4 (1+ 2x̂3)

)
+

2n5w1

(
w10

c1w6(1+x̂3) + n4

(
−1+ 2w10

c1w6(1+x̂3)

))
(1+ w1x̂3)2 .

ϑ21 = −2n5w4 (1+ 2x̂3)−
2n5w2w3w10

c1w6 (1+ x̂3) (1+ w3x̂3)2 +
2n4w2

1+ w3x̂3
.

ϑ31 = 2
[
c2n5w6 (1+ 2x̂3)+ c1n5w6

(
n5w10

c1w6 (1+ x̂3)
+ n4 (1+ 2x̂3)

)]
.

ϑ41 = 0.

Then, when the condition 61 is met, it is obtained that

U3
T D2F

(
E3,w∗5

)
(V3,V3) = −2n5w4 (1+ 2x̂3)−

2n5w2w3w10

c1w6 (1+ x̂3) (1+ w3x̂3)2 +
2n4w2

1+ w3x̂3
6= 0.

Thus, a TB near PFEP takes place. Otherwise, by using Eq. (58), it is obtained that

D3F
(
E3,w∗5

)
(V3,V3,V3) = [µi1]4×1,

Where

µ11 = 6n5

[
−n4n5w4 +

n4 (1+ n4) w1

(1+ w1x̂3)2 −
n5w2w2

3w10

c1w6 (1+ x̂3) (1+ w3x̂3)3 +
n4w2w3

(1+ w3x̂3)2

+

n2
5w3

1w10

(
−1+ w10

c1w6(1+x̂3)

)
c1w6 (1+ x̂3) (1+ w1x̂3)4 −

n5w2
1

(
w10

c1w6(1+x̂3) + n4

(
−1+ 2w10

c1w6(1+x̂3)

))
(1+ w1x̂3)3

 .
µ21 = −

6n5

(
n4w2w3 (1+ w3x̂3)+ n5

(
−

w2w2
3w10

c1w6(1+x̂3) + w4(1+ w3x̂3)3
))

(1+ w3x̂3)3 .

µ31 = 6 (c2 + c1n4) n2
5w6.

µ41 = 0.

According to condition 62, it is obtained that

U3
T D3F

(
E3,w∗5

)
(V3,V3,V3) = µ21 6= 0

Thus, PB takes place, and then the proof is complete.
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Theorem 9: Assume that conditions 32, 33, 35, and 36 are met, then system 2 undergoes a TB near PDFEP when
the parameter w7 passes through the value w∗7 =

w8+w9w11
w9x̌3

provided that the following condition is met.

n8w∗7 +
w8

w2
9
6= 0, (63)

Where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes place.

Proof: From Eq. (30) with w7 = w∗7 the JM becomes

J∗4 = J
(
E4,w∗7

)
=
(
ši j
)
4×4,

Where ši j for all i, j = 1,2,3,4, are given in Eq. (30) with š34(w∗7) = −w11 + w6(c1x̌1 + c2x̌2)(1+ 2x̌3) and
ŝ44(w∗7) = 0. Thus, depending on the above-mentioned conditions, J∗4 has three negative real parts roots
(eigenvalues) of the characteristic equation that is given in Eq. (31) due to the Routh-Hurwitz criterion, with
λ44(w∗7) = 0. Hence, PDFEP is a non-hyperbolic point at w7 = w∗7.

Let V4 = (v41, v42, v43, v44)T and U4 = (u41, u42, u43, u44)T are the eigenvectors conjugate with the eigenvalue
λ44(w∗7) of J∗4 and J∗4

T respectively. Now, direct computation determined that

V4 = (n6, n7, n8,1)T,

Where

n6 =
−š14š23š32 + š13š24š32 − š12š24š33 + š12š23š34

−š12š23š31 − š13š21š32 + š11š23š32 + š12š21š33
.

n7 =
š14š23š31 − š13š24š31 − š14š21š33 + š11š24š33 + š13š21š34 − š11š23š34

−š12š23š31 − š13š21š32 + š11š23š32 + š12š21š33
.

n8 =
š12š24š31 + š14š21š32 − š11š24š32 − š12š21š34

−š12š23š31 − š13š21š32 + š11š23š32 + š12š21š33
.

While

U4 = (0,0,0,1)T .

Now, applying Sotomayor’s theorem gives that:

∂

∂w7
F (X,w7) =


0
0
−x3x4
x3x4

⇒ ∂

∂w7
F
(
E4,w∗7

)
=


0
0
0
0

 .
Therefore, U4

TFw7 (E4,w∗7) = 0, as a result, the first condition for the occurrence of transcritical bifurcation
is met. Moreover, since

DFw7 (X,w7) =


0 0 0 0
0 0 0 0
0 0 −x4 −x3
0 0 x4 x3

⇒ DFw7

(
E4,w∗7

)
V4 =


0
0
−x̌3
x̌3

 .
Therefore

U4
TDFw7

(
E4,w∗7

)
V4 = x̌3 6= 0.
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Also, by using Eq. (57), it is obtained that

D2F
(
E4,w∗7

)
(V4,V4) = [τi1]4×1,

Where

τ11 = −
2(1+ n8)2w2

1x̌1 (−1+ x̌1 + x̌2)
(1+ w1x̌3)3 +

2 (1+ n8) w1 [n7x̌1 + n6 (−1+ 2x̌1 + x̌2)]
(1+ w1x̌3)2 −

2n6 (n6 + n7)
1+ w1x̌3

−
2(1+ n8)2w2w2

3x̌1x̌2

(1+ w3x̌3)3 +
2 (1+ n8) w2w3 (n7x̌1 + n6x̌2)

(1+ w3x̌3)2 −
2n6n7w2

1+ w3x̌3

− 2 (1+ n8) w4 [(1+ n8) x̌1 + n6 (1+ 2x̌3)] .

τ21 =
2(1+ n8)2w2w2

3x̌1x̌2

(1+ w3x̌3)3 −
2 (1+ n8) w2w3 (n7x̌1 + n6x̌2)

(1+ w3x̌3)2 +
2n6n7w2

1+ w3x̌3

− 2 (1+ n8) w4 [(1+ n8) x̌2 + n7 (1+ 2x̌3)] .

τ31 = 2
[
−n8w∗7 −

w8

w2
9
+ c1 (1+ n8) w6 [(1+ n8) x̌1 + n6 (1+ 2x̌3)]

+c2 (1+ n8) w6 [(1+ n8) x̌2 + n7 (1+ 2x̌3)]
]
.

τ41 = 2
(

n8w∗7 +
w8

w2
9

)
.

Then, when the condition 63 is met, it is obtained that

U4
T D2F

(
E4,w∗7

)
(V4,V4) = τ41 6= 0.

Thus, a TB near PDFEP takes place. Otherwise, by using Eq. (58), it is obtained that:

D3F
(
E4,w∗7

)
(V4,V4,V4) = [θi1]4×1,

Where

θ11 = 6 (1+ n8)

[
−n6 (1+ n8) w4 +

(1+ n8)2w3
1x̌1 (−1+ x̌1 + x̌2)

(1+ w1x̌3)4

−
(1+ n8) w2

1 [n7x̌1 + n6 (−1+ 2x̌1 + x̌2)]
(1+ w1x̌3)3 +

n6 (n6 + n7) w1

(1+ w1x̌3)2

+
(1+ n8)2w2w3

3x̌1x̌2

(1+ w3x̌3)4 −
(1+ n8) w2w2

3 (n7x̌1 + n6x̌2)
(1+ w3x̌3)3 +

n6n7w2w3

(1+ w3x̌3)2

]
.

θ21 =
6 (1+ n8)

(1+ w3x̌3)4

[
(1+ n8) w2w2

3x̌2 ((−1− n8) w3x̌1 + n6 (1+ w3x̌3))

−n7 (1+ w3x̌3)
(
n6w2w3 (1+ w3x̌3)+ (1+ n8)

[
−w2w2

3x̌1 + w4(1+ w3x̌3)3])] .
θ31 = 6 (c1n6 + c2n7) (1+ n8)2w6 +

6w8

w3
9
.

θ41 = −
6w8

w3
9
.
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Accordingly, it is obtained that:

U4
T D3F

(
E4,w∗7

)
(V4,V4,V4) = −

6w8

w3
9
6= 0.

Thus, PB takes place, and then the proof is complete.

Theorem 10: Assume that conditions 40, 41, 42, 43, and 44 are met, then system 2 undergoes a TB near HPEP
when the parameter w2 passes through the value w∗2 =

1+w3(x̃3+x̃4)
x̃1

[w5 + w4(x̃3 + x̃4)(1+ x̃3 + x̃4)] provided that the
following condition is met.

− 2n10 (1+ n11) w4 (1+ 2x̃3)− 4n10 (1+ n11) w4x̃4

−
2n10 (1+ n11) w2w3x̃1

(1+ w3 (x̃3 + x̃4))2 +
2n9n10w2

1+ w3 (x̃3 + x̃4)
6= 0

, (64)

Where all the new symbols will be defined in the proof. Otherwise, pitchfork bifurcation (PB) takes place if the
following condition holds.

6n10 (1+ n11) [n9w2w3 (1+ w3 (x̃3 + x̃4))+ (1+ n11)(
−w2w2

3x̃1 + w4(1+ w3 (x̃3 + x̃4))3)]
6= 0

. (65)

Proof: From the Eq. (37) with w2 = w∗2 the JM becomes

J∗5 = J
(
E5,w∗2

)
=
(
s̃i j
)
4×4,

Where s̃i j for all i, j = 1,2,3,4, are given in Eq. (37) and s̃22(w∗2) = 0. Thus, depending on the above-
mentioned conditions, J∗5 has three negative real parts roots (eigenvalues) of the characteristic equation that is
given in Eq. (38) due to the Routh-Hurwitz criterion, with λ52(w∗2) = 0. Hence, HPEP is a non-hyperbolic point
at w2 = w∗2.

Let V5 = (v51, v52, v53, v54)T and U5 = (u51, u52, u53, u54)T are the eigenvectors conjugate with the eigenvalue
λ52(w∗2) of J∗5 and J∗5

T respectively. Now, direct computation determined that

V5 = (n9, n10, n11,1)T,

Where

n9 =
s̃14s̃32s̃43 − s̃12s̃34s̃43 − s̃13s̃32s̃44 + s̃12s̃33s̃44

(s̃12s̃31 − s̃11s̃32) s̃43
.

n10 =
−s̃14s̃31s̃43 + s̃11s̃34s̃43 + s̃13s̃31s̃44 − s̃11s̃33s̃44

(s̃12s̃31 − s̃11s̃32) s̃43
.

n11 = −
s̃44

s̃43
< 0.

While

U5 = (0,1,0,0)T .

Now, applying Sotomayor’s theorem gives that:

∂

∂w2
F(X,w2) =


0

x1x2
1+w3(x3+x4)

0
0

⇒ ∂

∂w2
F(E5,w∗2) =


0
0
0
0


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Therefore, U5
TFw2 (E5,w∗2) = 0, as a result, the first condition for the occurrence of transcritical bifurcation

is met. Moreover, since

DFw2 (X,w2) =


0 0 0 0
x2

1+w3(x3+x4)
x1

1+w3(x3+x4)
−w3x1x2

(1+w3(x3+x4))2
−w3x1x2

(1+w3(x3+x4))2

0 0 0 0
0 0 0 0

 ,
Which gives:

DFw2

(
E5,w∗2

)
V5 =


0

x̃1n10
1+w3(x̃3+x̃4)

0
0

 .
Therefore

U5
TDFw2

(
E5,w∗2

)
V5 =

x̃1n10

1+ w3 (x̃3 + x̃4)
6= 0.

Also, by using Eq. (57), it is obtained that

D2F
(
E5,w∗2

)
(V5,V5) = [εi1]4×1,

Where

ε11 = −2 (1+ n11) w4 [(1+ n11) x̃1 + n9 (1+ 2x̃3)]− 4n9 (1+ n11) w4x̃4

−
2(1+ n11)2w2

1 (−1+ x̃1) x̃1

(1+ w1 (x̃3 + x̃4))3 +
2 (1+ n11) w1 (n10x̃1 + n9 (−1+ 2x̃1))

(1+ w1 (x̃3 + x̃4))2 −
2n9 (n9 + n10)

1+ w1 (x̃3 + x̃4)

+
2n10 (1+ n11) w2w3x̃1

(1+ w3 (x̃3 + x̃4))2 −
2n9n10w2

1+ w3 (x̃3 + x̃4)
.

ε21 = −2n10 (1+ n11) w4 (1+ 2x̃3)− 4n10 (1+ n11) w4x̃4 −
2n10 (1+ n11) w2w3x̃1

(1+ w3 (x̃3 + x̃4))2 +
2n9n10w2

1+ w3 (x̃3 + x̃4)
.

ε31 = 2
[
−n11w7 −

w8w9

(w9 + x̃4)3 + c2n10 (1+ n11) w6 (1+ 2x̃3 + 2x̃4)

+c1 (1+ n11) w6 [(1+ n11) x̃1 + n9 (1+ 2x̃3 + 2x̃4)]] .

ε41 = 2
(

n11w7 +
w8w9

(w9 + x̃4)3

)
.

Then, when condition 64 is met, it is obtained that

U5
T D2F

(
E5,w∗2

)
(V5,V5) = ε21 6= 0.

Thus, a TB near PDFEP takes place. Otherwise, by using Eq. (58), it is obtained that

D3F
(
E5,w∗2

)
(V5,V5,V5) = [µi1]4×1,
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Where

µ11 = 6 (1+ n11)

[
−n9 (1+ n11) w4 +

(1+ n11)2w3
1 (−1+ x̃1) x̃1

(1+ w1 (x̃3 + x̃4))4 −
(1+ n11) w2

1 (n10x̃1 + n9 (−1+ 2x̃1))
(1+ w1 (x̃3 + x̃4))3

+
n9 (n9 + n10) w1

(1+ w1 (x̃3 + x̃4))2 −
n10 (1+ n11) w2w2

3x̃1

(1+ w3 (x̃3 + x̃4))3 +
n9n10w2w3

(1+ w3 (x̃3 + x̃4))2

]
.

µ21 = −
6n10 (1+ n11) dn9w2w3 (1+ w3 (x̃3 + x̃4))+ (1+ n11)

(
−w2w2

3x̃1 + w4(1+ w3 (x̃3 + x̃4))3)
e

(1+ w3 (x̃3 + x̃4))3 .

µ31 = 6 (c1n9 + c2n10) (1+ n11)2w6 +
6w8w9

(w9 + x̃4)4 .

µ41 = −
6w8w9

(w9 + x̃4)4 .

Then, when condition 65 is met, it is obtained that

U5
T D3F

(
E5,w∗2

)
(V5,V5,V5) = µ21 6= 0.

Thus, a PB near HPEP takes place.

Theorem 11: Assume that conditions 47–52 are met, and then system 2 undergoes a saddle-node bifurcation (SNB)
near CEP when the parameter w8 passes through the value w∗8 that is given below provided that the following conditions
are met.

n17 − 1 6= 0. (66)

n15b∗11 + n16b∗21 + n17b∗31 + b∗41 6= 0. (67)

Where all the new symbols are defined in the proof and that:

w∗8 =
s∗43
(
w9 + x∗4

)2 [(s∗12s∗24s∗31 + s∗14s∗21s∗32 − s∗11s∗24s∗32
)
− s∗12s∗21

(
−w7x∗3 + w6

(
c1x∗1 + c2x∗2

) (
1+ 2x∗3 + 2x∗4

))](
s∗12s∗23s∗31 + s∗13s∗21s∗32 − s∗11s∗23s∗32 − s∗12s∗21s∗33

)
x∗4 + w9s∗12s∗21s∗43

.

Proof: From Eq. (45) with w8 = w∗8 the JM becomes

J∗6 = J
(
E6,w∗8

)
=

[
s∗i j
]

4×4
,

Where s∗i j for all i, j = 1,2,3,4, are given in Eq. (45) with s∗34(w∗8) = −w7x∗3 +
w∗8w9

(w9+x∗4)2 + w6(c1x∗1 + c2x∗2)(1+

2x∗3 + 2x∗4) and s∗44(w∗8) = w∗8x∗4
(w9+x∗4)2 . Thus, depending on the above-mentioned conditions, the determinant of J∗6

that is given by A4 in the Eq. (46) becomes A4 = 0. Thus, J∗6 has a zero eigenvalue represented by λ64(w∗8) = 0.
Hence, CEP is a non-hyperbolic point at w8 = w∗8.

Let V6 = (v61, v62, v63, v64)T and U6 = (u61, u62, u63, u64)T are the eigenvectors conjugate with the eigenvalue
λ64(w∗8) of J∗6 and J∗6

T respectively. Now, direct computation determined that

V6 = (n12, n13, n14,1)T,

Where

n12 =
s∗12s∗23s∗34 − s∗12s∗24s∗33 + s∗13s∗24s∗32 − s∗14s∗23s∗32
s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33

.

n13 =
−s∗11

(
s∗23s∗34 − s∗24s∗33

)
− s∗31

(
s∗13s∗24 − s∗14s∗23

)
+ s∗21

(
s∗13s∗34 − s∗14s∗33

)
s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33

.
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n14 =
−s∗11s∗24s∗32 + s∗12s∗24s∗31 + s∗14s∗21s∗32 − s∗12s∗21s∗34
s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33

.

While

U6 = (n15, n16, n17,1)T ,

Where

n15 =
s∗21s∗32s∗43

s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33
.

n16 =
s∗43
(
s∗12s∗31 − s∗11s∗32

)
s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33

.

n17 = −
s∗12s∗21s∗43

s∗11s∗23s∗32 − s∗12s∗23s∗31 − s∗13s∗21s∗32 + s∗12s∗21s∗33
.

Now, applying Sotomayor’s theorem gives that:

∂

∂w8
F (X,w8) =


0
0
x4

w9+x4

−
x4

w9+x4

⇒ ∂

∂w8
F
(
E6,w∗8

)
=


0
0
x∗4

w9+x∗4
−

x∗4
w9+x∗4


Therefore, due to condition 66, U6

TFw8 (E6,w∗8) = x∗4(n17−1)
w9+x∗4

6= 0.
As a result, the first condition for the occurrence of transcritical bifurcation is met. Moreover, following the

Eq. (57), it yields that

D2F
(
E6,w∗8

)
(V6,V6) =

[
b∗i1
]
4×1,

Where b∗i1 = bi1(E6,w∗8) for i = 1,2,3,4. Hence, direct computation using condition 67 gives that:

U6
T [D2F

(
E6,w∗8

)
(V6,V6)

]
6= 0.

Hence, SNB near CEP when w8 = w∗8, which completes the proof.
From the above theorem it can be concluded that, in biological systems, a saddle-node bifurcation denotes

a critical threshold at which a significant shift in the system’s behavior occurs. This kind of bifurcation occurs
when a parameter is changed, causing two equilibrium points an unstable saddle point and a stable node to
clash and eventually annihilate one another. This may cause abrupt changes in the system’s condition. Saddle-
node bifurcations are frequently used to characterize circumstances in which slow alterations in environmental
characteristics or conditions can result in sudden shifts in ecosystem states or population sizes.

Numerical solution

In this section, system 2 is solved numerically to confirm the previously obtained findings and predict the con-
trol set of parameters. Several sets of initial conditions are adopted in this investigation which are given by p01 =

(0.9,0.9,0.9,0.9), p02 = (0.75,0.75,0.75,0.75), p03 = (0.5,0.5,0.5,0.5), p04 = (0.25,0.25,0.25,0.25), and
p05 = (0.1,0.1,0.1,0.1) with the following set of hypothetical biologically feasible parameters.

To predict the control set of parameters and validate the previously obtained results, system 2 is numerically
solved in this section. In this inquiry, many initial condition sets are used, with the following set of hypothetical
biologically feasible parameters assigned to p01, p02, p03, p04, and p05. MATLAB R2021a is used to solve and
present the results in projections of phase portraits and the time series of the obtained trajectories. The blue
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Fig. 1. The trajectories of system 2 using dataset 68. (a) 3D projection of phase portrait for trajectories starting from p02 and p03, which are
approaching E6. (b) 2D projection of phase portrait for trajectories starting from p01 and p04, which are approaching E3. (c) 2D projection of
phase portrait for trajectory starting from p05 that approaches E2. (d) Time series of trajectories starting from p02 and p03. (e) Time series
of trajectories starting from p01 and p04. (f) Time series of trajectory starting from p05.

dots refer to the initial conditions, while the red dots refer to the attracting equilibrium points.

w1 = 0.5,w2 = 2, w3 = 0.5,w4 = 0.2,w5 = 0.01,w6 = 0.4, w7 = 0.75

w8 = 0.1,w9 = 0.1,w10 = 0.05, w11 = 0.1, c1 = 0.3, c2 = 0.3.
(68)

It is observed that the trajectories of system 2 converge asymptotically to three different equilibrium points,
which are given by E2 = (0.005,0.331,0,0), E3 = (0.19,0,1,17,0), and E6 = (0.199,0.139,0,433,0.343),
simultaneously, indicating the existence of tri-stable dynamic behavior, see Fig. 1.
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Fig. 2. The trajectories of system 2 using the dataset 68 with w1 = 0.05. (a) 3D projection of phase portrait for trajectories starting from
p0i; i = 1,2, . . . ,5, which are approaching E5. (b) 2D projection of phase portrait in the x1x2−plane. (c) 2D projection of phase portrait in
the x1x3−plane. (d) 2D projection of phase portrait in the x1x4−plane.

According to Fig. 1, system 2 has no globally stable behavior and persistence. There is a basin of attraction for
each equilibrium point, and the attracting point is dependent on the initial point. This is due to the possibility of
the existence of multiple equilibrium points in the 3D and 4D spaces, which complicates the dynamic behavior
around them.

Now, the influence of varying the parameter value on the dynamic behavior of system 2 is investigated.
It is observed that for the values w1 < 0.1 all the trajectories starting from the above different initial values
approach E5 as shown in Fig. 2. For the range 0.1 ≤ w1 < 0.37 the trajectories approaches E3, and E5 that is
indicating bi-stable behavior as presented in Fig. 3. For, the values 0.37 ≤ w1 < 0.4 the system approaches
E3, E5, and E6 as given in Fig. 4, which indicates tri-stable behavior. Now, for the range 0.4 ≤ w1 < 0.43 the
solutions of the system 2 approach asymptotically E2, E3, E5, and E6, which refers to four-stable behavior as
explained in Fig. 5. However, the system 2 undergoes a tri-stable behavior as their solutions starting from
different initial points approach asymptotically to E2, E3, and E6, for 0.43 ≤ w1 < 0.6 see Fig. 1. It is observed
that the CEP becomes unstable and system 2 undergoes tri-stable behavior among E2, E3, and 4D-periodic for
the range 0.6 ≤ w1 < 0.64 as shown in Fig. 6. The system 2 loses its possibility of persistence at the 4D-periodic
attractor and undergoes a bi-stable behavior between E2, and E3 for the range 0.64 ≤ w1 < 1.53 as explored
in Fig. 7. Finally, system 2 approaches asymptotically to E2 starting from different initial points as explored in
Fig. 8 for the range 1.53 ≤ w1.

Similarly, the influence of varying other parameters is investigated and the obtained results are summarized
in Table 2.

Results and discussion

In this paper, a prey-predator model that considers hunting cooperation and fear is created when infectious
diseases exist in both populations. The idea of applying these biological factors in the case of the existence of
the disease in both species is biologically realistic and new to our knowledge. The goals are to identify how
hunting cooperation contributes to the anxiety that is created by the predation process and to comprehend the
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Fig. 3. The trajectories of system 2 using the dataset 68 with w1 = 0.25. (a) 3D projection of phase portrait for trajectories starting from
p0i; i = 1,2, . . . ,5, which are approaching E3 and E5. (b) 2D projection of phase portrait in the x1x2−plane. (c) 2D projection of phase portrait
in the x1x3−plane. (d) 2D projection of phase portrait in the x1x4−plane.

Fig. 4. The trajectories of system 2 using the dataset 68 with w1 = 0.39. (a) 3D projection of phase portrait for trajectories starting from
p0i; i = 1,2, . . . ,5, which are approaching E3, E5 and E6. (b) 2D projection of phase portrait in the x1x2−plane. (c) 2D projection of phase
portrait in the x1x3−plane. (d) 2D projection of phase portrait in the x1x4−plane.
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Fig. 5. The trajectories of system 2 using the dataset 68 with w1 = 0.42. (a) 3D projection of phase portrait for trajectories starting from
p0i; i = 1,2, . . . ,5, which are approaching E2, E3, E5 and E6. (b) 2D projection of phase portrait in the x1x2−plane. (c) 2D projection of phase
portrait in the x1x3−plane. (d) 2D projection of phase portrait in the x1x4−plane.

Fig. 6. The trajectories of system 2 using the dataset 68 with w1 = 0.62. (a) 3D projection of phase portrait for trajectory starting from p03
that approaches 4D-periodic attractor. (b) Time series of the trajectory starting at p03. (c) 3D projection of phase portrait for trajectories
starting from p01, p02 and p04, which are approaching E3. (d) Time series of the trajectories starting from p01, p02 and p04. (e) 3D projection
of phase portrait for trajectory starting at p05 that approaches E2. (f) Time series of the trajectories starting at p05.
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Table 2. Dynamical behavior regarding to parameters ranges using dataset 68.

Parameter varying Ranges Approaches to the attractors

w2 w2 < 1.84 E3, E5
1.84 ≤ w2 < 1.89 E3, E5, E6
1.89 ≤ w2 < 1.97 E3, E6
1.97 ≤ w2 < 2.1 E2, E3, E6
2.1 ≤ w2 < 2.15 E2, E3, 4D-periodic
2.15 ≤ w2 E2, E3

w3 w3 < 0.38 E2, E3
0.38 ≤ w3 < 0.42 E2, E3, 4D-periodic
0.42 ≤ w3 < 0.60 E2, E3, E6
0.60 ≤ w3 < 0.62 E2, E3, E5, E6
0.62 ≤ w3 < 0.65 E3, E5, E6
0.65 ≤ w3 E3, E5

w4 w4 < 0.03 3D-periodic, E5, E6
0.03 ≤ w4 < 0.06 E5
0.06 ≤ w4 < 0.11 E5, E6
0.11 ≤ w4 < 0.14 E2, E5, E6
0.14 ≤ w4 < 0.16 E2, E3, E5, E6
0.16 ≤ w4 < 0.3 E2, E3, E6
0.3 ≤ w4 E2, E3

w5 w5 < 0.03 E2, E3, E5, E6
0.03 ≤ w5 E3, E5

w6 w6 < 0.29 E2
0.29 ≤ w6 < 0.39 E2, E3
0.39 ≤ w6 < 0.42 E2, E3, E6
0.42 ≤ w6 < 0.43 E3, E5, E6
0.43 ≤ w6 E3, E5

c1 c1 < 0.13 E2
0.13 ≤ c1 < 0.28 E2, E3
0.28 ≤ c1 < 0.29 E2, E3, 4D periodic
0.29 ≤ c1 < 0.34 E2, E3, E6
0.34 ≤ c1 E3, E5

c2 c2 < 0.17 E2
0.17 ≤ c2 < 0.27 E2, E3
0.27 ≤ c2 < 0.31 E2, E3, 4D periodic
0.31 ≤ c2 E3, E6

w7 w7 < 0.54 E2, E3
0.54 ≤ w7 < 0.64 E2, E3, E5
0.64 ≤ w7 < 0.85 E2, E3, E6
0.85 ≤ w7 E2, E3, 4D periodic

w8 w8 < 0.03 E2
0.03 ≤ w8 < 0.07 E2, 4D periodic
0.07≤ w8 < 0.09 E2, E3, 4D periodic
0.09 ≤ w8 < 0.14 E2, E3, E6
0.14 ≤ w8 E2, E3

w9 w9< 0.02 E2, E3
0.02 ≤ w9 < 0.13 E2, E3, E6
0.13 ≤ w9 < 0.7 E2, E6
0.7 ≤ w9 < 0.83 E2, 4D periodic
0.83 ≤ w9 E2

w10 w10 < 0.04 E2, E5
0.04 ≤ w10 < 0.05 E3, E6
0.05 ≤ w10 < 0.06 E2, E3, E6
0.06 ≤ w10 < 0.09 E2, E3
0.09 ≤ w10 E2

w11 w11 < 0.1 E2, E3, E5
0.1 ≤ w11 < 0.12 E2, E3, E6
0.12 ≤ w11 E2, E3
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Fig. 7. The trajectories of system 2 using the dataset 68 with w1 = 1. (a) 3D projection on the space x1x2x3 of phase portrait for trajectories
starting from p0i; i = 1,2, . . . ,5, which are approaching E2, and E3. (b) 3D projection on the space x1x3x4 of phase portrait for trajectories
starting from p0i; i = 1,2, . . . ,5 which are approaching E2, and E3.

Fig. 8. The trajectories of system 2 using the dataset 68 with w1 = 1.6. (a) 3D projection of phase portrait for trajectories starting from
p0i; i = 1,2, . . . ,5, which are approaching E2. (b) 2D projection of phase portrait in the x1x2−plane.

dynamic behavior of such a system. The suggested system contains six boundary equilibrium points, whilst
the coexistence point may or may not exist. All potential equilibrium points were computed together with the
parameters governing their presence. The coexistence point’s multiplicity of existence forced us to focus only
on its local stability. Consequently, its global stability cannot be studied because its number is not known.
As a result, each of them will have a basin of attraction, which precludes the existence of global stability.
Furthermore, it was not possible to investigate the permanence of the suggested system because the conditions
for the cohabitation and border points’ existence overlapped with the prerequisites for those points’ stability.
Finally, as a future work, it can be thought about the role of delayed disease transition on the dynamic behavior
and persistence of the system.

Conclusion

The presence of cooperative hunting and induced fear in the prey-predator system, coupled with the presence
of infectious disease in both species greatly complicated the dynamics of the system. As a result of this
complexity, there is a loss of global stability in the system, as well as persistence, since the dynamic behavior
changes rapidly with changing parameter values. According to the numerical results shown in Fig. 1 to Fig. 8
and those presented in Table 2, the system has very multiple dynamics, including locally stable equilibrium
points, periodic dynamics, and multiple stability. Also, the conversion rate from infected prey to healthy
predator is the only parameter that keeps the system locally stable at the point of coexistence, while all other
parameters lead to a loss of persistence in the system and the dynamic behavior prevailing over the system is
multiple stability.
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تأثير التعاون في الصيد والخوف على ديناميكيات النموذج الوبائي 

 البيئي مع المرض في كلا المجموعتين السكانيتين

 نبأ حسين فخري1، رائد كامل ناجي3،2

 1 قسم الرياضيات وتطبيقات الحاسوب، كلية العلوم، جامعة النهرين، بغداد، العراق.

 2 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.

 3 هيئة البحث العلمي، بغداد، العراق.

 المستخلص

يتطلب التنبؤ بالديناميكيات البيئية والتحكم فيها فهمًا للتفاعل المعقد بين التعاون في الصيد، والخوف، والعناصر البيولوجية 

لأهمية لتحقيق الاستدامة البيئية والحفاظ عليها، كما الأخرى في النماذج الوبائية البيئية. وتعد دراسة هذه النماذج أمرا بالغ ا

يتضح من ارتفاع الأمراض المعدية الناجمة عن النمو السكاني والتفاعلات بين الكائنات الحية. الهدف من هذه الدراسة هو 

والفرائس،  إنشاء نموذج رياضي جديد يأخذ في الاعتبار الأمراض المعدية التي تؤثر على كل من الحيوانات المفترسة

وكذلك كيف يسبب سلوك الصيد التعاوني من جانب الحيوانات المفترسة القلق لدى سكان الفرائس. تم اختبار السمات الهامة 

للنموذج، بما في ذلك وجود الحلول وحدودها وتفردها وإيجابيتها، بالإضافة إلى تحديد مواقع التوازن ومعايير الاستقرار 

جراء تحليلات التشعب حول نقاط التوازن، وكشف مجموعة متنوعة من السلوكيات الديناميكية، المحلي التي تدعمها. تم إ

بما في ذلك أحداث الاستقرار المتعدد. تم تأكيد الاستنتاجات النظرية وتحديد إعدادات التحكم من خلال عمليات المحاكاة 

 .MATLAB R2021aكوتا من الدرجة الرابعة في -العددية باستخدام طريقة رانكا

وبائي، خوف، التعاون في الصيد، الاستقرار، التشعب.-نموذج بيئي الكلمات المفتاحية:  
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