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Abstract 

Landforms are fundamental components of landscapes and pivotal elements within 

geomorphology. The comprehensive classification of landforms necessitates an advanced 

quantitative methodological approach capable of extracting discernible integral elements and 

patterns from Digital Elevation Models (DEMs). Identifying these patterns constitutes a crucial 

initial stage in recognizing and delineating landforms. The main objective of this research is to 

employ the Geomorphons technique at various scales, including neighborhood sizes of 5x5(3.9 

km2), 10x10(15.6 km2), and 25x25(97.6 km2) cells to autonomously categorize Geomorphic 

units (landforms) derived from 12.5-meter resolution ALOS PALSAR DEM within the SAGA-

GIS software framework. Geomorphon is an effective model for characterizing the earth's 

morphology, encapsulating micro-landscape structures. Subsequently, the landform classes 

were correlated with landslide susceptibility zones through sophisticated spatial analysis 

functions in the designated area. 

The study area was classified into 10 distinct types of the most prevalent geomorphic units, 

including flat, valley, slope, foot slope, peak, pit, ridge, hollow, shoulder, and spur. The results 

indicated that the predominant landform type observed is closely associated with slopes, while 

the least prevalent is flat terrain. Landform patterns exhibit a strong correlation with natural 

hazards, particularly landslides. Notably, approximately 100% of the flat regions are situated 

within low and very low landslide susceptibility zones, while more than 45% of the summit, 

ridge, shoulder, spur, and slope areas are characterized by high to very high landslide risk zones. 

The insights gained from this study are valuable for categorizing zones susceptible to landslide 

challenges. Understanding landforms is a critical parameter applicable to natural calamity 

assessment and future master planning in the Akre district of northern Iraq. 

Keywords: Geomorphic Units; DEM; GIS and remote sensing techniques; Landslides vulnerability;                      

Akre District. 
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1. Introduction 

The Earth's surface is a mosaic of diverse landforms, formed by natural endogenic and exogenic 

processes (Robaina & Trentin, 2020; Stepinski & Jasiewicz, 2011; Zhazhlayi & Surdashy, 

2022). Classifying terrain into landform types and segmenting specific terrains are crucial tasks 

across various scientific disciplines (Stepinski & Jasiewicz, 2011). These processes play a 

pivotal role in explaining the mechanisms underlying spatial heterogeneity in landscape 

evolution. Landforms provide physical boundaries for various mechanisms, including geology, 

ecosystem science, geomorphology, vegetation studies, hydrology, and archeology (Adeli et 

al., 2021). Landforms are spatial configurations of uniform surfaces formed by tectonic forces 

and surface processes  (Alzekri et al., 2024; Seif, 2014). They are distinct geomorphic features 

on Earth's surface, spanning a wide range of spatial scales (Giano et al., 2020; Verhagen & 

Drăguţ, 2012). Identifying the components and patterns of landforms is crucial for 

comprehensive landscape analyses and environmental investigations (Adeli et al., 2021; Lin et 

al., 2021; Verhagen & Drăguţ, 2012; Yusra, 2019). Landform data analysis has multiple 

functions beyond geomorphological studies, providing information for landscape evaluation, 

process assessment, natural disaster prediction, and decision-making in regional planning, 

development, and management (Wahyuni et al., 2021).Various methodologies have been 

employed for collecting and analyzing such data, including visual interpretation techniques, 

quantitative analytical methods, statistical clustering, multivariate data analysis, filter methods, 

and geo-ecosystem modeling approaches (Adeli et al., 2021; Yusra, 2019). However, some 

approaches and models depend on classifying fundamental elements of the landscape. A 

method for detecting variations in landforms using remotely sensed data is substantial for 

identifying and classifying landscape features and landforms (Drăguţ & Eisank, 2012; Ngunjiri 

et al., 2020). 

Geomorphometry is a novel discipline that uses statistical geomorphological characteristics to 

measure and analyze landforms. It is based on the association between roughness and 

quantitative factors  (Adeli et al., 2021; Beranvand & Saife, 2020). Since the 1990s, automated 

landform classification has gained popularity due to the availability of accurate worldwide and 

national remotely sensed data (e.g., DEMs) and GIS techniques (Li et al., 2020; Robaina & 

Trentin, 2020). This method is more accurate, affordable, and time-effective than other 

techniques, establishing boundary criteria for various geomorphological phenomena (Ngunjiri 

et al., 2020; Stepinski & Jasiewicz, 2011). For example, Bety (2013) used DEMs to efficiently 

and effortlessly derive various topographic features, including three-dimensional 

representations, slope, aspect, and different types of convexities and curvatures. However, 

Morphometric parameters were previously calculated and analyzed manually, which was a 

laborious and expensive method (Shekar & Mathew, 2024). Numerous contemporary studies 

have employed automatic or semiautomatic algorithms to determine and classify landforms, 

with landforms being particularly significant from geological and engineering perspectives 

(Drăguţ & Eisank, 2012; Giano et al., 2020; Ilia et al., 2013; Lin et al., 2021; Robaina & Trentin, 

2020). Al-Sababhah (2023) successfully classified the landforms of the Wadi Araba watershed 

in Jordan through the application of the Topographic Position Index (TPI), up to ten varied 
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landforms were found. Furthermore, the automated TPI technique based on geoinformatics was 

effectively utilized to categorize landforms in Zagros Mountain (Mokarram & Seif, 2014). The 

Geomorphon approach was applied to identify distinct landforms, contributing to terrain 

description, soil condition, and features assessment (Ngunjiri et al., 2020). Gioia et al. (2021) 

proposed that the Geomorphon technique is particularly effective and optimum for categorizing 

riverbed floor features. Additionally, Adeli et al. (2021) used the Geomorphon technique to 

classify landform units in the Arctic, which was considered particularly useful due to its 

capacity to discern distinct features that reflect regional processes and activities. In arid and 

semi-arid zones, the susceptibility to landslides is controlled by numerous spatial variables: 

topography, slope, elevation, LULC, watershed and drainage system characteristics, and 

patterns of precipitation duration and intensity (Fatah et al., 2024). Bachri et al. (2021) used 

geomorphometric parameters (stream networks, various indexes, and landform units), 

topographic factors (elevation, slope, and curvature), and environmental factors (LULC, NDVI, 

and rainfall data) as input variables in GIS platforms to identify potential landslide areas and 

risk level assessment for the eastern part of Indonesia, along with a study on the relationship of 

landslide susceptible zone and the causative factors with landform patterns. 

This study aims to improve the accuracy of landform classification and mapping in the Akre 

district, northern Iraq. This region is prone to frequent mass movements, which pose risks to 

infrastructure, agriculture, and human settlements. Previous studies have largely relied on 

visual interpretation or traditional classification methods, limiting the precision of landform 

analysis in this region (Robaina et al., 2020; Bachri et al., 2021). Such approaches often fail to 

capture subtle topographic variations and spatial relationships between landform units, making 

them less effective for detailed geomorphological assessments. Thus, this study seeks to address 

this gap by utilizing the Geomorphon tool and using digital interpretation and spatial analysis 

techniques to evaluate the relationships between ten landform elements and landslide 

susceptibility zones. The aim is also to classify the terrain into essential geomorphological 

components for effortless analysis and interpretation. The Geomorphon method is chosen for 

its effectiveness in identifying landform units, allowing rapid visual analysis while preserving 

the intricacy of geomorphic patterns. This approach allows for vibrant differentiation between 

landform units within the study area. The findings will support landform mapping efforts, 

manage landslide susceptibility, and promote future urbanization in mountainous regions. 

2. Materials and Methods 

2.1. Description of the study area 

Akre District area is located in the eastern portion of the Duhok Governorate, Kurdistan region. 

It is geographically positioned between longitude coordinates 43°30' – 44° 20'E and latitude 

coordinates 36°15' – 37°00'N. Covering an area of around (1832 Km²) with a height ranging 

from 310 and 1958 m above sea level according to the DEM (Figure 1). Iraq and the Kurdistan 

region, have a Mediterranean climate. Arid and semi-arid areas with two distinct seasons, a 

chilly, rainy winter (sometimes marked by floods) and a scorching, dry summer are its defining 

features (Fatah et al., 2022). The average yearly temperature is between 18 and 24 °C, while 
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the average yearly rainfall is between 450 and 1000 mm. The average monthly temperature is 

below freezing during the winter and can reach 48 °C during the summer (Fatah et al., 2020). 

 

Figure 1. The location map of the study area. 

According to the tectonic divisions of Iraq, the study area is located on the unstable shelf in the 

Low-Folded and High-Folded Zones (Fatah et al., 2024; Le Garzic et al., 2019). Numerous 

anticlines have been exposed in the area, including Bardarash and Sarta in the southern region 

and Peris, Akre, Perat, and Bijeel in the northern and northeastern regions (Fatah et al., 2022). 

The main geological formations exposed in the study area include Quaternary and recent 

sediments, along with the Bai-Hasan, Mukdadiya, Injana, and Fatha formations in the southern 

parts. Additionally, certain Cretaceous and Jurassic formations are present within the 

mountainous terrain in the northern parts (Figure 2; Fatah et al., 2024). 



IBGM. 2025, vol 21, issue 1                                                                                                                         403 of 18 
 

224 

 

 

 

Figure 2. a) Geological map (Sissakian & Fouad, 2015) and b) the tectonic map of the study 

area after Fouad (2015). 

a 

b 
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2.2. Data acquisition and preprocessing 

An Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture 

Radar (PALSAR) Digital Elevation Model (DEM) with 12.5 m spatial resolution for the area 

of interest was obtained from the Alaska Satellite Facility (2009) at 

https://search.asf.alaska.edu/#/. The DEM was subsequently subset to encompass the specific 

area of interest. Initially, the DEM data underwent pre-processing (filling sinks) to remove 

consecutive fill sinks and flat portions, ensuring accuracy and generating dependable results 

(Libohova et al., 2016). Furthermore, the Spatial Analyst tools, specifically the Fill tool, in the 

ArcGIS platform were employed to address and fill null pixels and remove missing values of 

altitude in the DEM (Fatah et al., 2024). 

2.3. Methodology 

The development of geospatial techniques and computer-based algorithms for evaluating 

geomorphometric characteristics of the topography of the Earth has promoted the growth of 

methods for semi-automated and automated recognition and categorization of landscape terrain 

regarding DEM data (Gioia et al., 2021). Consequently, the usefulness of landform 

classification based on map algebra has thus been documented in some studies that have been 

published (Libohova et al., 2016; Lin et al., 2021; Mihu-Pintilie & Nicu, 2019). 

One of the most commonly employed methods for automatic landform classification in the 

SAGA-GIS software package is the Geomorphon. This study aims to classify landforms in the 

Akre district using the Geomorphon tool. 

In this study, the landform classification methodology integrates the Geomorphon tool, an 

innovative technique introduced by Jasiewicz and Stepinski (2013). This technique marks a 

substantial advancement in the geomorphometry field, providing a robust, comprehensive, and 

adaptable framework for automated landform recognition and classification. The Geomorphon 

tool employs an advanced and sophisticated algorithm that merges altitude differentials with 

discernibility concepts to categorize topographic features into specific landform types. By 

leveraging the relationship between local topography and viewshed characteristics, this 

approach effectively infers the classification of landforms (Robaina et al., 2017). The present 

study performed geomorphon analysis utilizing ALOS PALSAR-DEM with 12.5 m resolution 

as input data in the SAGA GIS 7.8.1 and ArcGIS Pro.3.1 software platforms. This approach 

computes the elevation of a target pixel (central cell) in a DEM corresponding to its surrounding 

pixels in eight compass cardinal directions and up to a maximum search radius. It provides 

information about the type of landform at each central or target pixel position using a ternary 

pattern (Figure 3). It uses a ternary pattern to analyze the textural similarity of DEM with 

elevation fluctuations across adjacent cells at predefined scales (Adeli et al., 2021). The concept 

of this approach involves translating topographical data into a ternary pattern: elevations of 

neighboring pixels lower than the central cell are denoted as '-', equal elevations as '0', and 

higher elevations as '+' (Figure 3). This tripartite identification forms the basis for extracting 
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and identifying distinct types of landforms within the investigated region (Robaina & Trentin, 

2020). This operator assigns an 8-tuple pattern to each central cell (focal pixel), applying a 

trinary scheme of symbols ('+', '0', or '-'). The pattern is generated by systematically comparing 

the central pixel (focal cell) with its eight surrounding cells (pixels), initiating the comparison 

from the easternmost pixel and proceeding counterclockwise direction. For instance, an 8-tuple 

pattern [-,+,-,+, -, 0, -, +] represents a specific configuration where the surrounding pixels are 

classified as (Adeli et al., 2021 higher, lower, equal, lower, higher higher, lower, equal, lower, 

higher) relative to the focal pixel. 

 

Figure 3. Application of the Ternary Local Patterns concept to the classification of landform 

components, as proposed by Jasiewicz and Stepinski (2013). 

It is crucial to emphasize that the adjacent pixels in the grid configuration do not always align 

with the immediate proximity of the center pixel. They are calculated using the line-of-sight 

method across the eight cardinal directions, as explained by Stepinski and Jasiewicz (2011). 

Geomorphic classification is based on two main parameters: the relief threshold (D) and the 

search radius (L). The search radius specifies the greatest distance for determining zenith and 

nadir angles, whilst the relief threshold indicates the minimal divergence of these angles from 

the Earth's surface (horizontal plane). The Geomorphon tool was assessed across various 

configurations (scenarios), with the ideal values of 0.7 for the relief threshold and 5000 for the 

search radius chosen according to DEM resolution and terrain complexity, facilitating landform 

detection at a 12.5 m pixel resolution (Coria et al., 2024). This classification allocates values 

(‘+’, ‘0’, or ‘–’) to each cardinal direction (Figure 3) (Jasiewicz & Stepinski, 2013). The 

Geomorphon tool identifies 498 geomorphic patterns, which are further classified into 10 

primary landform types—flat, pit, valley, foot-slope, hollow, slope, spur, shoulder, ridge, and 

peak—to meet research goals (Jasiewicz & Stepinski, 2013). This approach offers a 

comprehensive visualization of terrain morphology, including several topographic 

characteristics. Figure 4 illustrates a ternary local pattern, showcasing its application. 
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Figure 4. 3D symbolic visualizations and their representative geomorphons (ternary patterns) 

for the ten most prevalent landform types, as explained by Jasiewicz and Stepinski (2013). 

Fatah et al. (2024) generated a landslide susceptibility map (LSM) for the Akre District using 

an ensemble method that incorporates the frequency ratio (FR) and analytic hierarchy process 

(AHP) models, based on geoinformatics techniques (Fatah et al., 2024). The generated LSMs 

have been classified into five classes depending on vulnerability levels: very high, high, 

moderate, low, and very low. The extrapolative effectiveness of the ensemble FR-AHP model 

was validated by employing the area under the curve of the receiver operating characteristic 

(AUC-ROC). The model attained an AUC-ROC value of 93.8%, indicating superior 

consistency and accuracy in LSM. This high-performance metric suggests that the ensemble F 

R-AHP method proposes an optimal methodology for evaluating landslide risk. Since this 

hybrid model was proved effective, this research adopted the base from LSM modeled by Fatah 

et al. (2024). That is because it would express landslide vulnerability in detail over the study 

area, hence improving possibilities of making informed decisions on land-use planning and risk 

management strategies. 

Fatah et al. (2024) generated a landslide susceptibility map (LSM) for the Akre District using 

an ensemble method that incorporates the frequency ratio (FR) and analytic hierarchy process 

(AHP) models, based on geoinformatics techniques (Fatah et al., 2024). The generated LSMs 

have been classified into five classes depending on vulnerability levels: very high, high, 

moderate, low, and very low. The extrapolative effectiveness of the ensemble FR-AHP model 

was validated by employing the area under the curve of the receiver operating characteristic 

(AUC-ROC). The model attained an AUC-ROC value of 93.8%, indicating superior 

consistency and accuracy in LSM. This high-performance metric suggests that the ensemble 

FR-AHP method proposes an optimal methodology for evaluating landslide risk. Since this 

hybrid model was proved effective, this research adopted the base from LSM modeled by Fatah 
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et al. (2024). That is because it would express landslide vulnerability in detail over the study 

area, hence improving possibilities of making informed decisions on land-use planning and risk 

management strategies. 

Geomorphic units were mapped with DEM data at three radii: 5, 10, and 25 cells based on the 

total number of pixels or cells in the circumference surrounding a targeted pixel to identify its 

Geomorphic Units (GU). Different window sizes were applied to geomorphic units to enhance 

the generalization and visualization of various landforms in this study. This approach allows 

for a more comprehensive representation of terrain features at multiple scales (Gioia et al., 

2021). The LSM of the study area was overlaid with the geomorphic map, followed by the 

calculation of an area for every one of the ten most common geomorphic units falling into the 

landslide-susceptible zones on the LSM map. Visual interpretation and quantitative analysis 

with respect to field observation will be conducted in order to determine whether or not 

statistically significant relations exist between geomorphic units and landslide-susceptible 

zones. Furthermore, observation points, where morphological classification and assessment of 

landslide-prone zones were conducted, were marked on the Geomorphic maps that exhibited 

the strongest relationships with the landslide susceptible zones. This was performed to evaluate 

whether the landslide-prone areas identified at these points corresponded with the results 

obtained from the analysis of the LSM map in relation to Geomorphic units. 

3. Results 

The final geomorphon map (Figure 5) includes the ten most prevalent geomorphon types; flat, 

valley, slope, foot slope, peak, pit, ridge, hollow, shoulder, and spur. The Akre district’s 

geomorphic patterns' geographic distribution is shown on the map. 

Based on combined neighborhood sizes of 5*5, 10*10, and 25*25 cell sizes, landform 

classification was carried out. Such a combination can provide additional information about the 

general shape, and landforms of the area, and detailed information about the topography of the 

area under examination on larger scales. Figures 6 and 7 depict the ten generated landform 

classes, while Table 1 provides a description of the landform’s areas for each cell size. 

As a result, the various window sizes that were tested demonstrated how neighborhood size 

affected landform classifications, resulting in a variation in the landform area ratio between 

large and small values. For instance, the percentage area of the valley reduced from 9.47% to 

7.66% and the percentage area of the slope decreased from 34.67% to 30.43% when the small 

cell size (5*5) was compared to the 10*10 cell size. The percentages for shoulder and spur 

increased from 6.71% to 8.42% and 13.86% to 18.29%, respectively (Table 1). However, during 

the comparison between cell size (5*5) and cell size (25*25), the percentage area of depression 

decreased from 2.71% to 1.97%, while the percentage of spur and hollow increased from 

13.86% to 24.07% and 16.93% to 18.85 %, respectively (Table 1). 
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Figure 5. Geomorphon map of Akre district. 

 

Figure 6. Landform classification based on different cell sizes. 
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Figure 7. The area of landforms with different cell sizes. 

Table 1. The distribution of different geomorphons cell size. 

Landforms 

based on 

Geomorphons 

Geomorphons 
Geomorphons 

(5*5 cell) 

Geomorphons 

(10*10 cell) 

Geomorphons 

(25*25 cell) 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km2) 
% 

Flat 0.86 0.05 0.08 0.01 0.31 0.02 0.09 0.01 

Summit 21.69 1.18 24.42 1.33 51.80 2.83 27.29 1.48 

Ridge 150.23 8.20 93.71 5.11 70.51 3.85 87.52 4.78 

Shoulder 10.42 0.57 122.90 6.71 154.29 8.42 144.78 7.90 

Spur 268.62 14.66 254.19 13.86 335.14 18.29 440.91 24.07 

Slope 764.72 41.74 635.24 34.67 557.57 30.43 509.70 27.82 

Hollow 308.42 16.83 310.17 16.93 295.58 16.13 345.43 18.85 

Foot Slope 17.60 0.96 168.18 9.18 175.52 9.58 151.96 8.29 

Valley 255.54 13.95 173.48 9.47 140.34 7.66 88.40 4.82 

Depression 33.99 1.86 49.73 2.71 51.02 2.79 36.01 1.97 

Total 1832.08 100 1832.08 100 1832.08 100 1832.08 100 

The landslide susceptibility map generated from a previous study has been used to correlate the 

spatial distribution of the geomorphic types within the studied area. The landslide map is 

classified into five classes: very high, high, moderate, low, and very low (Figure 8), while Table 

2 shows the percentage of each class. 

Table 2. The percentage area of landslide-prone zones. 

Landslide Prone 

Zones 
Area (km²) Percentage (%) 

Very low 164.6 9.0 

Low 449.1 24.5 

Moderate 473.7 25.9 

High 462.4 25.2 

Very high 282.2 15.4 

Total 1832.0 100.0 
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The results in Table 3 indicate that more than 45% of the areas of summit, ridge, shoulder, spur, 

and slope, are classified as having high to very high landslides; these regions can be found in 

the north, east, and west of the study area and the anticline that extends from east to west of the 

Akre district. These areas are highly vegetated, with relief between 900 – 1500 m, bedrock 

mainly consisting of limestone and dolomitic limestone, well-drained soil, and limited human 

activity. 

 

Figure 8. Landslide susceptibility map of Akre district (modified after Fatah et al., 2024). 

Moreover, the hollow, foot slope, valley, and depression are classified as having moderate to 

high landslides with percentages of 62.82%, 67.8%, 71.25%, and 62.33% respectively; these 

areas are located in the central parts of the studied area, northern, and western (Figure 8). These 

areas are elevated between 750 and 900 m covered by siltstone, sandstone, and marly limestone, 

and limited human activities (Figures 1 and 2). 

Finally, the results show that 69.23% and 30.77% of the flat units are classified as very low and 

low landslides respectively, which cover the southern part of the area; these areas are 

characterized by less vegetative coverage and limited rainfall (Table 3). Lithologically, the area 

is composed of recent deposits and mudstone, relief less than 600 m, and highly affected by 

human activities. 
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Table 3: The landforms area for each landslide-prone zone. 

Landforms 
Very 

Low 
Low Moderate High Very High Total 

Flat 69.23 30.77 0.00 0.00 0.00 100 

Summit 0.19 3.58 49.94 43.04 3.26 100 

Ridge 4.14 10.39 28.09 41.49 15.88 100 

Shoulder 10.12 23.34 18.90 27.43 20.22 100 

Spur 9.79 24.95 20.28 25.69 19.29 100 

Slope 9.63 26.30 24.70 23.96 15.41 100 

Hollow 10.01 27.16 27.78 21.95 13.10 100 

FootSlope 8.10 24.10 33.28 24.37 10.15 100 

Valley 3.07 25.68 45.24 19.44 6.57 100 

Depression 0.27 37.40 43.43 11.73 7.16 100 

The Akre district experiences landslide processes due to fluctuations in slope degree, 

unpredictable or low amounts of rainfall, human activities, and varying lithology. Due to erratic 

or infrequent rainfall, the area frequently experiences droughts and the resulting vegetation 

degradation, which exacerbates the landslide processes in the area. Figure 9 displays field 

images of landslide incidents that have occurred in the Akre District. This figure illustrates 

high-risk sites that have steep slopes and diverse lithology. A landslide susceptibility map is 

shown in the center of the figure, while field photographs depict a variety of different types of 

landslides (mass wasting, debris, and rock fall). The danger is increased in areas with steep 

terrain and construction sites for roads. It is essential to implement mitigation strategies such 

as slope stabilization and appropriate drainage systems in order to minimize the likelihood of 

landslides occurring in the area. 

 

Figure 9: Landslide susceptibility map and Landslide incidents field photos units of Akre 

district with filed photos. 
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To validate the final map, from each class of Landslide a specific area was selected to correlate 

with the spatial distribution of geomorphic types in the area. Site 1 represents very high to high 

susceptible areas to landslide, site 2 shows high landslide, site 3 indicates moderate landslide, 

and low to very low is present at site 4. Based on field observations and high-resolution Google 

Earth, these places were selected for visual validation. The findings demonstrated a high degree 

of agreement between the field observation landform survey, Google Earth photos, and the final 

landslide map (Figure 10). 

 

Figure 10: Visual validation of Landslide susceptibility map and Geomorphic units of Akre 

district with filed photos. 

The automatic classification of landforms with computer-based models is a considerably more 

accurate, cost-effective, and productive approach to categorizing the landforms on the surface 

of the Earth. This classification establishes boundary conditions for several geomorphological 

phenomena (Libohova et al., 2016). The most common landform form found is strongly 

correlated with slope, whilst the least common is correlated with flat terrain. These conclusions 

were reached by comparing the results of the identification and extraction processes with field 
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observations. The findings of the research clarified the surface morphologies and underlying 

mechanisms that have formed and are shaping this region's terrain. It is evident that the 

evolution of topographic features such as shoulders, spurs, and hollows has progressed further 

in the ridge and valley regions. Ultimately, the extracted model facilitated the identification of 

landform elements and patterns of topographic variation, which in turn highlighted disparities, 

resemblances, and instabilities in terrain morphology (Alzekri et al., 2024; Fatah et al., 2024). 

Five classifications were identified on the final Landslide map. According to Table 2, these 

classifications are very low, low, moderate, high, and very low. The low and very low areas are 

primarily in the south of the Akre district and are primarily covered by recent deposits, 

according to the spatial distribution of landslides (Figure 8). It is evident that there are numerous 

moderate landslide zones in the northern and central regions of the study area which were 

characterized by slope, spur, and shoulder landforms. Finally, high and very high classes are in 

the northern, some central, and northwest regions of the Akre district; these areas are primarily 

mountainous areas that have been affected by human activity and have scant vegetation. In 

summary, the studied area's landslides are predominantly distributed in the northern directions. 

However, the study area's center parts also have a high rate of landslides, primarily as a result 

of the topography of the area and human activity. The results of the present study are parallel 

with previous studies (Adeli et al., 2021; Beranvand & Saife, 2020). 

The resolution of the DEM data is one of the method's limitations when it involves employing 

a digital elevation model to map landforms. The accuracy in determining particular landforms, 

particularly smaller or more complex ones, can be affected by the detailed resolution of the 

topographical model. More comprehensive maps can be produced with higher-resolution data, 

however, there may be additional processing expenses and requirements. The possibility of 

inaccuracies and errors in the elevation data is another drawback of landform mapping by digital 

elevation model, which requires preprocessing. The overall accuracy and quality of the mapped 

features might be negatively impacted by inaccurate depictions of landforms resulting from 

inaccurate elevation measurements. Thus, since mapping landforms using DEM, it's critical to 

take accuracy and data sources into account. Nevertheless, this technique uses an 8-tuple pattern 

of the visible neighborhood, which circumvents the commonly encountered drawback of 

conventional calculus techniques, which are unable to identify all terrain forms within a single 

window size (Ngunjiri et al., 2020). 

The Geomorphon technique has been widely used for landform mapping (Jasiewicz & 

Stepinski, 2013; Libohova et al., 2016; Robaina & Trentin, 2020) and is employed in this study 

to identify and classify landforms based on their geomorphologic appearances and spatial 

distribution. The findings contribute to a more comprehensive understanding of landform 

patterns and their classification. 

6. Conclusions 

The Geomorphon approach has been effectively implemented to locate and recognize landform 

features in the Akre district. The findings of this research were juxtaposed with a landslide 
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susceptibility map to determine the geographical distribution of landforms in the studied area. 

The study's findings indicated the surface shapes and types of processes that have or are 

currently operating in the region. The results revealed that slopes account for the maximum 

percentage of the research area, while flats (plains) represent the smallest percentage. 

Furthermore, it has been demonstrated that the slope, hollow, and spur landforms collectively 

constitute the dominating landform patterns, accounting for around three-quarters of all 

categories under the tenth Geomorphon units. Hence, the landslide has happened in the 

shoulder, spur, slope, hollow, and foot slope elements, and a very high landslide has occurred 

in the ridge and summit. This study demonstrates that the created model is a useful tool for 

analyzing the spatial distribution of geomorphon types and landslides that can qualitatively 

analyze landslides over a sizable territory by combining remotely sensed data with GIS 

approaches. 

References 

Adeli, Z., Ghahroudi Tali, M., & Sadough, H. (2021). Application of Geomorphons method in identifying landform 

elements (Case study: Hablehroud Basin) Quantitative Geomorphological Research, 10(2), 106-119. 

https://doi.org/10.22034/gmpj.2021.255287.1222  

Al-Sababhah, N. (2023). Topographic position index to landform classification and spatial planning, using GIS, 

for Wadi Araba, South West Jordan. Environment Ecology Research, 11(1), 79-101. https://doi.org/DOI: 

10.13189/eer.2023.110106  

Alzekri, O. A., Al-Ali, A. K., & Soltan, B. H. (2024). Neotectonics for the Rumaila Oilfield, Southern Iraq, Using 

InSAR Techniques. Iraqi Geological Journal, 57(1C), 146-164. 

https://doi.org/https://doi.org/10.46717/igj.57.1C.11ms-2024-3-23  

Bachri, S., Shrestha, R. P., Yulianto, F., Sumarmi, S., Utomo, K. S. B., & Aldianto, Y. E. (2021). Mapping Landform 

and Landslide Susceptibility Using Remote Sensing, GIS and Field Observation in the Southern Cross 

Road, Malang Regency, East Java, Indonesia. Geosciences, 11(1), 4. 

https://doi.org/https://doi.org/10.3390/geosciences11010004  

Beranvand, H., & Saife, A. (2020). Identification, classification and morphometry of glacial cirque in Jupar altitude 

of Kerman %J Quantitative Geomorphological Research. 8(4), 63-80. 

https://doi.org/10.22034/gmpj.2020.106412  

Bety, A. K. (2013). Urban geomorphology of Sulaimani City, using remote sensing and GIS techniques, Kurdistan 

Region, Iraq. Unpublished PhD thesis, Faculty of Science and Science Education, University of Sulaimani, 

125.  

Coria, R. D., Brungard, C., Vizgarra, A. L., Moretti, L. M., Schulz, G. A., & Rodríguez, D. M. (2024). Accuracy 

assessment of the geomorphon approach to detect ecological sites in the Dry Chaco region of Argentina. 

Catena, 246, 108409.  

Drăguţ, L., & Eisank, C. (2012). Automated classification of topography from SRTM data using object-based 

image analysis. Geomorphometry, 141-142.  

Fatah, K. K., Hamed, M., Saeed, M. H., & Dara, R. (2020). Evaluation groundwater quality by using GIS and 

water quality index techniques for wells in Bardarash area, Northern Iraq. The Iraqi Geological Journal, 

57(2C), 87-104.  

Fatah, K. K., Mustafa, Y. T., & Hassan, I. O. (2022). Flood Susceptibility Mapping Using an Analytic Hierarchy 

Process Model Based on Remote Sensing and GIS Approaches in Akre District, Kurdistan Region, Iraq. 

Iraqi Geological Journal, 55(2C), 121-149. https://doi.org/10.46717/igj.55.2C.10ms-2022-08-23  

Fatah, K. K., Mustafa, Y. T., & Hassan, I. O. (2024). Geoinformatics-based frequency ratio, analytic hierarchy 

process and hybrid models for landslide susceptibility zonation in Kurdistan Region, Northern Iraq. 

Environment, Development and Sustainability, 26(3), 6977-7014. https://doi.org/10.1007/s10668-023-

02995-7  

Fouad, S. F. (2015). Tectonic map of Iraq, scale 1: 1000 000, 2012. Iraqi Bulletin of Geology and Mining, 11(1), 

1-7.  

https://doi.org/10.22034/gmpj.2021.255287.1222
https://doi.org/DOI
https://doi.org/https:/doi.org/10.46717/igj.57.1C.11ms-2024-3-23
https://doi.org/https:/doi.org/10.3390/geosciences11010004
https://doi.org/10.22034/gmpj.2020.106412
https://doi.org/10.46717/igj.55.2C.10ms-2022-08-23
https://doi.org/10.1007/s10668-023-02995-7
https://doi.org/10.1007/s10668-023-02995-7


IBGM. 2025, vol 21, issue 1                                                                                                                         415 of 18 
 

244 

 

Giano, S. I., Danese, M., Gioia, D., Pescatore, E., Siervo, V., & Bentivenga, M. (2020). Tools for semi-automated 

landform classification: a comparison in the Basilicata Region (Southern Italy). International Conference 

on Computational Science and Its Applications,  

Gioia, D., Danese, M., Corrado, G., Di Leo, P., Minervino Amodio, A., & Schiattarella, M. (2021). Assessing the 

Prediction Accuracy of Geomorphon-Based Automated Landform Classification: An Example from the 

Ionian Coastal Belt of Southern Italy. ISPRS International Journal of Geo-Information, 10(11). 

https://doi.org/10.3390/ijgi10110725  

Ilia, I., Rozos, D., & Koumantakis, I. (2013). Landform classification using GIS techniques. The case of Kimi 

municipality area, Euboea island, Greece. Bulletin of the Geological Society of Greece, 47(1), 264-274.  

Jasiewicz, J., & Stepinski, T. F. (2013). Geomorphons — a pattern recognition approach to classification and 

mapping of landforms. Geomorphology, 182, 147-156. 

https://doi.org/https://doi.org/10.1016/j.geomorph.2012.11.005  

Le Garzic, E., Vergés, J., Sapin, F., Saura, E., Meresse, F., & Ringenbach, J. (2019). Evolution of the NW Zagros 

Fold-and-Thrust Belt in Kurdistan Region of Iraq from balanced and restored crustal-scale sections and 

forward modeling. Journal of Structural Geology, 124, 51-69. https://doi.org/10.1016/j.jsg.2019.04.006  

Li, S., Xiong, L., Tang, G., & Strobl, J. (2020). Deep learning-based approach for landform classification from 

integrated data sources of digital elevation model and imagery. Geomorphology, 354, 107045. 

https://doi.org/https://doi.org/10.1016/j.geomorph.2020.107045  

Libohova, Z., Winzeler, H. E., Lee, B., Schoeneberger, P. J., Datta, J., & Owens, P. R. (2016). Geomorphons: 

Landform and property predictions in a glacial moraine in Indiana landscapes. CATENA, 142, 66-76. 

https://doi.org/10.1016/j.catena.2016.01.002  

Lin, S., Chen, N., & He, Z. (2021). Automatic Landform Recognition from the Perspective of Watershed Spatial 

Structure Based on Digital Elevation Models. Remote Sensing, 13(19), 3926. https://www.mdpi.com/2072-

4292/13/19/3926  

Mihu-Pintilie, A., & Nicu, I. C. (2019). GIS-based Landform Classification of Eneolithic Archaeological Sites in 

the Plateau-plain Transition Zone (NE Romania): Habitation Practices vs. Flood Hazard Perception. Remote 

Sensing, 11(8), 915. https://www.mdpi.com/2072-4292/11/8/915  

Mokarram, M., & Seif, A. (2014). GIS-based automated landform classification in Zagros mountain (case study: 

Grain mountain). Bulletin of Environment, Pharmacology and Life Sciences, 3(3), 20-32.  

Ngunjiri, M. W., Libohova, Z., Owens, P. R., & Schulze, D. G. (2020). Landform pattern recognition and 

classification for predicting soil types of the Uasin Gishu Plateau, Kenya. CATENA, 188, 104390. 

https://doi.org/https://doi.org/10.1016/j.catena.2019.104390  

Robaina, L. E., de Souza, Trentin, R., Vargas de Cristo, S. S., & Volpato Sccoti, A. A. (2017). APPLICATION OF 

THE GEOMORPHONS TO THE LANDFORM CLASSIFICATION IN TOCANTINS STATE, BRAZIL 

Temático de Geomorfologia (Ra’E Ga), 41.  

Robaina, L. E. d. S., & Trentin, R. (2020). Automated classification of landforms with GIS support. Mercator, 19, 

e19012.  

Seif, A. (2014). Landform classification by slope position classes. Bulletin of Environment, Pharmacology Life 

Sciences, 3(11), 62-69.  

Shekar, P., Raja, & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data 

sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, 13-25. 

https://doi.org/https://doi.org/10.1016/j.wsee.2023.12.001  

Sissakian, V. K., & Fouad, S. F. (2015). Geological map of Iraq, scale 1: 1000 000, 2012. Iraqi Bulletin of Geology 

and Mining, 11(1), 9-16.  

Stepinski, T. F., & Jasiewicz, J. (2011). Geomorphons-a new approach to classification of landforms. Proceedings 

of geomorphometry, 2011, 109-112.  

Verhagen, P., & Drăguţ, L. (2012). Object-based landform delineation and classification from DEMs for 

archaeological predictive mapping. Journal of Archaeological Science, 39(3), 698-703. 

https://doi.org/https://doi.org/10.1016/j.jas.2011.11.001  

Wahyuni, D., Sukarsa, I., & Nugraha, A. S. (2021). The Role of Geomorphological Maps in Regional Planning 

and Management in Indonesia (Case: Buleleng Regency, Bali) Proceedings of the 2nd International 

Conference on Law, Social Sciences and Education, ICLSSE 2020, 10 November, Singaraja, Bali, 

Indonesia, Singaraja, Bali, Indonesia.  

Yusra, A.-h. (2019). Landforms Classification of Wadi Al-Mujib Basin in Jordan, based on Topographic Position 

Index (TPI), and the production of a flood forecasting map. Dirasat, Human Social Sciences, 46(3). 

https://doi.org/https://archives.ju.edu.jo/index.php/hum/article/view/15963  

Zhazhlayi, P. K., & Surdashy, A. (2022). Neo-Tectonism and Quantitative Morphotectonic Analysis of Roste 

Valley at Imbricated-Suture Zones, Kurdistan Region, Iraq. Iraqi Geological Journal, 55(2E), 35-58. 

https://doi.org/10.46717/igj.55.2E.3ms-2022-11-17  

https://doi.org/10.3390/ijgi10110725
https://doi.org/https:/doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.jsg.2019.04.006
https://doi.org/https:/doi.org/10.1016/j.geomorph.2020.107045
https://doi.org/10.1016/j.catena.2016.01.002
https://www.mdpi.com/2072-4292/13/19/3926
https://www.mdpi.com/2072-4292/13/19/3926
https://www.mdpi.com/2072-4292/11/8/915
https://doi.org/https:/doi.org/10.1016/j.catena.2019.104390
https://doi.org/https:/doi.org/10.1016/j.wsee.2023.12.001
https://doi.org/https:/doi.org/10.1016/j.jas.2011.11.001
https://doi.org/https:/archives.ju.edu.jo/index.php/hum/article/view/15963
https://doi.org/10.46717/igj.55.2E.3ms-2022-11-17


IBGM. 2025, vol 21, issue 1                                                                                                                         416 of 18 
 

244 

 

 

About the author 

Dr. Kaiwan K. Fatah is a lecturer at the Salahaddin University-Erbil, 

College of Science, Department of Earth Sciences and Petroleum. He is 

a member of the Kurdistan Geologists Syndicate. He graduated from the 

Salahaddin University-Erbil in 2011, with a B.Sc. degree in Geology and 

joined the same university in 2011. He was awarded an M.Sc. degree in 

2015 from the University of Southampton (the UK) in the field of 

Applied GIS and Remote Sensing and a Ph.D. degree in 2024 from the 

Salahaddin University-Erbil in the field of Applied GIS and Remote 

Sensing in Geo-Environmental Sciences. He has 14 years of experience 

working in the fields of geology, geomorphology, hydrology, geo-natural 

hazards, natural resources, Geo-Environmental Sciences, remote 

sensing, and GIS. He has 15 published articles on different geological 

aspects, especially in geo-natural hazards, natural resource management, 

Geo-Environmental Sciences, climate change, hydrology, 

geomorphology, land use and land cover planning, GIS, and remote 

sensing.  

e-mail: kaiwan.fatah@su.edu.krd  

 

Dr. Rebar T. Mzuri is a lecturer at the Salahaddin University-Erbil, 

College of Sciences, Dept. of Earth Sciences and Petroleum. He is a 

member of the Kurdistan Geological Syndicate and the Union of Iraqi 

Geologists. Dr. Mzuri obtained a Ph.D. in remote sensing and GIS 

application in Geo-environment, a master's degree in geoinformatics 

techniques in structural geology, and a bachelor’s degree in Geology all 

from Salaheddin University, Erbil. He earned his post-graduate diploma 

in Earth Resource Exploration from the University of Twente, The 

Netherlands in 2009. Dr. Rebar has been researching climate change and 

has published numerous articles in various fields, including land 

degradation, vegetation analysis, flooding, drought, spatial planning, 

groundwater potential, air pollution, and land use planning.  

e-mail: rebar.ali@su.edu.krd 

 

mailto:kaiwan.fatah@su.edu.krd
mailto:rebar.ali@su.edu.krd

