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ANN-Based Faults Classification in the Farm of
PV Systems
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Department of Electrical Engineering, College of Engineering, University of Mosul, Iraq

ABSTRACT

This research provides an analytical study of the effect of fault resistance on the accuracy of fault classification in
solar farms, with the aim of evaluating the performance of classification algorithms in realistic environments where the
characteristics of electrical signals resulting from faults change. A model of a 290 kW photovoltaic farm, consisting of
100 strings each containing 7 solar panels, was adopted, and the simulation was carried out using MATLAB/Simulink
software. The study included different scenarios for electrical faults, such as line-to-ground (LG) and line-to-line (LL)
failures, with the failure impedance changing from 0 to 500 ohms by a step of 20 ohms. Basic electrical signals such
as currents, voltages, power, temperature, and radiation, were recorded for each fault. The data was pre-processed,
then a classification model was built using the KNIME platform with the Artificial Neural Network (ANN) algorithm,
and the data was divided into training and testing groups. The evaluation was conducted using multiple performance
indicators: accuracy, retrieval, predictive accuracy, F1-Score, Matthews Correlation Coefficient (MCC), Area Under the
Curve (AUC), and Logarithmic Loss (Log Loss), as well as confusion matrices analysis. The results showed that the high
fault impedance leads to a gradual decrease in the performance of the model, as a result of the decrease in the clarity
of the electrical signals associated with the fault.
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1. Introduction

Promoting the use of renewable energy sources is
a sustainable solution that contributes to mitigating
global warming [1]. Photovoltaic (PV) systems are
one of the most prevalent technologies due to their
low cost and growing interest in environmental is-
sues [2]. Photovoltaic systems can be installed in a
variety of places, such as homes, buildings, and utili-
ties, thanks to their flexibility and scalability. Several
strategies have been studied to facilitate the effective
adoption of these systems, including energy fore-
casting [3, 4], optimization [5, 6], and surveillance
technologies [7]. System failures can lead to signifi-
cant power loss or serious accidents. For example, at

one location in the UK, there was an 18.9% drop in
energy production in one year as a result of failures
in the photovoltaic system [8] Some faults may cause
fires or lead to serious problems within power grids
[9, 10], as the development of fault detection systems
in the photovoltaic system is essential to ensure the
stable operation of the systems. The photovoltaic sys-
tem is one of the most widely used renewable energy
systems today, due to its ability to convert solar en-
ergy directly into electrical energy without the need
for moving mechanical parts [2]. This system is based
on the phenomenon of photoelectric conversion that
occurs inside solar cells made of semiconductor ma-
terials, often silicon, where the absorption of photons
releases electrons that produce a constant electric
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Fig. 1. Grid-connected photovoltaic system architecture with intelli-
gent fault detection mechanism.

current. In its basic form, a photovoltaic system con-
sists of several main components, as in Fig. 1, starting
with photovoltaic modules, which are usually in-
stalled in groups to form photovoltaic arrays (PV
arrays), and then transfer the energy produced to
the charge controller, which manages the charging
process of batteries and protects them from unsafe
operating conditions. In autonomous systems, storage
batteries are used to conserve energy for use during
periods when the sun is down [11].

The DC power supply from the panels or batteries
is then converted into alternating current using an
inverter to be compatible with the requirements of
electrical loads operating on alternating current (AC).
The system is usually equipped with a range of protec-
tion and monitoring devices, such as circuit breakers,
breakers, grounding systems, and voltage and current
measuring devices, to ensure safe and stable opera-
tion. Photovoltaic systems can be classified into three
main types depending on the way they are connected
to the electrical grid [12, 13].

- Off-Grid Systems,
- Grid-Connected Systems
- Hybrid systems that combine autonomy and net-

working.

A photovoltaic system may experience a variety of
failures, including those occurring in the photovoltaic
array, power conditioning unit and auxiliary compo-
nents (Balance of system) [14], As shown in Fig. 2.

The photovoltaic matrix is the only source of fault
current, since most PV convertors provide galvanic
isolation between PV arrays and utility grids, so there
is no other source of DC current other than the PV
array.

Among these breakdowns, ground faults and line
faults have the greatest potential to cause a signifi-
cant fault stream across the fault path [15]. Without
proper fault detection or protection, it can cause seri-
ous problems with the PV array, such as DC brackets
and even fire hazards [16]. Additionally, sequen-
tial or parallel parentheses may occur along these
four categories of fault. Especially for string brackets,
because they behave similarly to insert variable resis-
tance, which may be difficult to identify or extinguish
[17].

Over the past decade, AI techniques have proven
effective in modeling, monitoring, simulation, and
fault prediction in photovoltaic systems [18]. Several
studies have examined the use of (ANN) in the devel-
opment of custom algorithms for diagnosing faults of
these systems [19]. Fore, [20] relied on (ANN) tech-
nology in the diagnosis of photovoltaic faults, five
different types of faults were analyzed, among which
were voltage drops, abnormal energy production, and
high temperatures in some components. In another
study, [21] used the same technique to locate faults
within a single PV string.

Fault impedance is one of the factors that sig-
nificantly affects the behavior of electrical signals
resulting from failures in solar energy [15]. Different

Fig. 2. Common faults in photovoltaic arrays (on the DC side).



AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:13–24 15

impedance values change the range of deviation in
current and voltages, which can make it difficult for
algorithms to distinguish faults, especially in cases
with high impedance [22].

The literature review revealed that many re-
searchers have addressed the issue of fault resistance
in photovoltaic (PV) systems from different perspec-
tives. Some focused-on fault analysis and examined
the impact of fault resistance on electrical param-
eters, particularly the string current of the affected
unit. Others incorporated fault resistance into fault
simulations and data collection processes. Addi-
tionally, certain studies employed machine learning
algorithms to estimate the value of fault resistance,
while others aimed to detect faults under high resis-
tance conditions. In contrast, some studies completely
ignored this factor, assuming that faults occur as a
perfect short circuit with zero resistance—a scenario
that does not accurately represent real operating con-
ditions [23–25]. The key aspect that previous works
have not addressed—and which forms the core of this
research is the investigation of how fault resistance
influences the performance of fault classification al-
gorithms, representing the research gap this study
aims to fill.

In this paper, the effect of fault resistance on the
classification accuracy of faults in solar farms is in-
vestigated to evaluate the robustness of classification
algorithms under realistic operating conditions. A
simulation model of a 290-kW photovoltaic farm
was developed using MATLAB/Simulink, consisting
of 100 strings, each containing 7 solar panels. The
study focuses on two common types of faults in photo-
voltaic systems: (LL) and (LG) faults, applied to one or
two modules within a string. Fault resistance was var-
ied from 0 to 500 ohms in steps of 20 ohms to simulate
different severities of fault conditions. Simulated data
were collected for each case, including electrical pa-
rameters such as current, voltage, power, along with
environmental conditions like temperature and solar
irradiance. A total of 3000 samples were generated,
with 600 samples for each case and fault type and
600 for normal operation. Random values of tem-
perature (0–50 °C) and irradiance (100–1000 W/m2)
were used to reflect real-world variability. After pre-
processing, the KNIME platform was used to build a
fault classification model using an (ANN). The pri-
mary objective of this study is to explore how varying
fault impedance influences the performance of intel-
ligent classification systems in practical photovoltaic
applications.

The Fig. 1 illustrates an integrated flowchart of a
photovoltaic (PV) farm monitoring system with fault
detection and classification mechanisms. It combines
the MATLAB/Simulink environment for simulating

the PV farm and the KNIME environment for data
processing and executing diagnostic algorithms. The
system starts from the PV array, which receives solar
irradiance (Irr) and temperature (T) as environmen-
tal inputs and produces current (i) and voltage (v)
as electrical signals. These signals pass through a
DC/DC converter equipped with a Maximum Power
Point Tracking (MPPT) algorithm and the first control
unit, then through an AC/DC converter and the sec-
ond control unit before connecting to the electrical
grid. In parallel, solar irradiance, temperature, cur-
rent, and voltage are measured using sensors linked
to a data acquisition and storage unit. This data is
transmitted to the transmission stage and then to the
preprocessing unit, where data cleaning and trans-
formation are performed to extract distinctive fault
features. Subsequently, the data passes to the fault de-
tection unit, which determines whether a fault exists
in the system, followed by the fault classification unit
that identifies the fault type and location. Finally, the
results, including the system’s diagnostic status, are
displayed in the visualization unit.

2. Method and tools

Photovoltaic systems sometimes suffer from a range
of electrical failures resulting from various internal
design problems [26, 27]. This work takes the effect
of failure resistance on the accuracy of the algorithms
for classifying three different failures, as well as one
sound operational state without failures. Fig. 3 shows
the types of faults diagnosed in this research with
the aim of evaluating the performance of algorithms
based on different criteria and comparing their per-
formance to different values of fault impedance. Here

Fig. 3. Describes fault cases LG and LL on an array solar system.
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Fig. 4. Describes a 290-kW grid-connected PV farm simulated with Simulink/MATLAB.

is a detailed explanation of the types of faults that
occur in the photoelectric arrays.

In this paper, the effect of fault resistance on
the performance of the fault classification algorithm
in solar systems was studied through an accurate
simulation model using the Simulink environment
in MATLAB software. The system was represented
by simulating a 290 kW solar farm, as in Fig. 4.
Fig. 4 represents the simulated model of the so-
lar photovoltaic system, which was developed using
the Simulink environment in MATLAB software. The
system’s connection to the power grid is shown
by a three-level inverter based on an IGBT bridge
controlled using pulse width modulation (PWM) tech-
nology. The inverter controller is designed to apply
the maximum power point tracking (MPPT) algo-
rithm using the turbulence and monitoring method.
The photovoltaic system was connected to the grid
via a three-phase power transformer in a ratio of
0.25/250 kV. The network model includes two short-
distance transmission lines: the first line is 14 km long
and connected to a 120 kV equivalent network via

a power transformer, while the second line is an 8
km feeder destined for a fixed load. The PV system
farm has 100 strings connected in parallel, and each
string contains 7 connected modules in series. Each
module consists of 128 solar cells, producing a maxi-
mum power of 414.801 watts at 72.902 V and 5.6901
amperes, while the open circuit voltage is 85.32 volts,
and the short current is 6.091 amperes.

The scenarios are designed to cover three main
types of failures: (LL) short, (LG) short, and the fol-
lowing categories. For each fault type, 6 different
scenarios were created with gradient fault resistance
values: 0, 20, 40, 60, 80, 100, 200, 300, 400 and
500 ohms. Furthermore, faults were applied in two
different cases, either across a single solar panel or
across two panels described earlier in Fig. 2. In each
scenario, 600 sample data were collected, with solar
radiation values randomly changing in the range from
100 to 1000 W/m2 and temperature within the range
from 0 to 60 °C to simulate changing environmental
conditions affecting system performance. Categories
and number of samples can be described in Table 1.

Table 1. Distribution of 3000 sample training and forecast datasets.

Relative Frequency
Categories Count of Samples (Samples) Categories Description

NORMAL 600 %20 No-fault (Normal condition)
LL-1PV 600 %20 (LL) -fault across 1 module
LL-2PV 600 %20 (LL) -fault across 2 modules
LG-1PV 600 %20 (LG) -fault across 1 module
LG-2PV 600 %20 (LG) -fault across 2 modules
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Table 1 describes the types of faults that have been
simulated for each of the six values of the failure
resistance. For each sample, a set of important elec-
trical and environmental variables were recorded,
namely temperature, solar radiation, string currents,
total system current, total voltage, and total power
produced. These data are called features or attributes
that represent the basic inputs for analyzing and
classifying faults using the algorithm. The research
methodology is based on accurate simulation of the
system with the application of multiple scenarios for
fault resistance values, allowing us to study the im-
pact of this resistance on the accuracy of the fault
classification algorithm under changing environmen-
tal conditions. This method provides a comprehensive
framework for understanding how the system and
monitoring systems respond to various faults and en-
hances the reliability of maintenance and diagnostic
operations in solar farms. The data was divided into
two separate groups for training and testing pur-
poses by 80% and 20%, respectively. The training kit
includes 2400 samples; each sample contains 15 char-
acteristics (feature) in addition to a target variable
representing the category (class), as shown in Table 2.

The Fig. 5 illustrates an integrated flowchart of a
photovoltaic (PV) farm monitoring system with fault
detection and classification mechanisms. It combines
the MATLAB/Simulink environment for simulating
the PV farm and the KNIME environment for data
processing and executing diagnostic algorithms.

The system starts from the PV array, which receives
solar irradiance (Irr) and temperature (T) as environ-
mental inputs and produces current (i) and voltage
(v) as electrical signals. These signals pass through a
DC/DC converter equipped with a Maximum Power
Point Tracking (MPPT) algorithm and the first control

Table 2. Description of direct features taken from the photovoltaic
system.

Attributes Data Type Descriptions

I1mpp feature Maximum power point current of string 1
I2mpp feature Maximum power point current of string 2
I3mpp feature Maximum power point current of string 3
I4mpp feature Maximum power point current of string 4
I5mpp feature Maximum power point current of string 5
I6mpp feature Maximum power point current of string 6
I7mpp feature Maximum power point current of string 7
I8mpp feature Maximum power point current of string 8
I9mpp feature Maximum power point current of string 9
I10mpp feature Maximum power point current of string 10
Vmpp feature Maximum power point Total DC voltage
Pmpp feature Maximum power point Total DC power
Itotal feature Maximum power point Total current
T feature Temperature (0 °C to 50 °C)
IR feature Radiation (100 W/m2 to 1,000 W/m2)
Category target normal, (LG) fault, (LL) fault

unit, then through an AC/DC converter and the sec-
ond control unit before connecting to the electrical
grid. In parallel, solar irradiance, temperature, cur-
rent, and voltage are measured using sensors linked
to a data acquisition and storage unit. This data is
transmitted to the transmission stage and then to the
preprocessing unit, where data cleaning and trans-
formation are performed to extract distinctive fault
features. Subsequently, the data passes to the fault de-
tection unit, which determines whether a fault exists
in the system, followed by the fault classification unit
that identifies the fault type and location. Finally, the
results, including the system’s diagnostic status, are
displayed in the visualization unit.

After adopting the MATLAB/Simulink simulation
environment to simulate failures in the photovoltaic
system and extract data related to different failures,
and in order to analyze the impact of fault impedance
on the performance of fault classification algorithms,
six different cases of fault resistance ranging from 0
to 500 ohms were simulated, with a step of 20 ohms.
After the data was obtained, it was prepared and
processed to be ready for input into the classification
algorithm, which was the (ANN) model. The data
set was divided into two main parts: the training set
and the test set. To build and train the model, the
KNIME Analytics Platform was used, which provides
a visual and integrated environment for designing
and training machine learning models. The workflow
is built into KNIME, as shown in Fig. 6, so that raw
data is entered, pre-processing steps are performed,
and then the neural network model is trained and its
performance evaluated at each fault resistance value.

A set of benchmark performance indicators have
been adopted to assess the effectiveness of the
proposed model in accurately classifying faults, es-
pecially under non-ideal operating conditions such as
changing failure resistance. Among these indicators,
accuracy, which expresses the percentage of properly
classified samples, and the F1 index, which is a bal-
anced measure that combines accuracy and retrieval,
making it suitable in cases of category imbalances.
Matthew’s correlation coefficient was also adopted
(MCC) as a comprehensive indicator that reflects the
overall performance of the model by taking into ac-
count all the elements of the confusion matrix, it
is considered one of the strongest measures in this
context. In addition, other indicators such as Recall,
Precision, and Specificity were used to provide de-
tailed insight into the model’s ability to distinguish
between different states. The (AUC) curve was also
adopted as an indicator that measures the model’s
ability to differentiate between categories in general,
along with log loss. which measures the accuracy of
the model’s prediction of classification probabilities.
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Fig. 5. Flowchart of fault detection and classification system.

Fig. 6. Fault classification form.

Training Time and Testing Time were also calculated
to assess the temporal efficiency of the model, es-
pecially in applications that require immediate or
near-immediate data processing.

3. Results and discussion

After the completion of the construction of the pho-
tovoltaic farm model and the simulation of faults, the
focus was on studying the behavior of the electrical
outputs of solar strings under the influence of various
faults, with a change in fault resistance. The aim of
this part is to understand how currents and voltages
in fault-affected strings change compared to healthy
ones, and how this effect is reflected in the detectabil-
ity and classification of faults.

Two main fault failures, namely (LG) and (LL)
failure, were highlighted, each of which was per-
formed across one unit and two units within the
affected string. The fault resistance has been gradu-
ally changed from 0 ohms to 500 ohms in irregular

steps, to simulate a range of real-life scenarios that
can occur as a result of changing the nature of the
contact points or environmental conditions affecting
the severity of the failure.

To achieve an accurate understanding of the impact
of these failures, the currents of three solar ranges
from the farm were mapped and analyzed on the same
axes with the aim of direct comparison “As shown
in Fig. 7., part (C), the current deviations are more
pronounced at 1000 W/m2, especially under LL faults
involving two modules.” The string (No. 2) was the
string in which the failure occurred, while the string
(No. 1) was shared in the event of a LL fault., where
the fault involves a wire shared between two strings,
and the third string (No. 3) is completely intact and
is used as a reference for comparison.

This analysis was repeated at three levels of solar
radiation: 200 W/m2, 500 W/m2, and 1000 W/m2, in
order to monitor the effect of radiation on the clarity
of the signals resulting from the failure, where oper-
ating conditions and current levels vary according to
the intensity of the radiation.



AUIQ TECHNICAL ENGINEERING SCIENCE 2025;2:13–24 19

Table 3. Criteria for evaluating the performance of the fault classification model and their description.

Train Test (Rf) Fault
Model (sec) (sec) AUC CA F1 Prec Recall MCC Spec Log Loss Resistance (ohms)

ANN 3.803 0.091 1.000 0.998 0.996 0.998 0.998 0.997 1.000 0.022 0
ANN 3.803 0.091 1.000 0.995 0.995 0.995 0.995 0.992 0.997 0.028 20
ANN 3.803 0.091 0.999 0.980 0.980 0.981 0.980 0.969 0.987 0.246 40
ANN 3.803 0.091 0.999 0.973 0.973 0.974 0.973 0.959 0.982 0.313 60
ANN 3.803 0.091 0.990 0.952 0.952 0.952 0.952 0.925 0.968 0.262 80
ANN 3.803 0.091 0.985 0.947 0.94 0.948 0.947 0.917 0.964 0.345 100
ANN 3.803 0.091 0.976 0.934 0.925 0.940 0.942 0.931 0.951 0.412 200
ANN 3.803 0.091 0.970 0.921 0.920 0.931 0.935 0.924 0.943 0.476 300
ANN 3.803 0.091 0.961 0.913 0.911 0.922 0.927 0.908 0.932 0.514 400
ANN 3.803 0.091 0.953 0.897 0.890 0.901 0.911 0.889 0.921 0.559 500

The figures illustrate three different levels of solar
irradiance to show the effect of fault resistance on
the currents of three photovoltaic strings under line-
to-ground (LG) and line-to-line (LL) fault conditions,
applied across one or two modules in the string. In
Figure (A), at a low irradiance level (200 W/m2),
the string currents affected by faults start at very
low values when the fault resistance is small, with
clear differences between the different fault cases.
The fault effect is more severe in the LL case com-
pared to LG, and faults affecting two modules cause
a larger current reduction than those affecting only
one module. As the fault resistance increases, the cur-
rents gradually rise and approach the healthy string
current until all values converge at high resistance
(∼500 �). In Figure (B), at a medium irradiance level
(500 W/m2), the general pattern is repeated, but the
initial current values are higher due to the increased
irradiance. The relative differences between the cases
are more distinct in the low-resistance range. Again,
these differences gradually diminish as the fault re-
sistance increases, almost disappearing at very high
resistance values. In Figure (C), at a high irradiance
level (1000 W/m2), the currents in all cases are sig-
nificantly higher, and the fault effect is clearly visible
at low resistances, where the currents of the faulty
strings drop considerably compared to the healthy
string. However, as the resistance increases, the val-
ues converge strongly in all cases, making it nearly
impossible to distinguish between them at this point.

From comparing the three figures, it can be con-
cluded that:

• The fault effect is more pronounced at higher
irradiance levels, where the absolute current
differences between healthy and faulty strings in-
crease.

• The fault type and the number of affected modules
have a direct impact on the magnitude of current
reduction, with LL faults across two modules be-
ing the most severe.

• This pattern has significant implications in the
field of fault diagnosis: in the low- and medium-
resistance range, the differences between cases are
clear and can be relied upon for accurate fault
classification, whereas at very high resistances,
distinguishing between them becomes extremely
difficult because the signals (currents) become
nearly identical, which limits the ability of classifi-
cation algorithms to perform their task efficiently.

The performance of the proposed model was an-
alyzed using a set of statistical criteria previously
identified in the methodology chapter. The values
of these criteria were calculated after applying the
model to the test data to evaluate its accuracy and
effectiveness in classifying faults under the influence
of variable failure resistance. The criteria used in-
cluded: accuracy, F1 index, Matthew’s correlation
coefficient (MCC), positive accuracy, recall, speci-
ficity, area under curve (AUC), in addition to log loss,
and training and test times. The resulting values of
these indicators are organized in Table 3: “Values of
model performance evaluation indicators under vari-
able fault resistance”, which shows the differences
in performance and highlights the efficiency of the
model in dealing with different scenarios. The cal-
culated values show the model’s ability to balance
accuracy and responsiveness, especially in cases with
uneven distribution of categories, demonstrating the
model’s effectiveness in real-world environments.

The results of the performance evaluation of the
(ANN) model showed that the value of failure resis-
tance has a clear impact on the accuracy and quality
of classification, as the performance was analyzed
across a variety of statistical criteria that provide a
comprehensive understanding of the efficiency of the
model under different operating conditions. Initially,
the model showed excellent performance at low crash
resistance values, particularly at 0 ohms, where the
rating accuracy was 99.8%, with an F1-score of 0.996,
demonstrating a high ability to recognize different
fault patterns. The precision and recall indicators
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Fig. 7. Variation of currents in 3 PV strings under different fault conditions (LG and LL, across one and two modules) for different levels of
solar irradiance, with varying fault resistance: (A) 200 W/m2, (B) 500 W/m2, (C) 1000 W/m2.
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Fig. 8. Graph of the change of the performance parameters of the fault classification algorithm with the difference in the fault impedance
value (from 0 to 500 ohms).

were high and proportionate, reflecting a balance
in predicting positive categories. This performance
distinction can be clearly explained by the electrical
signals generated by low-impedance failures.

As the impedance of the fault gradually increased
(0–500 ohms), a gradual decline in model perfor-
mance was observed. Accuracy fell to 0.897%, the
F1 score dropped to 0.890 at 500 ohms, and the
MCC value fell from 0.997 to 0.889, a strong indi-
cator of the model’s low reliability in complex cases.
These results reflect the challenge posed by high fault
impedance to the classification model, as the resulting
electrical signals become less distinctive.

As shown in Table 3, various criteria such as ac-
curacy, F1-score, MCC, AUC, and log loss illustrate
the variation in model performance. For example,
specificity remained relatively high, demonstrating
the model’s ability to rule out cases without a crash.
The value of LogLoss gradually increased, indicating a
decline in the model’s confidence in its forecast. Also,
the AUC showed a decrease from 0.998 to 0.897, in-
dicating a decline in the model’s ability to distinguish
between categories.

Fig. 8, is showed a graphical representation of the
change in the performance parameters of the classifi-
cation model with the change of the fault impedance
value from 0 to 100 ohms. From this graph, it can be
seen that the model’s performance gradually declines
as the impedance value increases, which reflects the
inverse relationship between the signal clarity gen-
erated by the fault and the algorithm’s ability to
accurately classify.

Initially, curves show strong performance at low
impedance values, where accuracy is high and a good
balance between recall and precision is good, result-
ing in high F1-score values. The Matthews Correlation
Coefficient (MCC) also records high values, demon-
strating overall classification quality, especially in
multi-class cases. Also, the AUC value is high, indi-
cating the model’s ability to distinguish well between
categories at this stage.

As the failure resistance increases, these indicators
begin to deteriorate. Accuracy gradually decreases,
the F1 score decreases, and the algorithm begins
to lose its ability to distinguish subtle patterns in
data. The value of the AUC also gradually decreases,
reflecting poor model performance in segregating cat-
egories. These results confirm that fault impedance
directly affects the quality of the electrical signals
input to the model and thus the effectiveness of
the classification process. Hence the importance of
developing algorithms that are more tolerant of sub-
tle changes in signal characteristics or the inclusion
of feature engineering techniques to improve per-
formance at high impedances. To understand the
fault classification more deeply, confusion matrices
were used. A matrix was generated for each fault
impedance value (0–500 ohms), as shown in Fig. 9. In
matrix (A), at a fault resistance of 0 ohms, the artifi-
cial neural network (ANN) demonstrates near-perfect
performance, where all fault cases of type LG-Rf0 and
LL-Rf0, as well as the normal condition, are classified
with very high accuracy. Only one misclassification
was recorded, in which an LG case was classified as
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Fig. 9. Confusion matrices resulting from fault classification using (ANN) at different fault impedance values: (A) 0 ohms, (B) 20 ohms,
(C) 40 ohms, (D) 60 ohms, (E) 80 ohms, (F) 100 ohms.

normal, reflecting a strong ability to distinguish be-
tween patterns in the absence of resistance influence.

In matrix (B), at a fault resistance of 20 ohms, the
performance remains close to perfect, with a high
accuracy in distinguishing the three cases. Only two
normal cases were misclassified as LG, and one LL
case was misclassified as normal, indicating the be-
ginning of resistance influence, albeit very slightly.

In matrix (C), at a fault resistance of 40 ohms, mis-
classification becomes more noticeable, with 11 LL
fault samples classified as LG, in addition to two other
scattered errors. The normal cases, however, continue

to be classified with perfect accuracy. This confusion
between LG and LL reflects the reduction in distinc-
tive signal features as resistance increases.

In matrix (D), at a fault resistance of 60 ohms,
the confusion persists with a slight increase in er-
rors, as 13 LL cases are classified as LG, and 3 LG
cases are classified as LL. Nevertheless, the algorithm
maintains almost perfect accuracy in identifying the
normal condition.

In matrix (E), at a fault resistance of 80 ohms, the
confusion between the two fault types increases fur-
ther, with 17 LL cases misclassified as LG, and 12 LG
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cases misclassified as LL. This indicates that the dif-
ferences between fault signals are further diminished,
making it more difficult to distinguish between the
two.

In matrix (F), at a fault resistance of 100 ohms,
the confusion between LG and LL reaches its peak,
with 22 LL cases classified as LG and 18 LG cases
classified as LL. However, the classification of the
normal condition remains 100% correct, indicating
that the primary challenge for the algorithm lies in
differentiating fault patterns at high resistance, while
the normal signals remain clearly distinguishable.

Overall, the algorithm’s performance is excellent at
low resistances but gradually declines as resistance
increases, due to the convergence of current patterns
between different fault types. This is reflected in the
rising confusion between LG and LL, while the ac-
curacy for classifying the normal condition remains
constant.

This deterioration in performance can be explained
by the fact that high fault impedance reduces the
visibility of the resulting signals, making fault char-
acteristics less distinctive, and therefore difficult for
the model to distinguish different categories. Based
on these observations, it is recommended to enhance
the model with more sophisticated classification algo-
rithms, expand the database to include more diverse
failures, or even use advanced feature extraction
techniques based on signal conversion or spectral
processing.

The results of the present work clearly show that
fault resistance has a significant impact on the
accuracy of fault detection and classification. Nev-
ertheless, many existing studies overlook this factor,
which underscores the importance of addressing it
when developing reliable diagnostic models for PV
systems. The core contribution of this research lies
in filling this gap by systematically analyzing the
effect of fault resistance on the performance of fault
classification algorithms.

4. Conclusion

The results of this research showed that currents
extracted from the farm’s PV strings were the most af-
fected indicator of faults compared to voltage, which
remained relatively constant due to the large num-
ber of strings connected in parallel. Increased fault
resistance has been shown to reduce current devi-
ation from its normal state, making the electrical
signal generated by the fault less noticeable. This
decrease in deviation produces overlapping data be-
tween normal and fault states, making it difficult
for classification algorithms to accurately distinguish

between patterns. different. When analyzing 3,000
samples spread across four scenarios for two major
failures (LG) and (LL) failures, across one module and
two each), a clear decline in performance indicators
was observed with an increase in fault resistance
from 0 to 500 ohms. Accuracy decreased from 99.8%
to 89.7%, and F1-Score from 0.996 to 0.890, and
the coefficient of MCC from 0.997 to 0.889, Graphs
have documented this deterioration and showed the
inverse relationship between impedance and classi-
fication accuracy. The importance of these results
highlights the need to take fault resistance into ac-
count when designing smart systems to detect faults
in solar farms, especially in realistic environments
where operating conditions change. The results also
show that using current characteristics as the main
source of information may be more effective in diag-
nosing faults at different impedance levels.

5. Recommendations

- Improving the quality of training data: It is rec-
ommended to include multiple failures covering
a wide range of impedance values, in order to
expand the model’s generalization capability.

- Adoption of Feature Engineering techniques: Ex-
tracting new features or converting signals to
improve the model’s ability to recognize fine pat-
terns, especially in cases where impedance is high.

- Use hybrid or advanced models: More advanced
models such as deep neural networks or hybrid
models that combine deep learning with symbolic
or statistical reasoning techniques can be tried to
improve performance in complex conditions.
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